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"Now I will have less distraction." 
Leonhard Euler, referring to losing the sight of one 

eye, quoted in Mathematical Circles (Howard 
Eves, 1969) 

Introduction  
To most people, including some mathematics 
teachers, geometry is synonymous with ancient 
Greek geometry, especially as epitomised in 
Euclid's Elements of 300 BC. Sadly, many are not 
even aware of the significant extensions and 
investigations of Apollonius, Ptolemy, Pappus, and 
many others until about 320 AD. Even more 
people are completely unaware of the major 
developments that took place in synthetic 
Euclidean plane geometry from about 1750-1940, 
and more recently again from about 1990 onwards 
(stimulated in no small way by the current 
availability of dynamic geometry software). 

The purpose of this article is therefore to give a 
brief historical background to the discovery of the 
Nine-point circle and the Euler line, and a simple, 
but possibly new generalisation and proof of the 
latter, that may be of interest to teachers and 
students. 
 
High school background 
The reader is reminded of the following three 
classic concurrency results from Euclid's Elements 
that are fortunately still mentioned (though seldom 
with proof) in a few South African high school 
textbooks. However, since these results are no 
longer required "theorems" for the final matricu-

lation examination from about the late 1980s, it is 
likely that most teachers have simply ignored 
teaching them, thus producing a generation of 
children unacquainted with these remarkable 

results from our geometric heritage. 
(1) The medians (lines from the vertices to the 

midpoints of the opposite sides) of a triangle 
are concurrent at the centroid (centre of gravity) 
of a triangle (see Figure 1).  

(2) The altitudes (perpendicular lines from the 
vertices to the opposite sides) of a triangle are 
concurrent at the orthocentre (see Figure 2). 

(3) The perpendicular bisectors of the sides (lines 
through the midpoints of the sides and 
perpendicular to them) of a triangle are 
concurrent at the circumcentre, which is the 
centre of the circle through the three vertices 
(see Figure 3). 
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Figure 1.  Centroid  
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Figure 2.  Orthocentre 

O

 
 
Figure 3.   Circumcentre  
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Ceva's theorem 
In 1678 an Italian mathematician named Giovanni 
Ceva discovered a surprising generalisation of the 
altitude and median (and angle bisector) concur-
rencies, namely, that if in any triangle, line 
segments AD, BF and CE are concurrent (with D, 
F and E respectively on sides BC, AC and AB), 

then 
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×
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EA
=1. Conversely, if 
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=1, then line segments AD, BF 

and CE are concurrent (see Figure 4). In Ceva's 
honour, the line segments AD, BF and CE joining 
the vertices of a triangle to any given points on the 
opposite sides, are called cevians.  

Ceva's theorem is a very important and useful 
theorem that has to form part of the standard 
armoury of any high school learner aspiring to be 
competitive at the Third Round level of the South 
African Mathematics Olympiad. Learners who 
participate in the workshops and Summer School 
of the Mathematical Talent Search organised under 
the auspices of the South African Mathematical 
Society (SAMS) are well acquainted with this 
result, as are all the South African team members 
of the International Mathematics Olympiad (IMO). 
 
Homothetic polygons 
Another valuable result that is usually also well 
known to successful Mathematics Olympiad 
contestants is the following theorem: If two 
polygons are homothetic (that is similar and their 
corresponding sides are parallel), then the lines 
connecting corresponding vertices are concurrent 
at their centre of similarity (see Figure 5).  

 
The nine-point circle and Euler line 
Although Leonhard Euler was apparently the first 
person in 1765 to show that the midpoints of the 
sides of a triangle and the feet of the altitudes 
determine a unique circle, it was not until 1820 that 
Brianchon and Poncelet showed that the three 
midpoints of the segments from the orthocentre to 
the vertices also lie on the same circle, hence its 
name, the nine-point circle (see Figure 6). The 
nine-point circle is often also referred to as the 
Euler circle in honour of Euler. It is also 
sometimes called the Feuerbach circle in honour of 
Karl Feuerbach who in 1822 proved the stunning 
theorem that the nine-point circle is tangent to the 
incircles and excircles of the triangle! 

A result closely associated with the nine-point 
circle is that of the Euler line (which Euler 
presumably discovered more or less 
simultaneously), namely that the orthocentre (H), 
centroid (G), circumcentre (O) and the centre of 

nine-point circle (N) are collinear. 
Moreover, HG = 2GO and HN = 
3NG. 

The historical background 
referred to above is widely available 
in standard historical resource 
books like Boyer (1968), Kramer 
(1970), etc. Books such as these 
ought to be regularly consulted by 
teachers and lecturers in order to 
bring a much-needed historical 
perspective to mathematics in the 
classroom. For classic synthetic 
proofs of the results mentioned 
above, readers can for example 
consult any advanced geometry 
textbook like Coxeter and Greitzer 
(1967) or Posamentier (2002).  
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Figure 4.  Ceva's theorem 

 
 

Figure 5. Homothetic polygons 



Michael de Villiers 

 33 

 
Experimental discovery 
In October 2002, I was wondering how one might 
generalise the nine-point circle and started off by 
considering what happens if instead of the 
concurrent altitudes, one took any three concurrent 
cevians (lines from the vertices to the opposite 
sides). Next I constructed the midpoints of the 
segments from the cevian point H to the vertices as 
shown in Figure 7, wondering whether there was 
any significance in them. Dynamically dragging 
and manipulating the triangle with Sketchpad for a 
while, it suddenly visually seemed to suggest that 
the feet of the cevians D, E and F, and the 
midpoints J, K and L all lie on an ellipse. This was 
immediately confirmed when I used a Sketchpad 
tool to draw an ellipse through any five of these 
points, the ellipse passing through the remaining 
sixth point. Much to my surprise, and delight, I 
next noticed with further dragging that this ellipse 
always passed through the midpoints of the sides 
of triangle ABC (and turned into a hyperbola if D, 
E and F was dragged onto the extensions of the 
sides of the triangle). In other words, nine points in 
total lie on this uniquely determined conic!  

After labouring through long analytic geometry 
proofs (with the aid of the symbolic computer 
algebra of the TI-92), I later found out, much to my 
dismay, that the discovery was not novel at all, and 
was already known in the 1890s, appearing in 
some projective geometry texts (Russell, 1893: 
212). It also appears in standard projective 
geometry texts such as Baker (1922: 41-42), which 
were required study material for entrance 
examinations into the mathematical doctoral 
programmes of Oxford and Cambridge in the 
1920s and 1930s. It seems quite sad that such a 
beautiful projective geometry result has become 
forgotten and neglected. 

This nine-point conic result, however, contains 
a generalisation of the Euler line as a corollary, 
which does not appear in any of the three 
references mentioned, and an internet search has 
also provided no explicit mention of it in the 
mathematical literature. Furthermore, my initial 
analytic proofs of the nine-point conic and the 
Euler generalisation (see De Villiers, in press), 
although confirming the results, do not provide any 
satisfactory insight into why the results are true. In 
contrast, the proof given further down for the Euler 
generalisation is not only synthetic, but also 
explanatory in terms of similarity.  

For the sake of completeness, the nine-point 
conic theorem and Euler line generalisation are 
now formally stated, and a proof of the latter 
given. 

 
The nine-point conic 
Given any triangle ABC, and three cevians 
concurrent in H, then the feet of the cevians (D, E 
and F), the midpoints of the sides of the triangle 
(X, Y and Z), and the respective midpoints L, J and 
K of the segments HA, HB and HC, lie on a conic 
(Figure 7). 

(Note that an ellipse is obtained when the feet 
of all the cevians are on the sides of the triangle, 
but when some of the feet of the cevians lie on the 
extensions of the sides, the conic becomes a 
hyperbola. Silvester (2001: 214-215) also explains 
how a six-point parabola can (theoretically) be 
obtained as a limiting case as the cevian point H is 
dragged off towards infinity.) 
 

 
 

Figure 6. Nine-point circle & Euler line 

 
 

Figure 7. Nine-point conic and Euler 
line generalisation 
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Euler line generalisation  
Given the above configuration for any triangle 
ABC, then the centre N of the conic, the centroid G 
of ABC and the point of cevian concurrency H, are 
collinear, and HN = 3NG. (Note that the 
circumcentre O of triangle ABC does not 
necessarily lie on this general Euler line. However, 
note that just as with the nine-point circle, the 
centre N of the nine-point conic, is the common 
midpoint of segments XL, YJ and ZK – see proof 
below). 
 
Proof 
Construct the point M as the image of G in N under 
a half-turn. Since G is the centroid of XYZ (and 
ABC), and N is the common centroid (midpoint 
and centre of gravity) of XL, YJ and ZK (as they 
are the respective diagonals of parallelograms 
XKLZ, JXYL and ZJKY), it follows that M is the 
centroid of JKL. And since BCA is the image of the 
enlargement of JKL from H with scale factor 2, it 
follows that H, M, N and G are all collinear, and 
that HG = 2HM, MN = NG which implies that HN 
= 3NG.  
 

Further Euler line generalisation  
The above Euler line generalisation 
generalises even further as follows. 
Given any triangle ABC with mid-
points of the sides X, Y and Z and 
three cevians concurrent in H as 
shown in Figure 8. With H as centre 

of similarity and scale factor 
1

k
, 

construct triangle LJK similar to ABC. 
Let N be the centre of similarity 
between LJK and the median triangle 
XYZ. Then H, N and G are collinear, 

and HN =
3

k −1
NG. 

 
Proof 

Construct the centroid G' of triangle LJK. Since 
ABC maps onto LJK under the similarity situated at 

H, it follows that k
GH

HG =
′ and H, G' and G are 

collinear. Since the median triangle is also similar 
to ABC under a half-turn around G with a scale 

factor of 
1

2
, it follows that LJK is similar to XYZ 

with a scale factor 
2

k
. Moreover, LJK is 

homothetic to XYZ. Therefore lines LX, JY and KZ 
are concurrent at N (with 2XN = kNL, etc.). Then 
since the centroid of the median triangle coincides 
with the centroid G of ABC, and XYZ maps onto 
LJK under the half-turn and similarity situated at 

N, it follows that 
NG

NG'
=

k

2
 and G', N and G are 

collinear.  Since the straight line through G and G' 
is unique, it follows that H, G', N and G are 
collinear.  

Let HG' = x, then from the ratios into which HG 
is divided as shown in Figure 9, it follows that 

HN

NG
=

3xk

k + 2
×

k + 2

kx(k −1)
=

3

k −1
 
Looking back 
Instead of respectively using 
parallelograms and homothetic 
polygons to prove XL, YJ and 
ZK concurrent at N for the Euler 
line generalisation and further 
Euler line generalisation, Ceva's 
theorem could be used. further 
note that both Euler 
generalisations can be viewed 
as theorems about quadrilateral 
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Figure 9. Ratios between segments 

 

 
 

Figure 8. Further Euler Line generalisation 
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ABCH. An interesting physical interpretation of 
both generalisations is to consider finding the 
centroid N of point masses at A, B, C and H. For 
example, for the first Euler line generalisation, 
consider unit masses at A, B, C and H. Then N is 
the centroid of 2 masses at X and L, etc., and also 
the centroid of 3 masses at G and 1 at H; hence HN 
= 3NG. Similarly, for the further Euler 
generalisation, consider unit masses at A, B and C 
and mass k - 1 at H. 

Since the further Euler generalisation no longer 
involves a conic, it is perhaps less interesting than 
the Euler generalisation, which it generalises. 
Indeed, this is often the case with generalisation, 
since the general case frequently involves fewer 
properties than the special case.  
 
Concluding comment 
As mathematicians we have an educational 
obligation to share new developments in our 
discipline with our learners to combat the 
pervasive misconception that mathematics is a 
sterile and dead subject. Euclidean plane geometry 
is particularly suited as learners can easily be led to 
some visual appreciation even without formal 
proof. Moreover, it may just stimulate their own 
creativity and inspire them to engage in some 
mathematical research themselves. The availability 
of dynamic geometry software also encourages a 
kind of experimental approach in which it is easy 
to make and check conjectures that lie well within 
the means of average learners, and not just a select 
few. 
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Note: A Dynamic Geometry (Sketchpad 4) sketch 
in zipped format (Winzip) of the results discussed 
here can be downloaded directly from: http://my 
site.mweb.co.za/residents/profmd/9pointeuler.zip 
(This sketch can also be viewed with a free demo 
version of Sketchpad 4 that can be downloaded 
from: http://www.keypress.com/sketchpad/sketch 
demo.html) 
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"Life without geometry is pointless …” 

(Author unknown) 


