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A B S T R A C T
The present study analyzes the temporal variability of carbon 
monoxide (CO) over the Manaus Metropolitan Region (MMR) 
and its relations with nearby fires based on data obtained by 
the environmental satellite AQUA, for the 2003–2020 period. 
For this purpose, wavelet transform analyses and wavelet 
coherence analyses were used. The results show a well-defined 
seasonal behavior, with an increase and decrease in mean 
CO concentrations during dry and wet seasons, respectively. 
Semiannual and annual scales represent around 95 % of CO 
temporal variability in lower troposphere (500 to 1,000 hPa) and 
are associated with rains and fires dynamics in the region. In 
terms of interannual variability, multiple variability scales (1.2–2, 
2.5–3 and 4.5–6 years) were observed, which explain around 10–
15 % of concentration variability near surface. The results suggest 
that climatic variations, associated with the tropical Pacific and 
Atlantic sea surface temperature variations, on these different 
time scales, affect rain dynamics and, consequently, fires and 
CO concentration. Specifically, in 2015/16, the combined effect 
from different variability scales acted to prolong the dry period 
over the region, which contributed to increase fires and the CO 
to reach higher values compared to previous years. These results 
show a new aspect of the importance of evaluating the combined 
effect of different climate variability scales on CO concentrations 
in the atmosphere. 

Keywords: carbon monoxide; fires; climate variability; Amazon; remote 
sensing; wavelet transform.

R E S U M O
O presente estudo analisa a variabilidade temporal do gás monóxido de 
carbono (CO) sobre a Região Metropolitana de Manaus (RMM) e sua 
relação com as queimadas com base em informações obtidas pelo satélite 
ambiental AQUA, para o período entre 2003 e 2020. Para tal, foram 
realizadas análises de transformada de ondeleta e análises de coerência e 
fase da ondeleta. Os resultados apontam para um comportamento sazonal 
bem definido, com aumento das concentrações médias de CO durante 
a estação seca e redução na estação chuvosa. As escalas semianual e 
anual representam cerca de 95% da variabilidade temporal do CO na 
baixa troposfera (500 a 1.000 hPa) e estão associadas à dinâmica das 
chuvas e queimadas na região. Com relação à variabilidade interanual, 
observaram-se múltiplas escalas de variabilidade (1,2–2, 2,5–3 e 4,5–6 
anos), que explicam juntas em torno de 10–15 % da variabilidade das 
concentrações próximas à superfície. Os resultados sugerem que variações 
climáticas, associadas às variações da temperatura da superfície do mar 
nos oceanos Pacífico e Atlântico tropicais, nessas diferentes escalas de 
tempo, afetam a dinâmica das chuvas e, consequentemente, as queimadas 
e a concentração de CO. Especificamente em 2015/16, o efeito combinado 
das diferentes escalas de variabilidade atuou para prolongar o período 
seco sobre a região, o que contribuiu para o aumento das queimadas e 
para que o CO alcançasse maiores valores em relação aos anos anteriores. 
Tais resultados mostram um aspecto novo sobre a importância de avaliar 
o efeito combinado de diferentes escalas de variabilidade climática nas 
concentrações de CO na atmosfera, particularmente em anos extremos. 

Palavras-chave: monóxido de carbono; queimadas; variabilidade 
climática; Amazônia; sensoriamento remoto; transformada de ondeleta.
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Introduction
Carbon monoxide (CO) is a colorless, tasteless and odorless gas, dan-

gerous to human health due to its toxicity and capacity to promote chem-
ical asphyxiation (Rozante et al., 2017). CO has both anthropogenic and 
natural sources, with anthropogenic emissions being responsible for more 
than half of the total CO injected into the atmosphere (Petrenko et al., 
2013). On the other hand, the main CO sink is its reaction with hydroxyl 
radical (OH), with CO consuming between 39 and 60% of OH in tropo-
sphere (Seiler et al., 1984; Lelieveld et al., 2016), being its major oxidizing 
agent (Logan et al., 1981). The CO atmospheric balance and the reduction 
of OH concentrations are also directly related to the residence time of oth-
er gases in the atmosphere, including methane (CH4) and sulfur dioxide 
(SO2). Furthermore, CO is an important precursor of the tropospheric 
ozone (O3) and carbon dioxide (CO2), which are pollutants present in the 
lower layers of the atmosphere (Shindell et al., 2009; Strode et al., 2015; 
Zheng et al., 2019). Thus, although CO is not considered a primary green-
house gas, it can play a significant role in determining temperature trends.

During its lifetime in troposphere (about two months), CO can be 
used as a tracer for monitoring atmospheric transport processes and 
identifying pollution sources of both natural and human origin. Due to 
its non-uniform mixing within the troposphere, CO can be measured 
with high precision and accuracy, enabling effective analysis and detection 
(Logan et al., 1981; Boian and Kirchhoff, 2004; Kopacz et al., 2010; Zhang 
et al., 2016). Such characteristics allow the gas to be used as a human ac-
tivities’ indicator since the main CO sources had anthropogenic origins 
(Worden et al., 2010; Hooghiemstra et al., 2012; Davidson et al., 2012). 
Therefore, to correctly interpret observed CO variations, it is important to 
assess worldwide CO sources contributions (Yashiro et al., 2009). 

In the Amazon, the concentration of CO in the atmosphere increases 
during the dry seasons, in response to increases in biomass burning (Ri-
beiro et al., 2018b). In addition to these seasonal variations, CO concen-
trations in tropical atmosphere show an interannual variability correlated 
with variations in biomass burning and large-scale climatic phenomenon 
(Novelli et al., 2003; Liu et al., 2013). Recently, adoption of public and eco-
nomic policies that aim at a broader use of natural resources in the region, 
intensifying geographic expansion and food production, as well as the 
recent loosening of forest protection policies, linked soil use to the prac-
tice of deforestation and fire use. In this scenario, CO variability in the 
Amazon Basin results primarily from fires associated with deforestation 
(Langenfelds et al., 2002; Novelli et al., 2003; Deeter et al., 2016). Deeter 
et al. (2018) claim that the maximum CO concentrations in lower tropo-
sphere are observed in southwest Amazon Basin in August and September 
due to the transport of pollutants from the “Arc of Deforestation” region, 
where, after deforestation process, fires are often used to remove biomass, 
to prevent trees from encroaching on pastures, to recycle nutrients and to 
remove crop residues. Human-induced fires in tropical forests, each year, 
surpass the importance of natural fires (van der Werf et al., 2010). In ad-
dition, the occurrence of biomass burning increases during years that are 
considered dry. The 2015 drought was considered the most extreme since 

1901 (Erfanian et al., 2017) and is possibly the first that has been linked to 
the increase in biomass burning in areas that are rarely affected by fires, 
such as the central Amazon (Ribeiro et al, 2018b).

El Niño-Southern Oscillation (ENSO) and the tropical north Atlantic 
Sea Surface Temperature (SST) variations have been considered the main 
factors that explain the interannual precipitation variability over the Am-
azon Basin (Marengo et al., 2008b; Davidson et al., 2012; Panisset et al., 
2018). Such phenomena were responsible for intense drought episodes 
in 2005 (Marengo et al., 2008a, 2008b); 2010 (Marengo et al., 2011) and 
2015–2016 (Jiménez-Muñoz et al., 2016; Erfanian et al., 2017), leading to 
higher frequency of the forest fires during these extremely dry years, which 
in turn have impacts on interannual variability of CO and CH4 in the re-
gion (Aragão et al., 2018). Thus, the monitoring of CO source changes and 
its subsequent transport is crucial to predicting its impact on tropospheric 
chemistry and surface air quality (McMillan et al., 2011). However, atmo-
spheric CO monitoring has not been as prolonged or extensive as for CO2 
(Langenfelds et al., 2002). Therefore, to understand how fires influence and 
interact with the atmosphere, quantitative information about emissions 
and their different sources is needed (van Marle et al., 2017). In the face of 
polluting gas emissions and analysis of the impact of human activities in 
the context of climate change, satellite remote sensing is one of the most 
important methods for monitoring atmospheric parameters and their 
changes, providing global coverage and data with good temporal and spa-
tial resolution, being able to detecting pollution sources and propagation 
patterns that conventionally are been difficult to measure due to high costs. 
Atmospheric Infrared Sounder (AIRS) on the board of the EOS/AQUA 
satellite has the advantages of wide spatial coverage with time continuity, 
which significantly contributes to studies of remote areas such as the Am-
azon, as demonstrated by Kopacz et al. (2010), Zhang et al. (2016), Santos 
et al. (2017), Ribeiro et al. (2018a, 2018b, 2020). Therefore, the purpose 
of this study was to investigate the temporal variability of the CO vertical 
profile over the Manaus Metropolitan Region (MMR), to evaluate the rela-
tionships between its variability and the fires and precipitation variability, 
using wavelet transform and wavelet coherence transform applied to 18 
years of data obtained by the NASA/AQUA satellite. 

Methodology

Study area
The study area covers the MMR, which comprises the cities of Autaz-

es, Careiro, Careiro da Várzea, Iranduba, Itacoatiara, Itapiranga, Manaca-
puru, Manaquiri, Manaus (capital), Novo Airão, Presidente Figueiredo, 
Rio Preto da Eva and Silves (Figure 1). The MMR includes the Manaus In-
dustrial Pole, which holds industries from different segments and import-
ant technological and research centers. According to Fórum Nacional de 
Entidades Metropolitanas (FNEM, 2018), the total number of inhabitants 
in this region is around 2,630,000 and its territorial extension is of 101,401 
km², approximately. It is characterized by lowlands, low plateaus and “terra 
firme” forests, with an average altitude lower than 100 meters. 
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Data source
AIRS data are available from National Aeronautics and Space 

Administration (NASA) Goddard Earth Sciences Data and Informa-
tion Services Center (DISC). The monthly CO vertical profile (L3 
AIRS3STD product, version 7) data were obtained from the AIRS 
sensor on-board the AQUA satellite for the 2003–2020 period. This 
dataset has coverage in grid points with horizontal resolution of 1º 
(longitude and latitude) and temporal resolution of two daily passes, 
with vertical CO concentrations arranged in 24 pressure levels (from 
1,000 to 1 hPa). Information from the Burning Database was also 
used, referring to daily biomass burning for the 2003–2020 period, 
available on the electronic portal of the National Institute for Space 
Research (INPE, 2022). Precipitation data from the Climate Haz-
ards Group InfraRed Precipitation with Station Data CHIRPS (Funk 
et al., 2014; Funk et al., 2015) version v2.0, developed by the Earth 
Resources Observation and Science Center of the U.S. Geological 
Survey and the Climate Risk Group at the University of California, 
Santa Barbara, were used. This dataset is available on the Climate 
Hazards Center website and for the purposes of this study, a spa-
tial resolution of 0.25º and a temporal resolution of one month were 
used. Thus, monthly precipitation data for the period from 2003 to 
2019 were obtained over the Legal Amazon region. Sea Surface Tem-
perature (SST) data were obtained from the reconstructed dataset of 

version 5 provided by the National Oceanic and Atmospheric Ad-
ministration (NOAA, 2022).

Methods
In order to investigate the CO concentration temporal evolution at 

different pressure levels, a pressure versus time diagram of the monthly 
CO concentration and its deviations in relation to the climatology over 
MMR is presented. The climatology was obtained considering the month-
ly average of the period 2003–2020, and deviations represent the differ-
ence between the observed values of a variable in each month and their 
monthly climatologic value. To simplify, the deviations are referred to 
as anomalies hereafter. Then, the time-frequency variability of CO con-
centrations and CO anomaly time series were obtained through wavelet 
analyses. The time-frequency analysis was performed using the Morlet 
wavelet. This function is a complex exponential modulated by a Gaussian 
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, where η = t/s, t is the time, S is the wavelet 
scale and ω0 is the non-dimensional frequency, for which the value of 6 is 
used (Torrence and Compo, 1998). As a result, wavelet power spectrum is 
obtained, which is defined as the square of the absolute value of the wavelet 
transform coefficient, which provides measure of the variance of the time 
series at each scale and time, where the real part of the wavelet coefficients 
gives a strength and phase description signal at a given time and scale, in 
relation to other times and scales (Weng and Lau, 1994).

Figure 1 – Cities of Manaus Metropolitan Region.
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Thus, it was possible to transform a one-dimensional time series 
into a time-frequency space, which allows the dominant variability 
scales determination and their temporal variations. The next step was 
to decompose the time series on the selected time scales. The wavelet 
transform was then used as a band-pass filter, with the average wavelet 
power per scale , being defined as the weighted sum of the wavelet 
power spectrum from scale s1 to s2, given by Equation 1:
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 (1)

Where:
Wn(Sj): the wavelet coefficient at levels n and Sj;
Cδ: a constant reconstruction factor and comes from δ as a function 
of its wavelet transform using ψ0(n), while the average per scale of the 
wavelet real part coefficients R[Wn(Sj)] is given by Equation 2:
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Where:
ψ0(0) = π-1/4 is a factor that removes the energy scaling;
Sj

1/2 converts the wavelet transform into an energy density.

Time scales s1 and s2 were selected based on the identification of 
the dominant variability scales contained in the monthly CO and CO 
anomaly time series.

Relations between CO and fires anomalies were evaluated using the 
wavelet cross-spectrum (XWT), wavelet coherence (WTC) and phase 
differences, following the methodology described by Torrence and Web-
ster (1999) and Grinsted et al. (2004). The cross-wavelet highlights coin-
cident energy regions between two signals, in addition to determining 
the relative phase between both (Vale et al., 2020). It is determined by 
multiplying the first complex wavelet with the second one’s complex con-
jugate (Equation 3):
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 (3)

Where:
X and Y: the time series;
n: the time;
S: the wavelet scale;
*the complex conjugate (Torrence and Webster, 1999).

Cross-wavelet is complex, so it is possible to define its spectrum 
as 
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. The transform displays the covariance between X and Y 
and reveals information about the relation between the series phases; 
in this way, the XWT quantitatively indicates the power similarity be-
tween series. Phase difference analysis between series provides a better 
characterization of the relationship between them.

Specifically, the WTC analysis and the phase difference of the 
wavelets is used to quantify linear relationship between two non-sta-
tionary time series on time and frequency domains. The WTC reveals 
the correlation degree between both series in a time and frequency, 
thus explaining how much a variability of one series is justified by an-
other series of data. According to Torrence and Webster (1999), the 
square of coherence in wavelet is defined as the square of the absolute 
value of the smoothed XWT, normalized by the wavelet power spec-
trum (Equation 4),
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 (4)

Where:
( . ): a smoothing operator in both time and scale. 

The numerator has both imaginary and real parts of the continu-
ous wavelet transform being smoothed separately before assuming an 
absolute value. On the other hand, the denominator has the wavelet 
power spectrum (after being squared) and then smoothed. The factor 
S-1 is used to transform in energy density. From these definitions we 
have that 
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 variates between 0 and 1, with 0 indicating no cor-
relation between the two series, and 1, a perfect correlation. The sta-
tistical significance of the wavelet analysis and wavelet coherence is 
performed using the Monte Carlo methods, following Torrence and 
Webster (1999) and Grinsted et al. (2004).

To assign a support value to the phase difference measurements 
between two data series, the wavelet phase coherence calculation is 
performed. The phase coherence of the wavelet can be defined by 
Equation 5:
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with R indicating the real part and I the imaginary part of the function, 
both smoothed, and could already be calculated in Equation 3. Both 
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 and ϕn(S) are functions of time index n and scale s. The smooth-
ing performed in Equation 4 is performed using convolution in the 
time direction and scale.
 

Finally, the relationship between the multiscale variability of CO 
and the precipitation variability during the period 2015–2016 was 
investigated. This period was characterized by an intense and long 
drought over the study region. So, the series of precipitation anoma-
lies over the Legal Amazon and the SST over the tropical oceans were 
reconstructed at different time scales to determine seasonal patterns 
by scales that contributed to the increase of fires in the region and, 
consequently, to the increase in CO emissions between July of 2015 
and March of 2016.
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Results and Discussion

Temporal evolution of the carbon monoxide concentrations 
and their variability over the Manaus Metropolitan Region

Figure 2A presents the pressure versus time diagram of the time 
series of the monthly profiles from 2003 to 2020. It is possible to note 
a well-defined seasonal behavior of CO concentrations, with highest 
values during the dry season of the region, consistent with previous 
results (Deeter et al., 2016; Santos et al., 2017; Ribeiro et al., 2018a). 
In addition, the CO concentration presents interannual variability, 
with the highest concentration in the years 2004–2005, 2006–2007, 
2009–2010 and 2015–2016. Interannual variations on CO concentra-
tion are better visualized analyzing the pressure versus time diagram 
of the CO concentrations anomaly time series over the MMR (Figure 
2B). It is observed in this figure that the years of 2004, 2005, 2007, 
2010 e 2015 present largest positive anomalies, while 2011, 2013, 
2014 e 2018 show negative anomalies. In addition, the interannual 
variability of CO over the MMR is related to the ENSO, such that the 
years of greater positive anomalies coincide with the occurrence of El 
Niño episodes, while in the years 2013 and 2018, there were La Niña 
episodes instead (NOAA, 2022).

These results are consistent with the previous findings that ex-
plained the increase in the total CO column in terms of the fire 
activity that was associated with the extremely dry years during 
El Niño (Santos et  al., 2017; Aragão et  al., 2018; Ribeiro et  al., 
2018a). According to Aragão et  al. (2018), interannual climate 
variability plays a role in regulating fires in the Amazon, which, in 
turn, have considerable impacts on the CO concentrations in the 
region. In addition, Ribeiro et al. (2020) show that the number of 

biomass burning events increased significantly during the El Niño 
in 2015–16 when compared to the average number from 2003 to 
2016. Consequently, the total CO column concentration values in 
the MMR increased by 15% when compared to the normal condi-
tions, indicating that the impacts of biomass burning were exacer-
bated during the strong El Niño event as compared to the non-El 
Niño period. 

Figure 3A presents the time-frequency variations of the monthly 
CO time series at 500 hPa and 1,000 hPa levels over MMR obtained 
from wavelet analyses. At both levels there were two dominant vari-
ability periods: the annual cycle, from 0.7 to 1.2 year, and semiannual 
from 0.4 to 0.7 year. Locally, the semiannual scale shows significant 
values in the 2005–06, 2007–09 and 2010–11 years, while on the an-
nual scale values are significant throughout the entire period. These 
results remain along the different pressure levels, with small changes in 
the percentage of annual or semiannual variance in relation to the total 
variance of the series, as shown in Figure 3B. In this figure, the nor-
malized profiles were expressed in terms to the percentage of the total 
variance that each variability band (annual or semiannual) represents. 
Thus, it is possible to identify that, for the CO concentration time se-
ries, the semiannual scale explains about of 12 to 18% of the CO vari-
ability at surface levels. Between 500 and 100 hPa levels, the variance 
values were between 15.5 and 17.5%, approximately. The annual scale 
represents of the order of 58 and 74% of the CO variability at surface 
levels and approximately 65–70% between 500 and 100 hPa levels. Such 
results reinforce the seasonal behavior of CO concentration through-
out the year as a function of two well-defined scales, which represent 
around 95% of total CO concentration variability at surface levels and 
approximately 90% at 500 hPa.

Figure 2 – Pressure versus time diagram for the (A) carbon monoxide time series; (B) carbon monoxide anomaly time series.
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Considering the time-frequency variations of the CO anomaly 
time series at 500 hPa obtained from the wavelet analysis, Figure 
4A shows maximum variances on 0.5–1 year scale during the peri-
ods of 2004–2005, 2007, 2010–2012 and 2014–2017. Also, signifi-
cant variance is observed for a 1.5–2 years scale in the 2014–2017 
period. At 1,000 hPa level, significant variance is observed on the 
scales of 2.5–3 and 0.7–2 years, in the 2009–2014 and 2014–2017 
periods, respectively. These results indicate that CO anomaly time 
series contains multiple variability scales, with dominance of the 
semiannual (0.4–0.7 year), annual (0.7–1.2 year) and interannu-
al (1.2–2 and 2.5–3 years) scales. Figure 4B presents the average 

variance percentage profiles by scales in relation to the total vari-
ance of the anomaly time series. Semiannual scale represents be-
tween 13 and 24.5% of the variability contained in the total band, 
with the highest values found on surface levels; annual scale cor-
responds to approximately 18% at 1,000 hPa, and between 22 and 
23% in the 500–200 hPa layer; 1.2–2 years scale varies between 9 
and 16%, with higher variance values in the upper atmosphere, 
and, finally, 2.5–3 years scale represents about 4% of the variabili-
ty near surface and 6% at upper layers. These four scales together 
represent about 55% of CO variability near the surface and ap-
proximately 63% at 500 hPa.

Figure 3 – (A) Local wavelet power spectrum (WPS) of the continuous wavelet transforms (CWT) of the CO concentration at 500 and 1,000 hPa over the 
Manaus Metropolitan Region, and global wavelet power (GWP). The U-shaped curve in the WPS graph indicates the influence cone and the continuous lines 
shows significant values at the 95% level. The dotted line in the global spectrum shows significance of 95%. (B) Vertical profiles of the variance percentage of 
the total variance of CO time series are explained by indicated scales.

Figure 4 – (A) Local wavelet power spectrum (WPS) of the continuous wavelet transforms (CWT) of the CO anomalies over the Manaus Metropolitan Region 
at 500 and 1,000 hPa, and global wavelet power (GWP). The U-shaped curve in the WPS graph indicates the influence cone and the continuous lines shows 
significant values at the 95% level. The dotted line in the GWP shows significance of 95%. (B) Vertical profiles of the variance percentage of the total variance 
of CO anomaly time series explained by indicated scales.
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Relations between precipitation, fires and carbon monoxide
Figure 5A shows the WTC of CO concentration time series at 

500 and 1,000 hPa levels using fire series as a reference. At the 500 
hPa level, significant coherence occurs in the semiannual scale from 
2004 to 2007 and subsequently from 2011 to 2017. The annual scale 
shows significant coherence throughout the period of analysis, with 
CO series lagging the fire series 1.5–2 months. After 2015, coherence 
extended to the 3 years scale, with the series oscillating in phase. Still 
in the 3 years scale, there is significant coherence between 2004 and 
2010, with the series oscillating with phase difference of the 90º, that 
is, the maximum values in the CO series occurring nine months af-
ter the maximum of fire. At 1,000 hPa, significant coherence on the 
semiannual scale can be observed in 2006–2009, 2010–2017 and 
2019, with the fire and CO series oscillating practically in-phase. In 
annual scale, coherence is significant throughout the analyzed peri-
od; however, the CO series shows a lag of around 3–6 months. Coher-
ence is also observed on 3-year and 4.5 to 6 years scales throughout 
the analyzed period. For the anomaly series (Figure 5B), at 500 hPa, 
it is possible to note significant coherence in 0.2–0.4 years scale in 
several time intervals along the analyzed period. It is still possible 
to observe coherence in the annual scale for 2015 and 2016 years, 
with a phase difference of 1.5–3 months. After 2015, there is also 

coherence on the scales between 1.2 to 2.5 years, with a phase dif-
ference of 45º, that is around three months for periods up to two 
years, and with series oscillating in phase for the period of 2–3 years. 
At the 1,000 hPa level, significant coherence is observed for 2015 year 
on 0.3–0.8 and 1.2–1.8 year scales, both with a phase difference of 
90º, that corresponds to a lag of approximately 1–3 months. Also, 
at this layer, significant coherence is observed for 3 years and 4.5 to 
6 years scales throughout the entire period. These variability scales 
coincide with variability scales associated to ENSO, whose periodic-
ity varies between three and seven years (Timmermann et al., 2018). 

Complementary to the WTC analyses, the XWT analyses for 
fire and CO anomaly time series at 500 and 1,000 hPa are shown in 
Figure 5C. At 500 hPa, the series exhibit in-phase oscillations in the 
0.7 year scale throughout 2005. Significant semiannual scales with a 
phase difference of approximately two months are observed in 2010 
and 2011. Additionally, larger amplitudes in the 2.5–3 years scale 
can be seen from 2008 to 2015, with a brief interruption in 2013. 
Prior to 2013, the series exhibit the phase difference of the 90°, that 
corresponds to nine months, whereas after this year the time series 
oscillates in phase. Notably, in 2016, significant values in the XWT 
in 0.1–1 year and 1.2–2 years scales are observed, with phase differ-
ences of 90°, that correspond to 1.5–3 and 3 months, respectively. 

Figure 5 – The wavelet coherence and phase differences between fire and CO concentration at 500 and 1,000 hPa for (A) total monthly time series; (B) 
anomaly time series; (C) the cross-wavelet transform and phase differences between the fire anomaly and 500 and 1,000 hPa CO anomaly time series. The 
thick contour encompasses the significant coherences at the 95% confidence. The region where the edge effects are important is under the U-shape curve. 
Arrows are the phase differences with in-phase (0º), pointed to the right; antiphase (180º), pointed to the left; the first time series leading the second one by 
90º, pointed downward; and the first time series lagging the second one by 90º, pointed upward.
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Figure 6 – (A) Wavelet coherence (WTC) between precipitation (PRP) and 
fire series. The thick contour encompasses the significant coherences at the 
95% confidence. The region where the edge effects are important is under 
the U-shape curve. The arrows point out the phase differences, operating 
in the same way as shown in Figure 5. (B) Reconstructed CO, precipitation 
and fires anomaly time series for 1–2, 2.5–3 and 4.5–6 years scales. 
Highlighted, in gray, the period between 2015 and 2016. 

At 1,000 hPa, significant values are observed in 2010 for periods of 
0.5–0.7 years and 3 years scales. The former presents the phase dif-
ference of 180°, while the latter shows a phase difference of approxi-
mately 90° (nine months). In 2016, the same scales and phase differ-
ence are observed at 500 hPa.

Such results indicate that different mechanisms may be responsible 
for fires variability and, consequently, CO variability over the region. 
The relation between climate variability and the variability of fires was 
observed by analyzing the WTC spectrum in Figure 6A. In this fig-
ure, significant coherences are observed in 2005–10 and after 2015 for 
the 1–2, 2.5–3 and 4.5–6 years scales, with phase differences varying 
between 90º and 180º, indicating that a precipitation (PRP) series pre-
cedes a fire series, as shown in Figure 6B. 

Figure 6B shows the reconstructed precipitation, fires and CO 
anomaly time series for the three dominant variability scales, highlight-
ing the period 2015–16, when an extreme positive CO concentration 
anomaly occurred. In this period, there is agreement between the series, 
with negative precipitation anomalies associated with an increase in fires 
and, consequently, in CO, which indicates that the interaction of climate 
variability modes in the different scales could play a differential role in 
the configuration and prolongation of rainfall events over the MMR that 
affect the fire distribution and CO concentration. So, climate variability 
modes should be analyzed separately for the mentioned timescales.

For these scales, different SST anomaly patterns were observed 
during the 2015–16 period. During the dry season (July–October/
JASO) for the 1–2 years scale, positive SST anomalies in the eastern 
equatorial Pacific and negative in western equatorial Pacific define the 
El Niño pattern in 2015 (Figure 7A). Furthermore, in the tropical In-
dian Ocean, warming in the western sector accompanied by cooling in 
eastern sector defines an anomalous SST dipole pattern over this ocean. 
In the tropical Atlantic, cooling is observed along South America’s 
north coast and over the eastern equatorial Atlantic. Associated with 
this SST anomaly pattern, negative rainfall anomalies were observed 
south of 10ºS and in the northwestern Amazon (Figure 7C). During 
the wet season (November–March/NDJFM) (Figure 7B), positive SST 
anomalies related to El Niño show maximum values decoupled from 
South America coast, while the tropical Atlantic (Indian Ocean), the 
negative (positive) SST anomalies are weakened (intensified). Also, the 
warming in the tropical Atlantic occurs in the northwestern African 
coast. During this period, there is intensification of negative precipita-
tion anomalies throughout the Amazon (Figure 7D). 

For 2.5–3 years scale, during JASO, the El Niño pattern with 
anomalous warming in the eastern tropical Pacific is established, 
and negative SST anomalies are observed over the western equato-
rial Atlantic and southern tropical Atlantic along the African coast 
(Figure 7E). During NDJFM (Figure 7F), which includes the mature 
phase of the El Niño event, negative anomalies in the tropical Atlan-
tic give way to a slight warming in the eastern equatorial Atlantic 
and along the southwest part of the southern tropical Atlantic. In 
this scale, El Niño acts to reduce rainfall across the basin; however, 
warming in the equatorial Atlantic acts in the opposite direction, 
causing precipitation anomalies to be slightly smaller in relation to 
the dry season (Figures 7G and 7H). The reconstructed SST anom-
alies on 4.5–6 years scale also configure a well-defined El Niño pat-
tern in the eastern tropical Pacific during the two seasons (Figures 
7I and 7J). However, for this scale, positive SST anomalies in the 
tropical Indian and tropical Atlantic Oceans occur simultaneous-
ly. El Niño, accompanied by the tropical Atlantic warming, were 
consistent with decreasing precipitation over the Amazon in both 
seasons. At this scale, the combined effect of El Niño and tropical 
north Atlantic warming acted to prolong the dry period to NDJFM, 
mainly at north of 10ºS (Figures 7K and 7L). 
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Figure 7 – Sea surface temperature anomalies reconstructed during, respectively, dry (JASO) and wet (NDJFM) seasons of 2015/16 for (A, B) 1–2, (E, F) 2.5–3 
and (I, J) 4.5–6 years scales, and reconstructed rainfall anomalies over Amazon in dry (JASO) and wet (NDJFM) seasons of 2015/16 for (C, D) 1–2, (G, H) 
2.5–3 and (K, L) 4.5–6 years scales.

Conclusion
The results presented here suggest that the seasonal behavior 

and interannual variability of the CO concentration over the MMR 
is controlled by fires and climate variability. It was found that semi-
annual and annual cycles were responsible for up to 9% of the CO 
variability at near surface levels. When analyzing the CO anomaly 
time series, multiple scale variability between 0.4 to 3 years explains 
about 55% of the CO variability at 1,000 hPa and approximately 63% 
at 500 hPa. For the 3 year and 4.5–6 years scales, a strong relationship 
between the fire’s variability and the variations in CO was observed 
for the period study. Since these scales coincide with the ENSO scale, 
the coherence analysis between precipitation and fires suggests that 
the dynamics of fires are partly associated with interannual climate 
variations, as discussed in previous studies (Aragão et al., 2018; Ri-
beiro et al., 2018a). 

Therefore, analyzing the climate conditions during the extreme 
event in 2015–16, the results show that for the 1–2 years and 4.5–6 
years scales both the tropical north Atlantic and the eastern equa-
torial Pacific affect the distribution of rainfall over the Amazon re-
gion, so that the increase in CO concentration is preceded by below 

normal rainfall conditions in this area occurring 1–3 months in ad-
vance. Furthermore, the results indicate that warming in the trop-
ical north Atlantic occurring in phase with El Niño acts to inten-
sify the negative precipitation anomalies during the region’s rainy 
season. On the other hand, for the time scale of 2.5–3 years, the 
increase in CO is related to El Niño. In this case, the effect on pre-
cipitation was more intense during its development phase (JASO). 
The results here indicate that the influence of the tropical Pacific 
and the Atlantic on rainfall patterns over Amazon, and therefore 
on CO concentration during the 2015/16 dry season and dry-wet 
transition depends on the time scale of the variations. Specifical-
ly, in 2015/16, the combination of different scales contributed to 
the CO reaching higher values compared to previous years. There-
fore, these results suggest that the interaction of climate variability 
modes in the different scales could play a differential role in the 
configuration and prolongation of rainfall events over the MMR 
that affect the fire distribution and CO concentration. These results 
show a new aspect of the importance of evaluating combined effects 
of climate variability in different scales on CO concentrations in the 
atmosphere, particularly during extreme events years.
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