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Abstract  

In this paper investigation of mixed convective flow and heat transfer in vertical channel 

filled with immiscible viscous fluids has been carried out. The governing differential 

equations are solved analytically by regular perturbation method. The impact of 

governing parameters on velocity and temperature fields namely Grash of number, 

Brinkman number, perturbation parameter, viscosity ratio, width ratio, conductivity ratio, 

Nusselt number are investigated and represented graphically. 
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1. Introduction  

Mixed convective flow and heat transfer has importance from researchers due to their 

diverse application in engineering, automobile sector and various technical fields. This 

includes geothermal mining, nuclear reactors, heat and cold storage, wielding 

equipment, aircrafts Desai and Vafai [5]. The study of laminar fully developed mixed 

convection in a vertical channel with uniform wall temperature was one of the first 

attempt of Tao [10]. Recently Hamadah and Wirtz [11], Bratetta [3], Aung and Worku 

[1] assumed symmetric and asymmetric heating of walls of the vertical channel. Prathap 

kumar et al [7] studied the chemical reaction effects on mixed convection flow in 

vertical channel with immiscible fluids analytical as well as numerically. Umavati and 

Chamkha [6] analyzed mixed convection in presence of heat source or heat sink in a 

vertical channel. Jha and Oni [2] assumed temperature dependent viscosity to study the 

mixed convection flow in a vertical channel where they found that increase in viscosity 

parameter increases fluid velocity. With hall and ion-slip effects Srinivasacharya and 

Shafeeurrahaman [4] analyzed mixed convection flow in a vertical channel filled with 

nanofluid where they found with the increment in magnetic parameter decrease in 

temperature, velocity, nanoparticle concentration were occurred. Prathap kumar et al [8] 

analyzed and found impact of different governing parameter on mixed convective flow 

in a vertical channel using third kind of boundary condition where channel is filled with 

porous media using differential transfer method as well as perturbation method. In fluid 

dynamics regular perturbation method is most preferably used, Rashidi and Ganji [9]. 

Keeping in view of several applications of mixed convective flow in vertical channel, 

the aim of this paper is to investigate laminar fully developed mixed convection flow 

and heat transfer in vertical channel with immiscible viscous fluid analytically to extend 

the studies available in the literature. The governing differential equations are solved 

using regular perturbation method valid for small values of perturbation parameter. The 

thermal buoyancy force, viscous dissipation, viscosity ratio, width ratio, conductivity 

ratio, Nusselt number are considered to investigate their impact on flow field. 

 

 

Notation: 

b- ratio of thermal expansion coefficients (β2/β1) 

Br - Brinkman number (μ1 U0 (1)2/k1 ΔT) 

g- acceleration due to gravity 

Gr - Grashof number (gβ1D13ΔT/𝜈12) 

GR - mixed convective parameter (Gr/Re) 

D - width ratio (D2/D1) 

D1, D2 - width of regions 

k - thermal conductivities (k1/k2) 

m - ratio of viscosities (μ1/μ2) 

n - ratio of densities (ρ2/ρ1) 

p - pressure (assuming p1=p2=p) 

P- =p+ρ0gX, difference between the pressure and hydrostatic pressure 
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Re - Reynolds number (D1U0(1)/𝜈1) 

U0(i) - reference velocity 

Greek Symbols 

α1, α2- Thermal diffusivities 

β1, β2- Coefficients of thermal expansion 

ΔT- Difference in temperature (T2 ̶ T1) 

Ɛ- Dimensionless parameter/perturbation parameter (GR Br) 

Θ- Dimensionless temperature 

θ1, θ2- Temperatures 

μ1, μ2- Viscosities 

𝜈1, 𝜈2- Kinematics viscosities 

ρ1, ρ2 - Densities 

Subscripts i= 1,2 corresponding to region-I and region-II respectively. 

 

2. Preliminaries 

Consider a steady two dimensional laminar fully developed mixed convection flow in 

open ended vertical channel filled with immiscible viscous fluids The X axis is taken 

upward and parallel to the walls and Y axis is normal on it, shown in Fig 1. We consider 

fluid to be incompressible, and temperature between the plate and fluid is small, so that 

the fluid properties taken as constant except the density in the buoyancy term of 

equation of motion. 

  

 
Fig.1. Physical configuration 

 

Region −I 
 

          gβ1(T1 − T0) −
1

ρ1

ⅆP

ⅆX
+

μ1

ρ1

ⅆ2U1

ⅆY2
= 0                              (2.1) 

 
                             α1

ⅆ2T1

ⅆY2
+

𝜈1

Cp
  (

ⅆU1

ⅆY
)
2

= 0                              (2.2) 

 

                                         

 

 

 
Y =

D2

2
 Y = −

D1

2
 

𝑔 

   Y

Region-I Region-II 
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Region −II 

       gβ2(T2 − T0) −
1

ρ2

ⅆP

ⅆX
+

μ2

ρ2

ⅆ2U2

ⅆY2 = 0                        (2.3) 

 
                 α2

ⅆ2T2

ⅆY2
+

𝜈2

Cp
  (

ⅆU2

ⅆY
)
2

= 0                    (2.4) 

 P depends only on X 

 
                                   

ⅆP

ⅆY
= 0                                                (2.5) 

       In the presence of viscous dissipation, the energy balance equation can be written as 

Region −I 
 ⅆ2T1

ⅆY2
=

−𝜈1

β1g

ⅆ4U1

ⅆY4
 (2.6) 

From Eq. (2.2) and Eq. (2.6) 

 
    

ⅆ4U1

ⅆY4 =
β1gρ1

k1
(
ⅆU1

ⅆY
)
2

 (2.7) 

 

 

Region −II 
                               

                                 
ⅆ2T2

ⅆY2 =
−𝜈2

β2g

ⅆ4U2

ⅆY4  
 

(2.8) 

From Eq. (2.4) and Eq. (2.8) 

 
                                               

ⅆ4U2

ⅆY4 =
β2gρ2

k2
(
ⅆU2

ⅆY
)
2

 (2.9) 

On account of Eq. (2.1) and Eq. (2.3) there exists a constant A such that  

                                                                        ⅆP

ⅆX
= A (2.10) 

The boundary and interface conditions are  

 
          UI (

−D1

2
) = 0 = U2 (

−D2

2
) ,    U1(0) = U2(0),   T0 =

T1 + T2

2
 , 

ⅆ2U1

ⅆY2 |
Y=−

D1
2

=
A

μ1
+

β1g[T2−T1]

2𝜈1
 ,       

ⅆ2U2

ⅆY2 |
Y=

D2
2

=
A

μ2
−

β2g[T2−T1]

2𝜈2
 , 

μ1
ⅆU1

ⅆY
= μ2

ⅆU2

ⅆY
 , at  Y = 0     ,   

ⅆ3U1

ⅆY3 =
1

mnbk

ⅆ3U2

ⅆY3 , at Y = 0 

ⅆ2U1

ⅆY2
=

1

mnb

ⅆ2U2

ⅆy2
+

A

μ1
[1 −

1

nb
]    at  Y = 0 

𝑇1(0) = 𝑇2(0),       k1

ⅆT1

ⅆY
= k2

ⅆT2

ⅆY
, at Y = 0     

 

 

 

 

 

 

 

 

 

(2.11) 

Equations (2.7),(2.9) and (2.11) determine the velocity distribution. They can be written 

in a non-dimensional form by means of following dimensionless variables  

 

 u1 =
U1

U0
(1) ;   u2 =

U2

U0
(2) ;    y1 =

Y1

D1
;   y2 =

Y2

D2
 ;  Gr =

gβIΔTD1
3

ν1
2 ; Re =

U0
(1)

D1

ν1
  

 Br =
μ1U0

(1)2

k1ΔT
    ;  U0

(1)
=

−AD1
2

48𝜇1
;  U0

(2)
= −

AD2
2

48𝜇2
; 
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 GR =
Gr

Re
  ;         θ1 =

T1 − T0

ΔT
; θ2 =

T2 − T0

ΔT
;  RT =

T2 − T1

ΔT
    

 

 

(2.12) 

Eqs. (2.7), (2.9) becomes 

Region −I 

                  
ⅆ4u1

ⅆy4
= GRBr (

ⅆu1

ⅆy
)
2

                                  (2.13) 

Region −II 

               
ⅆ4u2

ⅆy4
= GRBr mnbkD4 (

ⅆu2

ⅆy
)
2

                 (2.14) 

The boundary and interface conditions are 

 

u1U0
(1)

= 0 , at     y = −
1

4
 ; u1 (−

1

4
) = 0 = u2 (

1

4
) ; u1(0) = mD2u2(0) ;               

ⅆ2u1

ⅆy2 = −48 +
GRRT

2
 , at  y = −

1

4
 ; 

ⅆ2u2

ⅆy2 = −48 −
GR 𝑛𝑏 RT

2
 , at  y =

1

4
  ; 

ⅆu1

ⅆy
= D

ⅆu2

ⅆy
 , at  y = 0   ;      

ⅆ2u1

ⅆy2 =
1

nb
[
ⅆ2u2

ⅆy2 + 48(1 − nb)] , at  y = 0  ; 

 
ⅆ3u1

ⅆy3
=

1

nbkD

ⅆ3u2  

ⅆy3
 , at  y = 0     

Where  D =
D2

D1
 , m =

μ1

μ2
, n =

ρ2

ρ1
, b =

β2

β1
, k =

k1

k2
 

 

 

 

 

(2.15) 

 

Solutions 
Case of Negligible of Viscous Dissipation (𝐁𝐫 = 𝟎) 

The solution of Eqs. (2.13) and (2.14) can be obtained using Eq. (2.15) in the absence of 

viscous dissipation, that is, when the parameter, (𝐁𝐫 = 𝟎) is given by 

 

 

Region −I 
                                                  u1 = E1 + E2y + E3y

2 + E4y
3                                             

 
 (3.1) 

Region −II 
                                     u2 = E5 + E6y + E7y

2 + E8y
3 (3.2) 

Using Eq. (2.12) in Eqs. (2.1) and (2.3) the energy balance equations are 

Region −I 
 

                             θ1 = −
1

GR
 [48 +

ⅆ2u1

ⅆy2
]                                               (3.3) 

Region −II 
 

                                     θ2 = −
1

nbGR
 [48 +

ⅆ2u2

ⅆy2 ] (3.4) 

Using the expressions obtained in Eqs. (3.1) and (3.2) the energy balance Eqs. (3.3) and 

(3.4) becomes 

Region −I 
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                         θ1 = −
1

GR
 [48 + 2E3 + 6E4y] (3.5) 

Region −II 
 

θ2 = −
1

nbGR
 [48 + 2E7 + 6E8y]   (3.6) 

 

Case of Negligible buoyancy Force (GR = 0) 

 When the buoyancy forces are negligible (GR = 0)and viscous dissipation is 

dominating (Br ≠ 0),so that purely forced convection occurs. For this case, the 

solutions of Eqs. (2.13) and (2.14) can be obtained using the Eq. (2.15), the velocities 

are given by  

 

Region −I 
                                        u1 = F1 + F2y + F3y

2 + F4y
3 (3.7) 

Region −II 
 u2 = F5 + F6y + F7y

2 + F8y
3 (3.8) 

The energy balance Eqs. (2.6) and (2.8) in non- dimensional form can also be written as  

Region −I 

                          
ⅆ2θ1

ⅆy2 = −Br  (
ⅆu1

ⅆy
)
2

 (3.9) 

Region −II 
 

                         
ⅆ2θ2

ⅆy2 = −Br m k D4 (
ⅆu2

ⅆy
)
2

 (3.10) 

The boundary and interface conditions are 

 
             θ1 (−

1

4
) =  −

RT

2
 ;                 θ2 (

1

4
) =  

RT

2
 ; 

θ1(0) = θ2(0) ;             
ⅆθ1

ⅆy
= 

1

kD
 
ⅆθ2

ⅆy
, at y = 0 ; 

(3.11) 

Solving Eqs.  (3.9) and (3.10) ,using Eqs (3.7) and (3.8)  we obtain 

Region −I 

  θ1 = −Br  (
G3y

2 + G4y
3 + G5y

4

G6y5 + G7y6
) + G2y + G1    (3.12) 

Region −II 

                 θ2 = −m k 𝐷4 Br (G10y2+G11y3+G12y4

+ G13y5+G14y6 )+G9y + G8   (3.13) 

 

Combine Effects of Buoyancy Force and Viscous Dissipation  

By using the perturbation method, we solve Eqs. (2.13) and (2.14) with a dimensionless 

parameter |𝜀| (< 1) defined as  

                                        ε = GRBr  (3.14) 

Which is independent of the reference temperature difference ΔT. The solutions are 

assumed in the form 

 
  u(y) = u0(y) +  εu1(y) + ε2u2(y) + ⋯ = ∑ εnun(y)

∞

n=0

  (3.15) 
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Substituting Eq. (3.15) in Eqs. (2.13) and (2.14) and the coefficients of like powers of 

ɛ to obtain the zeroth and first order equations as follows  

Region −I (Zeroth -order equation) 

 ⅆ4u10

ⅆy4
= 0 (3.16) 

First-order equation 

 
ⅆ4u11

ⅆy4
= (

ⅆu10

ⅆy
)
2

 (3.17) 

Region −II (Zeroth-order equation) 

 ⅆ4u20

ⅆy4
= 0 (3.18) 

First-order equation  

   
ⅆ4u21

ⅆy4
= mnbk𝐷4 (

ⅆu20

ⅆy
)
2

 (3.19) 

The corresponding boundary and interface conditions for the zeroth and first order by 

Eq. (2.15) reduces to 

 

u10 (−
1

4
) = 0 = u20 (

1

4
) ;    u11 (−

1

4
) = 0 = u21 (

1

4
) ; 

u10(0) = mD2u20(0) ;            u11(0) = mD2u21(0) ; 
ⅆ2u10

ⅆy2 = −48 +
GRRT

2
 , at  y = −

1

4 
 ;         

ⅆ2u11

ⅆy2 = 0 , at  y = −
1

4
 ; 

ⅆ2u20

ⅆy2 = −48 −
nbGRRT

2
, at  y =

1

4
  ;         

ⅆ2u21

ⅆy2 = 0, at  y =
1

4
 ; 

ⅆu10

ⅆy
= D

ⅆu20

ⅆy
, at  y = 0 ;         

ⅆu11

ⅆy
= D

ⅆu21

ⅆy
, at  y = 0 ; 

ⅆ2u10

ⅆy2
=

1

nb
[
ⅆ2u20

ⅆy2
+ 48(1 − nb)] , at  y = 0 ; 

ⅆ2u11

ⅆy2
=

1

nb
[
ⅆ2u21

ⅆy2
] , at  y = 0 ;           

ⅆ3u10

ⅆy3
=

1

nbkD

ⅆ3u20  

ⅆy3
, at  y = 0 ; 

 
ⅆ3u11

ⅆy3
=

1

nbkD

ⅆ3u21  

ⅆy3
, at  y = 0 ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.20) 

Solutions of zeroth-order Eqs. (3.16) and (3.18) using Eq. (3.20) are  

                 u10 = C1 + C2y + C3y
2 + C4y

3  (3.21) 

                 u20 = B1 + B2y + B3y
2 + B4y

3  (3.22) 

Solutions of first-order Eqs. (3.17) and (3.19) using Eq. (3.20) are  

                     u11 = P5y
8 + P6y

7 + P7y
6 + P8y

5 

                                              +P9y
4 +

P1

6
 y3 +

P2

2
 y2 + P3y + P4 

 

 

(3.23) 

                                  u21 = Q5y
8 + Q6y

7 + Q7y
6 + Q8y

5 

                             +Q9y
4 +

Q1

6
 y3 +

Q2

2
 y2 + Q3y + Q4  

 

 

(3.24) 

Using the velocities given by Eqs. (3.21) - (3.24) the energy balance Eqs. (3.3) and (3.4) 

becomes 
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Region −I 

  θ1 = −
1

GR
[

48 + 2C3 + 6C4y         

+ε (
56P5y

6 + 42P6y
5 + 30P7y

4

+20P8y
3 + 12P9y

2 + P1 y + P2

)
] (3.25) 

Region −II 
 

          θ2 = −
1

nbGR
[

48 + 2B3 + 6B4y   

+ε (
56Q5y

6 + 42Q6y
5 + 30Q7y

4

+20Q8y
3 + 12Q9y

2 + Q1 y + Q2

)
] 

 

(3.26) 

Heat Transfer 

The wall heat transfer expression in terms of the Nusselt number is   

 

Nu− = (1 + D)
ⅆθ1

ⅆy
 ,    at  y = −

1

4
  

                                   Nu+ = (1 +
1

D
)

ⅆθ1

ⅆy
 , at  y =

1

4
   

     Nu− = −
(1+D)

GR
 [6C4 − ε(

21

64
P5 −

105

128
P6 +

15

8
P7 −

15

4
P8 + 6P9 − P1)] 

 

 

 

(3.27) 

 Nu+ = −
(1+

1

D
)

nbGR
 [6B4 + ε(

21

64
Q5 +

105

128
Q6 +

15

8
Q7 +

15

4
Q8 + 6Q9 − Q1)] (3.28) 

 

3. Results and discussions 

Investigation of laminar mixed convection flow in vertical channel filled with 

immiscible viscous fluid has been done analytically by using a regular perturbation 

method taking the product of the thermal Grashof number (GR=Gr/Re) and Brinkman 

number Br as perturbation parameter.  And solution are valid only for small values of 

perturbation parameter ɛ(<1). Viscous dissipation term is also included in the energy 

equations. 

The flow fields are evaluated in case of asymmetric heating (RT=1) and are represented 

graphically in Fig 2-8. The velocity and temperature fields in the absence of Brinkman 

number (Br=0) are obtained for different values of thermal Grashof number (GR) and 

are depicted in Fig.2a, Fig.2b respectively. For negative value of GR velocity field 

increases in region-I and decreases in region II whereas for positive values of GR 

velocity decreases in region I and increases in region II. One can also observe that flow 

was an increasing function for value GR (>0) and decreasing function for GR (<0). But 

temperature field decreases in both the regions for all different values of GR. 
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The dimensionless temperature field θ is obtained and is shown in Fig.3 for different 

values of Brinkman number Br in case of negligible Buoyancy force (GR=0). As 

Brinkman number increases temperature field is also increases in both regions. 

The velocity and temperature fields are obtained at GR=±500 for different values of ɛ 

and are shown in Fig.4a, Fig,4b respectively. The velocity field is an increasing function 

of ɛ for upward flow ɛ (>0) and decreasing function of ɛ for downward flow ɛ(<0). 

Whereas temperature field increases for both ɛ (>0) and ɛ (<0). The perturbation 

parameter ɛ is more effective on velocity field than temperature field. From Fig.4a it can 

also pointed out that at cold (left) and hot (right) walls reversal flow occurs for upward 

and downward flow respectively. 

The effect of viscosity ratio m, width ratio D and conductivity ratio k on flow field 

evaluated for the values of GR =100, and ɛ=0.01 in case of asymmetric heating (RT=1). 

The effect of viscosity ratio m on the velocity and temperature fields are shown in 

Fig.5a, Fig.5b respectively. As the viscosity ratio m increases the flow field increases in 

both regions. Temperature increases from cold to hot walls for all values of m. 

The effect of width ratio D on the velocity and temperature fields are shown in Fig.6a, 

Fig.6b respectively. Effect of the width ratio is similar to effect of viscosity ratio on 

flow field as D increases both velocity and temperature fields increases. 

The effect of conductivity ratio k on the fields of velocity and temperature are depicted 

in Fig.7a, Fig.7b respectively. As k increases, the velocity and temperature fields reduce 

in both the regions, this means larger the conductivity ratio smaller the flow rate is. The 

Nusselt number at the cold wall (Nu-) and hot wall (Nu+) for |ɛ| is shown in Fig.8.The 

Nu- is an increasing function of |ɛ| and Nu+ is a decreasing function of |ɛ| 

 
Fig. 2a. Velocity profiles for different values of GR 
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Fig. 2b. Temperature profiles for different values of GR 

 

 

Fig. 3. Temperature profile for different values of Br 
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Fig. 4a. Velocity profile for different values of ɛ. 

 

 

Fig. 4b. Temperature profile for different values of Ɛ. 
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Fig. 5a. Velocity profile for different values of m. 

 

 

Fig. 5b. Temperature profile for different values of m. 
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Fig. 6a. Velocity profile for different values of D. 

 

 

Fig. 6b. Temperature profile for different values of D. 
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Fig. 7a. Velocity profile for different values of k 

 

 

Fig. 7b. Temperature profile for different values of k 
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Fig. 8. Nusselt number Vs ∣ɛ∣. 

 

4. Conclusions 

The problem of mixed convective flow and heat transfer in vertical channel filled with 

immiscible viscous fluids was analyzed analytically by regular perturbation method and 

represented graphically. The conclusions made are, the flow was an increasing function 

of perturbation parameter ɛ for upward flow and decreasing function of ɛ for downward 

flow, viscosity ration m and width ratio D enhance the velocity and temperature fields 

where as the larger the value of conductivity ratio k, smaller the fields of velocity and 

temperature.  
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