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"Now | will have less distraction.”
Leonhard Eulerreferring to losing the sight of on
eye, quoted iMathematical CirclegHoward
Eves, 1969)
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Introduction

To most people, including some mathematics
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teachers, geometry is synonymous with anc
Greek geometry, especially as epitomised
Euclid'sElementsof 300 BC. Sadly, many are n
even aware of the significant extensions @
investigations of Apollonius, Ptolemy, Pappus, &
many others until about 320 AD. Even mg
people are completely unaware of the ma
developments that took place in synthe
Euclidean plane geometry from about 1750-19
and more recently again from about 1990 onwg
(stimulated in no small way by the curre
availability of dynamic geometry software).

The purpose of this article is therefore to giv
brief historical background to the discovery of t
Nine-point circle and the Euler line, and a simpg
but possibly new generalisation and proof of
latter, that may be of interest to teachers ¢
students.
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High school background

The reader is reminded of the following thr
classic concurrency results from Euclifements
that are fortunately still mentioned (though seld
with proof) in a few South African high scho
textbooks. However, since these results are
longer required "theorems" for the final matric
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Figure 1. Centroid
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lation examination from about the late 1980s, it is
likely that most teachers have simply ignored
teaching them, thus producing a generation of
children unacquainted with these remarkable
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Figure 2. Orthocentre
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Figure 3. Circumcentre
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results from our geometric heritage.

(1) The medians (lines from the vertices to the
midpoints of the opposite sides) of a triangle
are concurrent at theentroid(centre of gravity)
of a triangle (see Figure 1).

(2) The altitudes (perpendicular lines from the
vertices to the opposite sides) of a triangle are
concurrent at therthocentre(see Figure 2).

(3) The perpendicular bisectors of the sides (lines
through the midpoints of the sides and
perpendicular to them) of a triangle are
concurrent at thecircumcentre which is the
centre of the circle through the three vertices
(see Figure 3).
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Ceva's theorem

In 1678 an Italian mathematician named Giova
Ceva discovered a surprising generalisation of
altitude and median (and angle bisector) cong
rencies, namely, that if in any triangle, lif
segmentAD, BF and CE are concurrent (witlD,
F and E respectively on sideBC, AC andAB),

AF CD BE .
then x X =1. Conversely, if
FC DB EA
AF CD BE .
X X =1, then line segmen®&D, BF
FC DB EA

and CE are concurrent (see Figure 4). In CeV
honour, the line segmentD, BF andCE joining
the vertices of a triangle to any given points on
opposite sides, are calledvians

Ceva's theorem is a very important and use
theorem that has to form part of the stand
armoury of any high school learner aspiring to
competitive at the Third Round level of the Sol
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Figure 4. Ceva's theorem
the

ftfhe nine-point circle and Euler line

alrA‘ilthough Leonhard Euler was apparently the first
bSerson in 1765 to show that the midpoints of the
itRides of a triangle and the feet of the altitudes

African Mathematics Olympiad. Learners whjetermine a unique circle, it was not until 1820 that

participate in the workshops and Summer Sch
of the Mathematical Talent Search organised ur
the auspices of the South African Mathemati
Society (SAMS) are well acquainted with th
result, as are all the South African team memhk
of the International Mathematics Olympiad (IMO

Homothetic polygons
Another valuable result that is usually also W
known to successful Mathematics Olympi
contestants is the following theorem: If tw
polygons aréhomothetic(that is similar and thei
corresponding sides are parallel), then the i
connecting corresponding vertices are concur

Ogkianchon and Poncelet showed that the three
dﬁﬁdpoints of the segments from the orthocentre to
Cahe vertices also lie on the same circle, hence its
IShame, thenine-point circle (see Figure 6). The
€ftne-point circle is often also referred to as the
‘Euler circle in honour of Euler. It is also
sometimes called the Feuerbach circle in honour of
Karl Feuerbach who in 1822 proved the stunning
ebheorem that the nine-point circle is tangent to the
AGncircles and excircles of the triangle!
0 A result closely associated with the nine-point
circle is that of the Euler line (which Euler
N®¥esumably  discovered more or less
e8multaneously), namely that the orthocentre (H),

at their centre of similarity (see Figure 5).

Figure 5. Homothetic polygons
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centroid (G), circumcentre (O) and the centre of
nine-point circle (N) are collinear.
Moreover, HG = 20 andHN =
3NG.

The  historical  background
referred to above is widely available
in standard historical resource
books like Boyer (1968), Kramer
(1970), etc. Books such as these
ought to be regularly consulted by
teachers and lecturers in order to
bring a much-needed historical
perspective to mathematics in the
classroom. For classic synthetic
proofs of the results mentioned
above, readers can for example
consult any advanced geometry
textbook like Coxeter and Greitzer
(1967) or Posamentier (2002).
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This nine-point conic result, however, contains
a generalisation of the Euler line as a corollary,
which does not appear in any of the three
references mentioned, and an internet search has
also provided no explicit mention of it in the
mathematical literature. Furthermore, my initial
analytic proofs of the nine-point conic and the
Euler generalisation (see De Villiers, in press),
although confirming the results, do not provide any
satisfactory insight into why the results are true. In
contrast, the proof given further down for the Euler
generalisation is not only synthetic, but also
explanatory in terms of similarity.

For the sake of completeness, the nine-point
conic theorem and Euler line generalisation are
now formally stated, and a proof of the latter
given.

Figure 6.  Nine-point circle & Euler line

Experimental discovery
In October 2002, | was wondering how one mighthe nine-point conic

generalise the nine-point circle and started off|bgiven any triangle ABC, and three cevians
considering what happens if instead of thgoncurrent inH, then the feet of the cevians (B,
concurrent altitudes, one took any three concurfeghd F), the midpoints of the sides of the triangle
cevians (lines from the vertices to the opposites y andz), and the respective midpoiritsJ and
sides). Next | constructed the midpoints of thg of the segmentslA, HB andHC, lie on a conic
segments from the cevian pokitto the vertices as (Figure 7).
shown in Figure 7, wondering whether there was (Note that an ellipse is obtained when the feet
any significance in them. Dynamically draggingf all the cevians are on the sides of the triangle,
and manipulating the triangle wiketchpador a | pyt when some of the feet of the cevians lie on the
while, it suddenly visually seemed to suggest thaktensions of the sides, the conic becomes a
the feet of the cevian®, E and F, and the| hyperbola. Silvester (2001: 214-215) also explains
midpointsJ, K andL all lie on an ellipse. This was how a six-point parabola can (theoretically) be
immediately confirmed when | usedSketchpad optained as a limiting case as the cevian piig
tool to draw an ellipse through any five of the@sgragged off towards infinity.)
points, the ellipse passing through the remaining
sixth point. Much to my surprise, and delight{ |
next noticed with further dragging that this ellip
always passed through the midpoints of the sid
of triangle ABC (and turned into a hyperbolal,
E andF was dragged onto the extensions of {t
sides of the triangle). In other words, nine point
total lie on this uniquely determined conic!
After labouring through long analytic geometn
proofs (with the aid of the symbolic comput
algebra of the TI-92), | later found out, much to
dismay, that the discovery was not novel at all,
was already known in the 1890s, appearing
some projective geometry texts (Russell, 18
212). It also appears in standard project
geometry texts such as Baker (1922: 41-42), whi
were required study material for entranc
examinations into the mathematical doctof:
programmes of Oxford and Cambridge in th
1920s and 1930s. It seems quite sad that sugl  Figure 7. Nine-point conic and Euler
beautiful projective geometry result has beco line generalisation
forgotten and neglected.
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A

Further Euler line generalisation

The above Euler line generalisation
generalises even further as follows.
Given any triangleABC with mid-
points of the sidesX, Y and Z and
three cevians concurrent i as
shown in Figure 8. WittH as centre

1
of similarity and scale factorE,

construct trianglé.JK similar toABC.
Let N be the centre of similarity

Figure 8.  Further Euler Line generalisatio

Euler line generalisation

Given the above configuration for any triang
ABC, then the centid of the conic, the centroid

of ABC and the point of cevian concurrentyare
collinear, and HN NG. (Note that theg
circumcentre O of triangle ABC does not
necessarily lie on this general Euler line. HoweV
note that just as with the nine-point circle, t
centreN of the nine-point conic, is the commg
midpoint of segmentXL, YJ andZK — see proof
below).

Proof

Construct the poin¥l as the image d& in N under
a half-turn. SinceG is the centroid oKXYZ (and
ABC), andN is the common centroid (midpoir
and centre of gravity) oKL, YJ andZK (as they
are the respective diagonals of parallelogrg
XKLZ, JXYL and ZJKY), it follows thatM is the
centroid ofJKL. And sinceBCA s the image of the
enlargement oKL from H with scale factor 2, i
follows thatH, M, N andG are all collinear, ang
thatHG = 2HM, MN = NG which implies thaHN
= 3NG.

betweenLJK and the median triangle
XYZ ThenH, N andG are collinear,

n

Proof
le€Construct the centroi®' of triangle LIK. Since
ABC maps onttJK under the similarity situated at

_ HG
H, it follows thatH—G, =KandH, G' andG are

eFollinear. Since the median triangle is also similar
héb ABC under a half-turn aroun@ with a scale

Nfactor of E it follows thatLJK is similar toXYZ

2
with a scale factorE. Moreover, LIK is

homothetic taXYZ Therefore linet.X, JY andKZ

are concurrent &l (with 2XN = kNL, etc.). Then

since the centroid of the median triangle coincides
twith the centroidG of ABC, andXYZ maps onto

LIK under the half-turn and similarity situated at

NG k
nﬁ, it follows that—— =— andG', N andG are
NG 2

collinear. Since the straight line througGhandG'
is unique, it follows thatH, G', N and G are
| collinear.
Let HG' = x, then from the ratios into which HG

is divided as shown in Figure 9, it follows that
HN  3xk k+2 3

kx

= X =
NG k+2 kx(k-1) k-1

Looking back
Instead of respectively using

parallelograms and homothetic
polygons to proveXL, YJ and

x(k - 1)
k+2

Figure 9. Ratios between segments
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ZK concurrent all for the Euler

line generalisation and further
Euler line generalisation, Ceva's
theorem could be used. further
note that both Euler

generalisations can be viewed
as theorems about quadrilateral
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ABCH. An interesting physical interpretation
both generalisations is to consider finding
centroidN of point masses &, B, C andH. For
example, for the first Euler line generalisatig
consider unit masses Af B, C andH. ThenN is
the centroid of 2 masses XtandL, etc., and alsg
the centroid of 3 masses@tand 1 aH; henceHN
3NG. Similarly, for the further Eule
generalisation, consider unit masseg®\aB andC
and mas& - 1 atH.

Since the further Euler generalisation no lon
involves a conic, it is perhaps less interesting t
the Euler generalisation, which it generalis
Indeed, this is often the case with generalisat
since the general case frequently involves fe
properties than the special case.

Concluding comment
As mathematicians we have an educatio
obligation to share new developments in (
discipline with our learners to combat t
pervasive misconception that mathematics ig
sterile and dead subject. Euclidean plane geom
is particularly suited as learners can easily be le
some visual appreciation even without forn
proof. Moreover, it may just stimulate their ow
creativity and inspire them to engage in so
mathematical research themselves. The availab
of dynamic geometry software also encourageg
kind of experimental approach in which it is eg
to make and check conjectures that lie well wit
the means of average learners, and not just a §
few.
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 Note: A Dynamic Geometry §ketchpad Ysketch

in zipped format (Winzip) of the results discussed
here can be downloaded directly from: http://my
jegite.mweb.co.za/residents/profmd/9pointeuler.zip
hdihis sketch can also be viewed with a free demo
pa/ersion of Sketchpad 4that can be downloaded
ofrom: http://www.keypress.com/sketchpad/sketch
welemo.html)
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"Life without geome

try is pointless ...”

(Author unknown)
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