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Abstract 
Testing phase of a software begins with module testing. During this period modules are tested 
independently to remove maximum possible number of faults within a specified time limit or 
testing resource budget. This gives rise to some interesting optimization problems, which are 
discussed in this paper. Two Optimization models are proposed for optimal allocation of 
testing resources among the modules of a Software. In the first model, we maximize the total 
fault removal, subject to budgetary Constraint. In the second model, additional constraint 
representing aspiration level for fault removals for each module of the software is added. 
These models are solved using dynamic programming technique. The methods have been 
illustrated through numerical examples. 
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1. Introduction 
 
Growth in software engineering technology has led to production of software for 
highly complex situations occurring in industry, scientific research, defense and day 
to day life. Consequently, the dependence of mankind on computers and computer-
based systems is increasing day by day. Any failure in these systems can cost 
heavily in terms of money and/or human lives. Though high reliability of hardware 
part of these systems can be guaranteed, the same cannot be said for software. 
Therefore a lot of importance is attached to the testing phase of the software 
development process, where around half the developmental resources are used [8]. 
Essentially testing is a process of executing a program with the explicit intention of 
finding faults and it is this phase, which is amendable to mathematical modeling. 
 
It is always desirable to remove a substantial number of faults from the software. In 
fact the reliability of a software is directly proportional to the number of faults 
removed. Hence the problem of maximization of software reliability is identical to 
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that of maximization of fault removal. At the same time testing resource are not 
unlimited, and they need to be judiciously used. In this paper we discuss and solve 
such a management problem of allocation of testing resources among modules, 
through a Software Reliability Growth Model (SRGM). A Software Reliability 
Growth Model (SRGM) is a relationship between the number of faults removed 
from a software and the execution time/CPU time/calendar time. Several attempts 
have been made to represent the actual testing environment through SRGMs 
[1,4,5,9]. These models have been used to predict the fault content, reliability and 
release time of a software. SRGMs have also been used to manage the testing phase. 
Again large software consists of modules. Often these modules are developed 
independently and each module may contain different number of faults and that of 
different severity. Therefore distinct SRGMs should be used to represent the testing 
process of each module, as testing for these modules are done independently. An 
SRGM with testing effort [9] has been chosen to represent the fault removal process 
for the two optimization problems discussed in this paper. 

 
The first optimization model (P1) maximizes the total number of faults expected to 
be removed, when available testing resource is known. The management normally 
aspires for some reliability level that can be translated in terms of number of faults 
removed.  In the second optimization model (P2) we add a constraint in (P1) in 
terms of minimum number of faults aspired to be removed from each module. 
Dynamic programming technique is used to solve these problems. This is the first 
time that this has been done in software engineering, according to our knowledge. 
Dynamic programming approach, which is easy to solve and understand provides 
global optima for these problems. The methodology discussed in the paper has been 
illustrated through numerical examples. 
 
Notations 
N :   Number of modules in the Software  (>1) 
ai :   Expected number of faults in the ith module (i=1,2,…,N) 
bi            :   Proportionality constant for the ith module  
xi(t) : Current testing effort expenditure at testing time t 

  and ∫=
t

ii dwwxtX
0

)()(  for ith module  

Xi, Z : The amount of testing resource to be allocated to the ith module                   
                 and total testing resource available. 
 mi(t) :    Number of faults removed in (0,t] the ith module,   
  mean value function of NHPP, i = 1,…,N  
T  :    Total testing time  

Xi
*  : Optimal value of Xi , i = 1,…,N   

fn(Z) : Optimal number of faults  removed upto nth modules (i.e. 
 corresponding to nth stage in a Dynamic Programming algorithm) 
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aio :    Aspiration level of ith module (i.e.  number of faults desired to be 
  removed  from ith module) 
pi   :    The minimum proportion of total faults to be  removed from  
  ith module. 

 
2. Mathematical Modelling 
 
2.1 Resource Allocation Problem 
 
Consider a software having N modules, which are being tested independently for 
removing faults lying dormant in them. The duration of module testing is often fixed 
when scheduling is done for the whole testing phase. Hence limited resources are 
available, that need to be allocated judiciously. If mi faults are expected to be 
removed from the ith module with effort Xi, the resulting testing resource allocation 
problem can be stated as follows [5,6]. 
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, 0≥iX , i = 1,…,N   … … (P1) 

 
Above optimization problem is the simplest one as it considers the resource 
constraint only. Later in this paper, we incorporate additional constraints to the basic 
model. For solving (P1) a functional relationship between fault removal and 
resource consumption is required, which is discussed in the following section. 
 
2.2 SRGM For Modules 
 
A Software Reliability Growth Model explains the time dependent behavior of fault 
removal. As modules are tested independently distinct SRGMs would represent their 
reliability growth. The influence of testing effort can also be included in the SRGMs 
[9]. In this paper we discuss the resource allocation problem using such a SRGM for 
the modules. 
 Model Assumptions 
1. Software consist of a finite number of modules and testing for each module is 

done independently 
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2. A module is subject to failures at random time caused by faults remaining in the 
software. 

3. On a failure, the fault causing that failure is immediately removed and no new 
faults are introduced. 

4. Fault removal phenomenon is modelled by Non Homogeneous Poisson Process 
(NHPP). 

5. The expected number of faults removed in ( )ttt ∆+, to the current testing 
resource is proportional to the expected remaining number of faults. 

Under assumption 5, following differential equation may easily be written for ith 
module 

))((
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tx

tm
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iii
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i
−= , i = 1,…,N   …. … (1) 

Solving equation (1) with the initial condition that, at t = 0, Xi(t) = 0, mi(t) = 0 we get 

)1()( )(tXb
ii iieatm −−= , i = 1,…,N   … … (2) 

To describe the behaviour of testing effort, either Exponential or Rayleigh function 
has been used [5,9]. Both can be derived form the assumption that, " the testing 
effort rate is proportional to the testing resource available".  

[ ])()(
)(

tXtc
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tdX
iii

i −= α , i = 1,…,N   … … (3) 

where ci(t) is the time dependent rate at which testing resources are consumed, with 
respect to the remaining available resources. Solving equation (3) under the initial 
condition 0)0( =X  we get  












−= ∫

t

iii dkkctX
0
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When β=)(tc , a constant  

)1()( t
ii ietX βα −−= ,  i = 1,…,N   … … (5) 

If ttc .)( β= , (1) gives a Rayleigh type curve  

)1()( 2

2t

ii
i
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β
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−

−= , i = 1,…,N   … … (6) 
In this paper we have chosen exponential function (5) to represent testing effort in 
the optimization problems.  
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2.3 Estimation Of Parameters 
 
The testing effort data are given in the form of testing effort 

)...( 21 nk xxxx <<<  consumed in time ],0( it ; ni ,..,2,1= . The testing 
effort model parameters αi and βi can be estimated by the method of least squares as 
follows.  

Minimize [ ]∑
=

−
n

i
i XX
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ˆ  

subject to nn XX =ˆ (i.e. the estimated value of testing effort is equal to the actual 
value).  
 
Once the estimates of αi and βi are known, the parameters of the SRGMs (2) for the 
modules can be estimated through Maximum Likelihood Estimation method using 
the underlying Stochastic Process, which is described by a Non Homogeneous 
Poisson Process. During estimation, estimated values of αi and βi are kept fixed. If 
the fault removal data for a module is given in the form of cumulative number of 
faults removed yj in time (0,tj]. The likelihood function for that module is given as  
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3. Optimal Allocation Of Resources 
 
From the estimates of parameters of SRGMs for modules, the total fault content in 

the software ∑
=

N

i
ia

1

is known. Modules testing aims at removing maximum number 

of them, within available resources. Hence (P1) can be restated as  
      

Maximize ∑∑
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,  iX 0≥    i = 1, … , N … (P1A) 

 
(P1A) can be solved using Dynamic Programming Approach. From Bellman's 
principle of optimality, we can write the following recursive equation [2]. 
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To index the modules, they can be arranged in descending order of their values of 
aibi i.e. NN bababa ≥≥≥ ...2211 . Through this approach resources are allocated 
to the modules sequentially. But for some values of Z (Z < Zr) one or more modules 
with higher index number i.e. having lower detectability may not get any allocation. 
We summarize this result in the following simple theorem.   
Theorem - 1 
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Proof of the theorem is given in appendix.  
 
As a result of the above allocation procedure, some modules may not be tested at all. 
This situation is not advisable. Again management often aspires to achieve certain 
minimum reliability level for the software and that for each module of the Software 
i.e. a certain percentages of the fault content in each module of the Software is 
desired to be removed. Hence (P1) needs to be suitably modified to maximize 
removal of faults in the software under resource constraint and minimum desired 
level of faults to be removed from each of the modules in the software. The resulting 
testing resource allocation problem can be stated as follows: 
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∑
=
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(P2) can be solved using Dynamic Programming Approach either by reducing the 
dimensionality of the problem through Lagrange multiplier or converting to (P1) by 
substitution. We first consider the dimensionality reduction in Dynamic 
Programming Approach  [2] as follows. 
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Where iα  (i = 1, … , N) is Lagrange multiplier for ith  constraint corresponding to 
the ith module. The above problem can be solved by Dynamic Programming 
approach in which Kuhn-Tuckker optimality conditions are obtained at each stage 
[2]. At any stage αi (i = 1,…,N) can be zero or non-zero depending upon 
ineffectiveness or effectiveness of constraint respectively. Hence each stage has two 
possibilities and corresponding to each possibility of preceding stage present stage 
has two possibilities. So at any stage i, total number of cases is 2i-1. Infact, above 
problem reduces to that of finding an optimal path by searching for an optimal 
solution at each stage in which only one option could be chosen. This procedure 
does not provide a closed form solution. Hence without further elaboration of the 
above method, the substitution method is adopted for converting the problem (P2) to 
the problem  (P1) as follows:   
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Therefore (P2) can be restated as, 
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Let  iii ZXY −=  (i = 1, … , N), then (P4) can be written as the problem (P1)  
given below 

∑ ∑
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The Problem (P5) is similar to the problem (P1) and hence using theorem-1 the 
problem ( P5 ) can also be solved. 
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Through equation (9) optimal allocation of resources to the modules can be 
calculated. In the following section we numerically illustrate these results.  
 
 
4. Numerical  Example 
 
It is assumed that parameters ai and bi for the ith module (i=1,.....N) are already 
estimated using the software failure data. Consider a software having 10 modules 
whose parameter estimates are as given in Table-1. Suppose the total resource 
available for testing is 97000. First the problem (P1) is solved and from the 
recursion equation (7) optimal allocation of resources (Xi

*) for the modules are 
computed. These are listed in Table-1 along with the corresponding expected 
number of fault removed, percentages of faults removed and faults remaining for 
each module. The total number of faults that can be removed through this allocation 
is 152 (i.e. 60.6% of the fault content is removed from the Software). It is observed 
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that in some modules (module-9,10) the remaining faults after allocation is high. 
This can lead to frequent failure during operational phase. Obviously this will not 
satisfy the developer and he may desire that at least 50% of fault content from each 
of the modules of the Software is removed (i.e. pi=0.5 for each i = 1…10). Since 
faults in each module are integral values, nearest integer larger then 50% of the fault 
content in each module is taken as lower limit that has to be removed. The new 
allocation of resource along with expected number of fault removed, percentages of 
faults removed and faults remaining for each module after solving the problem (P2) 
through the problem (P5) is summarized in Table-2. The total number of faults that 
can be removed through this allocation is 146.8(i.e. 58.4% of the fault content is 
removed from the Software). In addition to the above if it is desired that a certain 
percentage of the total faults are to be removed then additional testing resources 
would be required. It is interesting to study this tradeoff and Table-3 summarizes 
results, where the required percentage of  faults removed is 60%. To achieve this, 
3000 units of additional testing effort is required. The total number of faults that can 
be removed through this allocation is 150.8(i.e. 60.09% of the fault content is 
removed from the Software).  Analysis given in Tables-1, 2 and 3 help in providing 
the developer an insight into the resource allocation and the corresponding fault 
removal phenomenon and the objective can be set accordingly.  
 
 

Table - 1 
Module ai bi Xi

* mi* % of faults 
removed 

% of faults 
remaining 

1 63 5.33E-05 25435 46.7689 74.24 25.76 
2 13 0.000252 5280.7 9.56979 73.61 26.39 
3 6 0.000526 2459.5 4.3553 72.59 27.41 
4 51 5.17E-05 21549 34.2571 67.17 32.83 
5 15 0.000171 6354.5 9.93004 66.2 33.8 
6 39 5.72E-05 16554 23.8778 61.23 38.77 
7 21 9.94E-05 8857.2 12.2916 58.53 41.47 
8 9 0.000174 3412.3 4.03476 44.83 55.17 
9 23 5.06E-05 5845.6 5.88626 25.59 74.41 
10 11 8.78E-05 1251.9 1.14528 10.41 89.59 
Total 251  97000 152.117 60.6 39.4 
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Table-2 

Module ai aio Zi* Yi* mi(Yi) mi* % of 
faults 
removed 

% of faults 
remaining 

1 63 32 13300 7495.5 10.2 42 67 33 
2 13 7 3064.6 1235.6 1.61 8 66.21 33.79 
3 6 3 1317.3 672.1 0.89 4 64.89 35.11 
4 51 26 13793 2969.7 3.56 30 57.96 42.04 
5 15 8 4464.8 440.4 0.51 8 56.71 43.29 
6 39 20 12565 0 0 20 51.28 48.72 
7 21 11 7465.7 0 0 11 52.38 47.62 
8 9 5 4652.5 0 0 5 55.56 44.44 
9 23 12 14586 0 0 12 52.17 47.83 
10 11 6 8978.1 0 0 6 54.55 45.45 
Total 251 130 84187 12813.3 16.8 146 58.48 41.52 

 
 

Table-3 
Module ai aio Zi* Yi* mi(Yi) Xi* mi* % of 

faults 
removed 

% of 
faults 
remaining 

1 63 32 13300 8624.7 11.74 21924.6 44 69.43 30.57 
2 13 7 3064.6 1474.2 1.93 4538.82 9 68.7 31.3 
3 6 3 1317.3 786.52 1.048 2103.79 4 67.47 32.53 
4 51 26 13793 4134.5 5.13 17927.4 31 61.05 38.95 
5 15 8 4464.8 793.16 0.984 5257.95 9 59.9 40.1 
6 39 20 12565 0 0 12565.5 20 51.3 48.7 
7 21 11 7465.7 0 0 7465.66 11 52.38 47.62 
8 9 5 4652.5 0 0 4652.5 5 55.55 44.45 
9 23 12 14586 0 0 14585.7 12 52.18 47.82 
10 11 6 8978.1 0 0 8978.11 6 54.55 45.45 

Total 251 130 84187 15813 20.8 100000 151 60.09 39.91 
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5. Conclusion 
 
In this paper we have discussed a couple of optimization problems occurring during 
module testing phase of software development life cycle. A dynamic programming 
approach for finding the optimal solution has been proposed. Using simple recursion 
equations it is shown how fault removal for each module and that of the software 
can be maximized, by judicious allocation of resources. It is observed that after 
certain duration of testing, fault removal becomes difficult in the sense that greater 
effort will be required to remove each additional fault. As the reliability of software 
is of utmost importance scientific decision making is required while deciding the 
resource budget. The tradeoff as shown in section-4 can be useful in this regard.  

 
Alternatively if the developer is not too keen on an optimal solution but is satisfied 
with an efficient solution, Goal Programming approach may be desirable in that 
case. We are further looking into this aspect. 
 
 
Appendix: 
Proof of the theorem-1 
We have following recursion equations given in (7): 
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The above problem can be solved through forward recursion in N stages as follows.  
Stage-1:           Let n=1 then we have 
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Now let, { })1()1()( )(
1222 2122 XZbXb eaeaXF −−− −+−=  then 
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The maxima can be found through calculus. 
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 Hence 1122 baba > , the testing resources would be allocated to module -2 first as 
the detectability is higher there. 
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and     
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Now proceeding by induction it can be shown for nth stage, 
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The proof is complete. 
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