Tri- $b\hat{g}$ Closed sets in Tri- Topological Spaces

L. Jeyasudha^{*} K. Bala Deepa Arasi[†]

Abstract

In this paper, we introduce a new class of sets called tri- $b\hat{g}$ closed sets and tri- $b\hat{g}$ open sets via the concept of tri- \hat{g} closed sets in tri topological spaces. Also, we investigate the relationship with other existing closed sets in tri-topological space.

Keywords: Tri- $b\hat{g}$ closed sets, tri- $b\hat{g}$ open sets, tri- $b\hat{g}$ closure, tri- $b\hat{g}$ interior.

2010 AMS subject classification: 54A40[‡].

^{*}Research Scholar, Reg. No: 20122012092004, PG & Research Department of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi, TN, India. Affiliated to Manonmaniam Sundaranar University, Tirunelveli, TN, India. E. mail: jeyasudha555@gmail.com.

[†]Assistant Professor of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi, Tamilnadu, India. E. mail: baladeepa85@gmail.com

[‡] Received on July 18, 2022. Accepted on October 15, 2022. Published on January 30, 2023. doi: 10.23755/rm.v45i0.1002. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY license agreement.

1. Introduction

The concept of tri- topological space was first initiated by M. Kovar [6] in 2000, in 2003, R. Subasree and M. Maria Singam [10] defined $b\hat{g}$ - closed sets in topological spaces. In [3], we introduced tri- \hat{g} closed sets in tri- topological spaces and studied their properties. In this paper, we define tri- $b\hat{g}$ closed sets and tri- $b\hat{g}$ open sets via the concept of tri- \hat{g} closed sets. Also, we investigate the relationship with other existing closed sets in tri- topological space.

2. Preliminaries

Throughout this paper (X, τ_1 , τ_2 , τ_3) (or simply X) represents tri- topological spaces on which no separation axioms are assumed unless other wised mentioned. For a subset A of (X, τ_1 , τ_2 , τ_3), tri- cl(A), tri- int(A) and A^c denote the tri- closure of A, tri- interior of A and compliment of A respectively.

Definition 2.1 Let X be a non-empty set. A family τ of subsets of X is said to be a topology on X, if τ satisfies the following axioms.

a) $\phi, X \in \tau$,

- b) If $A_i \in \tau$ for $i = 1, 2, \dots, n$, then $\bigcap_{i=1}^n A_i \in \tau$,
- c) If $A_{\alpha} \in \tau$ for $\alpha \in I$, then $\bigcup_{\alpha} A_{\alpha} \in \tau$.

The pair (X, τ) is called a topological space and any set A in τ is called an open set. The complement of an open set A is called closed set.

Definition 2.2 Let X be a non-empty set. A family G of subsets of X is said to be a generalized topology on X, if G satisfies the followings axioms.

a)
$$\phi \in G$$
,

b) If $A_{\alpha} \in G$ for $\alpha \in I$, then $\bigcup_{\alpha} A_{\alpha} \in G$.

The pair (X, G) is called a generalized topological space.

Definition 2.3 Let X be a non-empty set. A family τ^* of subsets of X is said to be a Supra topology on X, if τ^* satisfies the following axioms.

a)
$$\phi, X \in \tau^*$$
,

b) If $A_{\alpha} \in \tau^*$ for $\alpha \in I$, then $\bigcup_{\alpha} A_{\alpha} \in \tau^*$.

The pair (X, τ^*) is called a Supra topological space.

Definition 2.4 Let X be a non-empty set. A family τ_{iX} of subsets of X is said to be a Infra topology on X, if τ_{iX} satisfies the following axioms.

a)
$$\phi, X \in \tau_{iX}$$
,

b) If $A_i \in \tau_{iX}$ for i = 1, 2..., n, then $\bigcap_{i=1}^n A_i \in \tau_{iX}$.

The pair (X, τ_{iX}) is called Infra topological space.

Definition 2.5 Let (X, τ) be a topological space then τ is said to be indiscrete topology if τ is a collection of only X and ϕ . Indiscrete topology is also known as trivial topology.

Definition 2.6 Let (X, τ) be a topological space then τ is said to be discrete topology if τ is a collection of all subsets of X.

Definition 2.7 Let (X, τ) be a topological space then a subset A of X is said to be $b\hat{g}$ - closed set if bcl $(A) \subseteq U$ whenever $A \subseteq U$, U is \hat{g} - open in X.

Definition 2.8 Let X be a nonempty set and τ_1 , τ_2 and τ_3 are topologies on X. Then a subset A of X is said to be tri- open set if $A \in \tau_1 \cup \tau_2 \cup \tau_3$ and its complement is said to be tri- closed set and X with three topologies called tri- topological spaces (X, τ_1 , τ_2 , τ_3).

Definition 2.9 Let $(X, \tau_1, \tau_2, \tau_3)$ be a tri- topological space and let $A \subseteq X$. The union of all tri- open sets contained in A is called the tri- interior of A. The intersection of all triclosed sets containing A is called the tri- closure of A.

Definition 2.10 Let $(X, \tau_1, \tau_2, \tau_3)$ be a tri- topological space. A \subseteq X is said to be

- 1) A tri- α open set if A \subseteq tri- int (tri- cl (tri- int (A))).
- 2) A tri- b open set if $A \subseteq [\text{tri- cl}(\text{tri- int}(A))] \cup [\text{tri- int}(\text{tri- cl}(A))].$
- 3) A tri- semi closed set if tri- int (tri- cl (A)) \subseteq A.
- 4) A tri- g closed set if tri- cl (A) \subseteq U whenever A \subseteq U and U is tri- open set in X.
- 5) A tri- gs closed set if tri- scl (A) \subseteq U whenever A \subseteq U and U is tri- open set in X.
- 6) A tri- bt closed set if tri- $cl_b(A) \subseteq U$ whenever $A \subseteq U$ and U is tri- open set in X.
- 7) A tri- g*bw closed set if tri- bcl (A) \subseteq U whenever A \subseteq U, U is tri- gs open in X.
- 8) A tri- \hat{g} closed set if tri- cl (A) \subseteq U whenever A \subseteq U, U is tri- semi open in X.

The complement of tri- α open set, tri- b open set, tri- semi closed set, tri- g closed set, tri- gs closed set, tri- b τ closed set, tri- g*bw closed set and tri- \hat{g} closed set set called tri- α closed set, tri- b closed set, tri- semi open set, tri- g open set, tri- gs open set, tri- b τ open set, tri- g*bw open set and tri- \hat{g} open set respectively.

Theorems 2.11

- 1) Every tri- closed set is tri- semi closed.
- 2) Every tri- closed set is tri- b closed.
- 3) Every tri- closed set is tri- gs closed.
- 4) Every tri- closed set is tri- bτ closed.
- 5) Every tri- closed set is tri- $g^*b\omega$ closed.
- 6) Every tri- closed set is tri- ĝclosed set.
- 7) Every tri- semi closed set is tri- gs closed.

L. Jeyasudha, K. Bala Deepa Arasi

- 8) Every tri- semi closed set is tri- b closed.
- 9) Every tri- semi closed set is tri- $g^*b\omega$ closed.
- 10) Every tri- b closed set is tri- bt closed.
- 11) Every tri- semi closed set is tri- $b\tau$ closed.
- 12) Every tri- α closed set is tri- b closed set.
- 13) Every tri- $g^*b\omega$ closed set is tri- $b\tau$ closed.
- 14) Every tri- ĝ closed set is tri- g closed.
- 15) Every tri- ĝ closed set is tri- gs closed.

3. Tri- $b\hat{g}$ Closed Sets in Tri- Topological Space

We introduce the following definitions

Definition 3.1 Let (X,τ_1,τ_2,τ_3) be a tri- topological space then a subset A of X is said to be tri- $b\hat{g}$ closed set if tri- bcl (A) \subseteq U whenever A \subseteq U, U is tri- \hat{g} open in X. The family of all tri- $b\hat{g}$ closed sets of X is denoted by tri- $b\hat{g}$ C(X).

Example 3.2 Let X = {a, b, c} with the topologies $\tau_1 = \{X, \varphi, \{a, b\}\}, \tau_2 = \{X, \varphi, \{b, c\}\}, \tau_3 = \{X, \varphi, \{a, c\}\}$, Open sets in tri- topological spaces are union of all three topologies. $\tau_1 \cup \tau_2 \cup \tau_3 = \{X, \varphi, \{a, b\}, \{b, c\}, \{a, c\}\}$; Tri- $\hat{g}O(X) = \{X, \varphi, \{a, b\}, \{b, c\}, \{a, c\}\}$; Hence tri- $b\hat{g}C(X) = \{X, \varphi, \{a\}, \{b\}, \{c\}\}$.

Remark 3.3 ϕ and X are always tri- $b\hat{g}$ closed set.

Remark 3.4 Intersection of tri- $b\hat{g}$ closed sets need not be tri- $b\hat{g}$ closed set.

Example 3.5 Let $X = \{a, b, c\}, \tau_1 = \{X, \phi\}, \tau_2 = \tau_3 = \{X, \phi, \{a\}\}, \text{tri-} \hat{bg} C(X) = \{X, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$. Here, $\{a, b\}, \{a, c\}$ are tri- \hat{bg} closed sets but $\{a, b\} \cap \{a, c\} = \{a\}$ is not a tri- \hat{bg} closed set.

Remark 3.6 Union of tri- $b\hat{g}$ closed sets need not be tri- $b\hat{g}$ closed set.

Example 3.7 Let $X = \{a, b, c\}, \tau_1 = \{X, \varphi, \{a, c\}\}, \tau_2 = \{X, \varphi, \{b\}, \{b, c\}\}, \tau_3 = \{X, \varphi, \{c\}, \{a, b\}\}, \text{tri-} b\widehat{g} C(X) = \{X, \varphi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}.$ Here, $\{b\}, \{c\}$ are trib\widehat{g} closed sets but $\{b\} \cup \{c\} = \{b, c\} \notin \text{tri-} b\widehat{g} C(X).$

Remark 3.8 Difference of two tri- $b\hat{g}$ closed sets need not be tri- $b\hat{g}$ closed set.

Example 3.9 In previous example -3.7, tri- $b\hat{g}$ C(X) = {X, ϕ , {a}, {b}, {c}, {a, b}, {a, c}. Let A = X and B = {a}, Also A and B are tri- $b\hat{g}$ closed sets. But A \ B = X \ {a} = {b, c} is not a tri- $b\hat{g}$ closed set.

Remark 3.10

- 1) (X, Tri- $b\hat{g}$ C(X)) need not be Topological space.
- 2) (X, Tri- $b\widehat{g}$ C(X)) need not be Generalized topological space.
- 3) (X, Tri- $b\hat{g}$ C(X)) need not be Supra topological space.
- 4) (X, Tri- $b\hat{g}$ C(X)) need not be Infra topological space.

Example 3.11 In examples -3.5, 3.7 we get the results.

Definition 3.12 Let $(X, \tau_1, \tau_2, \tau_3)$ be a tri- topological space. The intersection of all tri $b\hat{g}$ closed sets of X containing a subset A of X is called tri- $b\hat{g}$ closure of A and is denoted by tri- $b\hat{g}$ cl(A). (i.e) tri- $b\hat{g}$ cl (A) = $\cap \{B \subseteq X : B \supseteq A \text{ and } B \text{ is tri-} b\hat{g} \text{ closed} \text{ set}\}$.

Remark 3.13

- 1) tri- $b\widehat{g} \operatorname{cl}(\phi) = \phi$,
- 2) tri- $b\widehat{g}$ cl(X) = X,
- 3) $A \subseteq \operatorname{tri-} b\widehat{g} \operatorname{cl}(A),$
- 4) tri- $b\widehat{g}$ cl(A) = tri- $b\widehat{g}$ cl(tri- $b\widehat{g}$ cl(A)).

Proposition 3.14 Let (X,τ_1,τ_2,τ_3) be a tri- topological space. Let $A \subseteq X$, Then $A = \text{tri-} b\hat{g}$ cl (A) if A is tri- $b\hat{g}$ closed set.

Proof. Suppose A is a tri- $b\hat{g}$ closed set in X then, tri- bcl (A) \subseteq U whenever A \subseteq U, U is tri- \hat{g} open in X. Since, A \supseteq A and A is tri- $b\hat{g}$ closed set. Let B \subseteq X then A \in {B \subseteq X : B \supseteq A and B is tri- $b\hat{g}$ closed} \Rightarrow A = \cap {B \subseteq X : B \supseteq A and B is tri- $b\hat{g}$ closed}. Hence A= tri- $b\hat{g}$ closed.

Remark 3.15 The tri- $b\hat{g}$ closure of a set A is not always tri- $b\hat{g}$ closed set.

Example 3.16 Let $X = \{a, b, c\}, \tau_1 = \{X, \phi\}, \tau_2 = \tau_3 = \{X, \phi, \{a\}\}, \text{tri-} b\widehat{g} C(X) = \{X, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$. Here, tri- $b\widehat{g} cl(\{a\}) = \{a\}$ is not a tri- $b\widehat{g}$ closed set.

Proposition 3.17 Every tri- b closed set is tri- $b\hat{g}$ closed set.

Proof: Let A be any tri- b closed set in X and U be any tri- \hat{g} open set in X such that A \subseteq U. Since, A is tri- b closed then tri- bcl (A) = A for every subset A of X. tri- bcl(A) = A \subseteq U. Hence A is tri- $b\hat{g}$ closed set.

Converse of the above proposition need not be true as seen in the following example.

Example 3.18 Let $X = \{a, b, c\}, \tau_1 = \{X, \phi\}, \tau_2 = \tau_3 = \{X, \phi, \{a\}\}, \text{tri- b } C(X) = \{X, \phi, \{b\}, \{c\}, \{b, c\}; \text{tri- } b\widehat{g} C(X) = \{X, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}; \text{here } \{a, b\}, \{a, c\} \text{ are tri- } b\widehat{g} \text{ closed sets but not a tri- b closed set.}$

L. Jeyasudha, K. Bala Deepa Arasi

Proposition 3.19 Every tri- closed set is tri- $b\hat{g}$ closed set.

Proof: Let A be any tri- closed set in X. Since every tri- closed set is tri- b closed set. Therefore, A is tri- b closed set in X. By proposition 3.17, A is tri- $b\hat{g}$ closed set. Converse of the above proposition need not be true as seen in the following example.

Example 3.20 Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\}, \tau_2 = \{X, \phi, \{b\}\}, \tau_3 = \{X, \phi, \{a, c\}\}, tri- C(X) = \{X, \phi, \{b\}, \{a, c\}, \{b, c\}\}; tri- b\widehat{g} C(X) = \{X, \phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}; here \{c\} is tri- b\widehat{g} closed set but not a tri- closed set.$

Proposition 3.21 Every tri- semi closed set is tri- $b\hat{g}$ closed set.

Proof: Let A be any tri- semi closed set in X. Since every tri- semi closed set is tri- b closed set. Therefore, A is tri- b closed set in X. By proposition 3.17, A is tri- $b\hat{g}$ closed Converse of the above proposition need not be true as seen in the following example.

Example 3.22 Let $X = \{a, b, c\}, \tau_1 = \{X, \varphi, \{a\}\}, \tau_2 = \{X, \varphi, \{a, b\}\}, \tau_3 = \{X, \varphi, \{b, c\}\}, tri- sC(X) = \{X, \varphi, \{a\}, \{c\}, \{b, c\}\}; tri- b\widehat{g}C(X) = \{X, \varphi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}; here \{b\}, \{a, c\} are tri- b\widehat{g} closed sets but not a tri-semi closed set.$

Proposition 3.23 Every tri- α closed set is tri- $b\hat{g}$ closed set.

Proof: Let A be any tri- α closed set in X. Since every tri- α closed set is tri- b closed set. Therefore, A is tri- b closed set in X. By proposition 3.17, A is tri- $b\hat{g}$ closed set. Converse of the above proposition need not be true as seen in the following example.

Example 3.24 Let $X = \{a, b, c\}, \tau_1 = \tau_2 = \{X, \phi, \{a\}\}, \tau_3 = \{X, \phi, \{b, c\}\}, tri- \alpha C(X) = \{X, \phi, \{a\}, \{b, c\}\}; tri- b\widehat{g} C(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}; tri- b\widehat{g} closed sets but not a tri-\alpha closed set.$

Proposition 3.25 Every tri-g*b ω closed set is tri- $b\hat{g}$ closed set.

Proof: Let A be any tri-g*b ω closed set in X and A \subseteq U, where U is tri- \hat{g} open set in X. Since, every tri- \hat{g} open set is tri- gs open. Therefore, U is tri- gs open in X. Since, A is tri- g*b ω closed set in X then tri- bcl(A) \subseteq U. Hence A is tri- $b\hat{g}$ closed set in X. Converse of the above proposition need not be true as seen in the following example.

Example 3.26 Let $X = \{a, b, c\}, \tau_1 = \{X, \varphi\}, \tau_2 = \{X, \varphi, \{a\}\}, \tau_3 = \{X, \varphi, \{a, b\}\}, tri$ $g*b\omega C(X) = \{X, \varphi, \{b\}, \{c\}, \{b, c\}\}; tri- b\widehat{g}C(X) = \{X, \varphi, \{b\}, \{c\}, \{b, c\}, \{a, c\}\};$ here $\{a, c\}$ is tri- $b\widehat{g}$ closed set but not a tri- g*bw closed set.

Proposition 3.27 Every tri- $b\hat{g}$ closed set is tri- $b\tau$ closed set.

Proof: Let A be any tri- $b\hat{g}$ closed set in X and A \subseteq U, where U is tri- open set in X. Since, every tri- open set is tri- \hat{g} open. Therefore, U is tri- \hat{g} open in X. Since, A is tri $b\hat{g}$ closed set in X then tri- bcl(A) \subseteq U. Hence A is tri- bt closed set in X.

Converse of the above proposition need not be true as seen in the following example.

Example 3.28 Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\}, \tau_2 = \{X, \phi, \{b\}\}, \tau_3 = \{X, \phi, \{a, c\}\}, tri- b\widehat{g} C(X) = \{X, \phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}; tri- b\tau C(X) = \{X, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}; here \{a, b\}$ is tri- b τ closed set but not a tri- b \widehat{g} closed set.

Remark 3.29 Tri- g closed sets and tri- $b\hat{g}$ closed sets are independent.

Example 3.30 Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\}, \tau_2 = \{X, \phi, \{b\}\}, \tau_3 = \{X, \phi, \{a, b\}\},$ tri- gC(X) = {X, ϕ , {c}, {b, c}, {a, c}}; tri- $b\hat{g}$ C(X) = {X, ϕ , {a}, {b}, {c}, {b, c}, {a, c}}; here {a} and {b} are tri- $b\hat{g}$ closed sets but not a tri-g closed sets.

Example 3.31 Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\}, \tau_2 = \{X, \phi, \{b\}\}, \tau_3 = \{X, \phi, \{a, c\}\},$ tri- $b\hat{g}$ C(X) = {X, ϕ , {b}, {c}, {b, c}, {a, c}}; tri- gC(X) = {X, ϕ , {b}, {c}, {a, b}, {b, c}, {a, c}}; here {a, b} is tri- g closed set but not a tri- $b\hat{g}$ closed set.

Remark 3.32 Tri- gs closed sets and tri- $b\hat{g}$ closed sets are independent.

Example 3.33 Let $X = \{a, b, c\}, \tau_1 = \{X, \phi\}, \tau_2 = \{X, \phi, \{a, b\}\}, \tau_3 = \{X, \phi, \{b, c\}\},$ tri- gsC(X) = {X, ϕ , {a}, {c}, {a, c}}; tri- $b\hat{g}$ C(X) = {X, ϕ , {a}, {b}, {c}, {a, c}}; here {b} is tri- $b\hat{g}$ closed set but not a tri- gs closed set.

Example 3.34 Let X = {a, b, c}, $\tau_1 = \{X, \phi\}, \tau_2 = \{X, \phi, \{a\}\}, \tau_3 = \{X, \phi, \{b\}\}, \text{tri-} b\widehat{g} C(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}; \text{tri-} gsC(X) = P(X); \text{ here } \{a, b\} \text{ is trigs closed set but not a tri-} b\widehat{g} \text{ closed set.}$

Remark 3.35 The following diagram shows the relationship of tri- $b\hat{g}$ closed sets with other known existing closed sets in tri- topological space.

L. Jeyasudha, K. Bala Deepa Arasi

$A \rightarrow \text{Tri-} b\widehat{g}$ closed set	$B \rightarrow Tri$ - closed set	$C \rightarrow Tri-b$ closed set
$D \rightarrow Tri-g$ closed set	$E \rightarrow Tri- \alpha closed set$	$F \rightarrow Tri$ - gs closed set
$G \rightarrow Tri-g^*bw$ closed set	$H \rightarrow Tri- b\tau$ closed set	$I \rightarrow Tri$ - semi closed set

Remark 3.36 If (X, Tri- C(X)) is indiscrete topology then (X, Tri- $b\hat{g}$ C(X)) is discrete topology but converse part need not be true.

Example 3.37 Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\}, \tau_2 = \tau_3 = \{X, \phi, \{b, c\}; Tri- C(X) = \{X, \phi, \{a\}, \{b, c\}; Tri- b\hat{g}C(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\} = P(X).$ Here, (X, Tri- $b\hat{g}C(X)$) is discrete topology but (X, Tri- C(X)) is not an indiscrete topology.

Remark 3.38 If (X, Tri- C(X)) is discrete topology then (X, Tri- $b\hat{g}$ C(X)) is discrete topology but converse part need not be true.

Example 3.39 In example – 3.7, (X, Tri- $b\hat{g}$ C(X)) is discrete topology but (X, Tri-C(X)) is not a discrete topology.

Remark 3.40 If (X, Tri- C(X)) is indiscrete topology then,

- 1) Every tri- $b\hat{g}$ closed set is tri- b closed set.
- 2) Every tri- $b\hat{g}$ closed set is tri- g closed set.
- 3) Every tri- $b\hat{g}$ closed set is tri- gs closed set.
- 4) Every tri- $b\hat{g}$ closed set is tri- $g^*b\omega$ closed set.
- 5) Every tri- g closed set is tri- $b\hat{g}$ closed set.
- 6) Every tri- gs closed set is tri- $b\hat{g}$ closed set.
- 7) Every tri- bt closed set is tri- $b\hat{g}$ closed set.

Example 3.41 Let X be any non-empty set, $\tau_1 = \tau_2 = \tau_3 = \{X, \phi\}$ are topologies of X. Tri- C(X) ={X, ϕ }; Tri- bC (X) = Tri- gC(X) = Tri- gsC(X) = Tri- b τ C(X) = Tri $g^*b\omega$ C(X) = Tri- $b\hat{g}$ C(X) = P(X).

Remark 3.42 If (X, Tri- C(X)) is discrete topology then,

- 1) Every tri- $b\hat{g}$ closed set is tri- closed set.
- 2) Every tri- $b\hat{g}$ closed set is tri- semi closed set.
- 3) Every tri- $b\hat{g}$ closed set is tri- α closed set.
- 4) Every tri- $b\hat{g}$ closed set is tri- b closed set.
- 5) Every tri- $b\hat{g}$ closed set is tri- g closed set.
- 6) Every tri- $b\hat{g}$ closed set is tri- gs closed set.
- 7) Every tri- $b\hat{g}$ closed set is tri- $g^*b\omega$ closed set.
- 8) Every tri- g closed set is tri- $b\hat{g}$ closed set.
- 9) Every tri- gs closed set is tri- $b\hat{g}$ closed set.
- 10) Every tri- bt closed set is tri- $b\hat{g}$ closed set.

Example 3.43 Let X be any non-empty set, $\tau_1 = \tau_2 = \tau_3 = P(X)$ are topologies of X. Tri- C(X) = Tri- sC(X) = Tri- $\alpha C(X) = Tri$ - bC(X) = Tri- gC(X) = Tri- gsC(X) = Tri- $b\tau C(X) = Tri$ - $g^*b\omega C(X) = Tri$ - $b\hat{g}C(X) = P(X)$.

4. Tri- $b\hat{g}$ Open Sets In Tri- Topological Space

Definition 4.1 The complement of a tri- $b\hat{g}$ closed set is called the tri- $b\hat{g}$ open set. The family of all tri- $b\hat{g}$ open sets of X is denoted by tri- $b\hat{g}$ O(X).

Example 4.2 In example 3.2, tri- $b\hat{g} O(X) = \{X, \phi, \{a, b\}, \{b, c\}, \{a, c\}\}.$

Remark 4.3 ϕ and X are always tri- $b\hat{g}$ open set.

Remark 4.4 Intersection of tri- $b\hat{g}$ open sets need not be tri- $b\hat{g}$ open set.

Example 4.5 In example -3.2, tri- $b\hat{g} O(X) = \{X, \phi, \{a, b\}, \{b, c\}, \{a, c\}\}$. Here, $\{a, b\}, \{b, c\}$ are tri- $b\hat{g}$ open sets but $\{a, b\} \cap \{b, c\} = \{b\} \notin \text{tri-} b\hat{g} O(X)$.

Remark 4.6 Union of tri- $b\hat{g}$ open sets need not be tri- $b\hat{g}$ open set.

Example 4.7 In example -3.16, tri- $b\hat{g} O(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$. Here, $\{b\}$ and $\{c\}$ are tri- $b\hat{g}$ open sets but $\{b\} \cup \{c\} = \{b, c\} \notin \text{tri-} b\hat{g} O(X)$.

Remark 4.8 Difference of two tri- $b\hat{g}$ open sets need not be tri- $b\hat{g}$ open set.

Example 4.9 In previous example -4.7, tri- $b\hat{g}$ O(X) = {X, ϕ , {a}, {b}, {c}, {a, b}, {a, c}}. Let A = X and B = {a}, Also A and B are tri- $b\hat{g}$ open sets. But A\B = X\{a} = {b, c} is not a tri- $b\hat{g}$ open set.

Definition 4.10 Let $(X, \tau_1, \tau_2, \tau_3)$ be a tri- topological space. The union of all tri $b\hat{g}$ open sets of X contained in A is called the tri- $b\hat{g}$ interior of A and is denoted by tri $b\hat{g}$ int(A). (i.e) tri- $b\hat{g}$ (A) = $\cup \{B \subseteq X / B \subseteq A \text{ and } A \text{ is tri- } b\hat{g} \text{ open set}\}.$

Remark 4.11

- 1) tri- $b\widehat{g}$ int(ϕ) = ϕ ,
- 2) tri- $b\widehat{g}$ int(X) = X,
- 3) tri- $b\widehat{g}$ int(A) \subseteq A,
- 4) tri- $b\hat{g}$ int(A) = tri- $b\hat{g}$ int(tri- $b\hat{g}$ int(A)).

Proposition 4.12 For any $A \subseteq X$, $(tri- b\hat{g} int(A))^c = tri- b\hat{g} cl(A^c)$.

Proof: $(\text{tri-} b\widehat{g} \operatorname{int}(A))^c = [\cup \{G / G \subseteq A \& G \text{ is tri-} b\widehat{g} \text{ open set}\}]^c = \cap \{G^c / G^c \supseteq A^c \& G^c \text{ is tri-} b\widehat{g} \text{ closed set}\} = \cap \{F / F \supseteq A^c \& F \text{ is tri-} b\widehat{g} \text{ closed set}\} \text{ where } F = G^c.$ Hence, $(\text{tri-} b\widehat{g} \operatorname{int}(A))^c = \text{tri-} b\widehat{g} \operatorname{cl}(A^c).$

Proposition 4.13 Let (X,τ_1,τ_2,τ_3) be a tri-topological space. Let $A \subseteq X$. Then tri $b\hat{g}$ int(A) = A if A is tri- $b\hat{g}$ open set.

Proof: Suppose A is a tri- $b\hat{g}$ open set in X, then A^c is tri- $b\hat{g}$ closed set in X. (i.e) tri $b\hat{g}$ cl (A^c) \subseteq A^c. By the definition, A^c \subseteq tri- $b\hat{g}$ cl(A^c). Therefore tri- $b\hat{g}$ cl(A^c) = A^c \Rightarrow (tri- $b\hat{g}$ int(A))^c = A^c \Rightarrow tri- $b\hat{g}$ int(A) = A.

Remark 4.14 The tri- $b\hat{g}$ interior of a set A is not always tri- $b\hat{g}$ open set.

Example 4.15 Let $X = \{a, b, c\}, \tau_1 = \{X, \varphi\}, \tau_2 = \tau_3 = \{X, \varphi, \{a\}\}, \text{tri-} b\widehat{g} C(X) = \{X, \varphi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}; \text{tri-} b\widehat{g} O(X) = \{X, \varphi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}.$ Here, tri- $b\widehat{g}$ int $(\{b, c\}) = \{b, c\}$ is not a tri- $b\widehat{g}$ open set.

Proposition 4.16

- 1) Every tri- open set is tri- $b\hat{g}$ open set.
- 2) Every tri- b open set is tri- $b\hat{g}$ open set.
- 3) Every tri- semi open set is tri- $b\hat{g}$ open set.
- 4) Every tri- α open set is tri- $b\hat{g}$ open set.
- 5) Every tri- g*b ω open set is tri- $b\hat{g}$ open set.
- 6) Every tri- $b\hat{g}$ open set is tri- $b\tau$ open set.

Proof: By proposition – 3.17, 3.19, 3.21, 3.23, 3.25, 3.27 we get the results.

5. Conclusions

In this paper, we dealt with tri- $b\hat{g}$ closed sets and tri- $b\hat{g}$ open sets. In future we wish to do our research work in tri- $b\hat{g}$ continuous functions, tri- $b\hat{g}$ separated, tri $b\hat{g}$ connected sets, tri- $b\hat{g}$ compact and so on.

References

- [1] D. Andrijievic, On b- open sets, Mat. Vesnik, 48, No. 1-2, 59-64, 1996.
- [2] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 3, 17-89, 1963.

[3] K. Bala Deepa Arasi and L. Jeyasudha, On Tri- \hat{g} closed sets in Tri- Topological spaces, 2021.

[4] K. Bala Deepa Arasi and L. Jeyasudha, On Tri- \hat{g} continuous functions in Tri-Topological spaces, Journal of Physics, Vol. 19947, Issue 1, 2021.

[5] M. K. R. S. Veerakumar, \hat{g} - closed sets in Topological space, Bull. Allahabad. Math. Soc., Vol.18, 99-112, 2003.

[6] M. Kovar, On 3- Topological version of Thet- Regularity, Internet. J. Matj, Sci., 23(6), 393-398, 2000.

[7] N. F. Hameed & Mohammed Yahya Abid, Certain types of separation axioms in tri topological spaces, Iraqi journal of science, Vol 52,(2), 212-217, 2011.

[8] N. Levine, generalized closed sets in topology Rend. Circ. Mat. Palermo, 19, 89-96, 1970.

[9] P. Priyadharshini and A. Parvathi, Tri- b- Continuous Function in Tri Topological Spaces, International Journal of Mathematics and its Applications, Vol. 5, Issue 4f, 959-962, 2017.

[10] R. Subasree and M. Maria Singam, On $b\hat{g}$ - closed sets in topological spaces, IJMA, 4(7), 68-173, 2003.

[11] S. Palaniammal, Study of Tri topological spaces, Ph. D Thesis, 2011.

[12] U. D. Tapi, R. Sharma and B. Deole, Semi open sets and pre- open sets in tri topological space, i-manager's journals, on mathematics, 5(3), 2016.