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A B S T R A C T 
Urban centers cause atmospheric pollution and suffer the most from 
their emissions. Polycyclic aromatic hydrocarbons (PAHs) are persistent 
toxic substances (PTS) that can be air transported at urban sites and 
impact human health, causing skin allergies, respiratory diseases, 
and cancer. Macaé is a southeastern Brazilian coastal city that had 
an intense process of urbanization and population growth due to the 
installation of oil companies in the 1970s. The study aimed to evaluate 
Macaé’s air quality regarding atmospheric PAH occurrence, measured 
using polyurethane foam passive air samplers (PUF-PAS). PUF disks 
were deployed along environmental gradients during the 2018–
2019 spring/summer in Macaé city and its surroundings. In total, 22 
individual PAHs were analyzed by gas chromatography coupled with 
mass spectrometry. Total PAH air concentrations ranged from 0.3 to 
3.3 ng.m-3, pointing out three- to four-membered ring compounds as 
the most abundant (76%). Among them, phenanthrene, anthracene, 
and fluoranthene had the highest air concentrations, especially at 
sampling sites where fossil fuel combustion seemed more prominent. 
Compared to other cities worldwide, the lower PAH air levels reported 
in this study may be linked to the influence of marine air masses. As 
the most carcinogenic PAH compound is benzo[a]pyrene, the results 
are also given in benzo[a]pyrene-equivalent (BaPeq). BaPeq ranged 
from 0.02 to 0.10 ng.m-3. This study indicated an environmental trend 
along urban-industry-background spatial transects. Even though a 
prominent marine air mass might contribute to efficient air pollution 
dispersion, in urban/industrial areas, human exposure to carcinogenic 
chemicals is higher, probably due to local PAH sources inside the 
urban perimeter of Macaé. 

Keywords: polycyclic aromatic hydrocarbons; passive sampler; air 
pollution; benzo[a]pyrene-equivalent; urban coast areas.

RESUMO
Os centros urbanos causam poluição atmosférica e são os que mais sofrem 
com suas emissões. Os hidrocarbonetos policíclicos aromáticos (HPA) 
são substâncias tóxicas persistentes que podem ser transportadas por 
longas distâncias e impactar a saúde humana, causando alergias, doenças 
respiratórias e câncer. Macaé é uma cidade litorânea do sudeste brasileiro 
que teve um intenso processo de urbanização e crescimento populacional, 
associado à instalação de companhias petrolíferas. O estudo teve como 
objetivo avaliar a qualidade do ar de Macaé quanto à ocorrência de HPA, 
medidos com amostradores passivos de espumas de poliuretano (EPU). Os 
discos EPU foram implantados ao longo de gradientes ambientais durante o 
período primavera/verão 2018–2019 na cidade de Macaé e arredores. Vinte 
e dois HPA individuais foram analisados por cromatografia gasosa acoplada 
a espectrômetro de massas. A concentração total de HPA atmosféricos 
variou de 0,3 a 3,3 ng.m-3, sendo os compostos de três e quatro anéis 
aromáticos os mais abundantes (76%). Fenantreno, antraceno e fluoranteno 
apresentaram as maiores concentrações, especialmente em locais onde a 
queima de combustível fóssil parece ser mais proeminente. Comparando 
com outros centros urbanos, as baixas concentrações de HPA atmosféricos 
encontradas no presente estudo podem ser explicadas por retrotrajetórias 
marinhas de massa de ar. Os resultados também são expressos em benzo[a]
pireno-equivalente (B[a]Peq), HPA altamente carcinogênico. O B[a]Peq 
variou de 0,02 a 0,10 ng.m-3. Este estudo indicou uma tendência decrescente 
no transecto urbano-industrial-controle (ou de fundo). Apesar de uma 
massa de ar marinha possivelmente contribuir para a eficiente dispersão de 
poluentes atmosféricos, áreas urbanas/industriais aumentam a exposição 
humana a compostos carcinogênicos, provavelmente por fontes de HPA, 
dentro dos perímetros urbanos de Macaé.

Palavras-chave: hidrocarbonetos policíclicos aromáticos; poluição 
atmosférica; amostradores passivos; Benzo[a]Pireno-equivalente; 
áreas costeiras.
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Introduction
Since the Industrial Revolution, atmospheric pollution has intensi-

fied. During the early 20th century, urban centers became responsible 
for most of the atmospheric pollution emissions due to their high den-
sity of humans and vehicles (WHO, 2016; Shafie and Mahmud, 2020), 
suffering the most from atmospheric pollution (Shafie and Mahmud, 
2020). Many studies suggest an association between human diseases 
and atmospheric pollution exposure, mainly in highly industrialized 
countries and/or highly populated countries (Clark et al., 2019; Jaga-
nathan et al., 2019; Ilango et al., 2020; Yang et al., 2021). Indeed, 90% of 
the world’s population is exposed to atmospheric conditions that do not 
meet the World Health Organization Air Quality Guidelines (WHO, 
2016). Moreover, approximately 30% of liver cancer deaths and more 
than 50% of children’s deaths from pneumonia are associated with at-
mospheric pollution (WHO, 2015; HEI, 2020). In the past decades, 
similar studies in Brazil have also pointed out the role of atmospher-
ic pollution in human diseases, mainly respiratory, such as allergies, 
asthma, and reduced pulmonary functions (Santana et al., 2020; Silva 
et al., 2020). Moreover, recently, the atmospheric occurrence of some 
semivolatile organic contaminants was reported to increase cancer risk 
in Brazilian urban areas (Guida et al., 2021a). In South America, there 
are few studies about atmospheric pollution compared to other glob-
al regions. Most of them usually analyze standard parameters such as 
particulate matter, ozone, NOx, and CO, highlighting the influences 
of intense traffic, wood combustion, and urbanization processes as the 
major sources of air pollution (UNEP, 2002; Gomez Pelaez et al., 2020).

Polycyclic aromatic hydrocarbons (PAHs) are persistent toxic sub-
stances (PTS) (Li et al., 2022), prone to long-range atmospheric trans-
port (Meire et al., 2007; Speciale et al., 2018; Balmer et al., 2019), and 
able to cause damages on human health, such as respiratory diseas-
es, skin allergies, and cancer, even at low air concentrations (Rodri-
guez-Aguilar et al., 2019; Låg et al., 2020; Aminiyan et al., 2021; Yang 
et al., 2021; Mallah et al., 2022). Therefore, PAHs are a priority class of 
atmospheric compounds in environmental and human health studies 
worldwide (Hussain et al., 2018; Yang et al., 2021). Fossil fuel combus-
tion is usually highlighted as a major PAH source in urban and indus-
trial areas around the world (Carratalá et al., 2017; Pokhrel et al., 2018; 
Aminiyan et al., 2021) and a cancer risk factor due to the inhalation of 
these compounds (Pokhrel et al., 2018; Fadel et al., 2022).

The main distribution routes of PAH atmospheric transport are 
usually associated with fine (diameter ≤ 2.5 μm) particulate matter 
(EPA, 2013), increasing the long-range dispersion of these compounds 
from their primary sources (Meire et al., 2007; Pokhrel et al., 2018). 
PAHs are composed of benzene rings fused in linear, clustered, or an-
gular arrangements. There are thousands of PAH compounds in the 
environment, but only a selected priority group is monitored world-
wide, especially to assess human health risks (EPA, 1993; WHO, 2015; 
2016). PAHs are formed and released by incomplete combustion of 
organic materials such as fossil fuel (diesel and gas engines), coal and 

biomass, cigarette smoke, and industrial activities (Stogiannidis and 
Laane, 2015). Urbanization is usually associated with industrial devel-
opment and changing society’s habits, and all these factors may influ-
ence PAH concentrations in the environment.

The use of passive air sampling (PAS) methods is justified by their 
cost-effectiveness compared to active air samplers, as well as their ease 
of handling and the fact that they do not require a power supply (Harner 
et al., 2013; Melymuk et al., 2021; Prats et al., 2022). Polyurethane foam 
(PUF) disks can adsorb a wide range of semivolatile organic compounds 
(SVOCs) present in the atmosphere (Nguyen et  al., 2020; Prats et  al., 
2022; Strandberg et al., 2022). PUF-PAS method has been widely used as 
an efficient tool to determine PTS air pollution across temporal and spa-
tial gradients, including local (Pozo et al., 2015; Meire et al., 2016; Car-
ratalá et al., 2017), regional (Cheng et al., 2013; Meire et al., 2019), con-
tinental (Klanova et al., 2009; Yao et al., 2016), and global scales (Pozo 
et al., 2009). Many studies used PUF-PAS to monitor the concentration 
of PAHs in the atmosphere, indicating the effectiveness of the method 
for this purpose (Melymuk et  al., 2021; Prats et  al., 2022; Strandberg 
et al., 2022). Moreover, PUF-PAS have also been adopted to assess hu-
man health risk due to inhalation of several SVOCs in the air, including 
PAHs (Wang et al., 2017; Guida et al., 2021a; 2021b; Arias et al., 2022).

Macaé is a Brazilian city, located in Rio de Janeiro State, which has 
undergone an intense and recent process of urbanization and popula-
tion growth, initiated in the 1970s. The changes in Macaé’s landscape 
are highly associated with the installation/operation of several oil com-
panies during the same decade. During the first years of oil industry 
activities, the population increased by 10,000 inhabitants (Ramires, 
1991). According to the last census, 206,728 inhabitants are living in 
Macaé City, with 98% of them in urban areas (IBGE, 2010). Therefore, 
Macaé is a relevant study case regarding the sources and exposure to 
PAH air contamination and its effect on human health in an urban/
industrial site in average-sized Brazilian coastal cities. In this context, 
the current study aims to investigate atmospheric PAH concentrations 
using PUF-PAS as a cost-effective tool to evaluate air quality in a coastal 
area, identify emission sources of PAHs along environmental gradients, 
and determine the carcinogenic potential of PAHs at sampling sites.

Materials and Methods

Study area
Macaé is a seaside city in the north of Rio de Janeiro State, Brazil 

(lat.: 22o22ʹ33ʺS, lon.: 41o46ʹ30ʺO) (Figure 1A). It has 1,215.291 km2 
and 23 km of coastline (IBGE, 2019). It is part of the Macaé River 
Basin, located between the Serra do Mar mountains and the Atlan-
tic Ocean (Freitas et  al., 2015). The city’s water supply derives from 
the Macaé River Basin, which drains an area of 1,765 km2 and flows 
for around 136 km until it reaches the Atlantic Ocean (Barroso and 
Molisani, 2019). Since the 1940s, this river basin has been suffering 
from environmental degradation because of deforestation, wood ex-
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traction, and agricultural activities, especially coffee and sugar cane 
production (Ramires, 1991; Barros Júnior et al., 2018). These impacts 
increased with the intensification of oil companies’ activities since the 
early 1970s and were worsened by unplanned urban growth (Silva, 
2020; Silva and Leal, 2020).

Macaé’s economy relies on oil activities, being part of the Campos 
Basin (Petrobras, 2019). The latter is the largest sedimentary basin and oil 
reserve in Brazil, operating with 44 offshore prospect fields and 591 pro-
ductive wells. Additionally, 19.7 million cubic meters of natural gas from 
Campos Basin are processed in plants in Macaé, which categorize this 
city as the country’s largest national gas processor. According to the Bra-
zilian Petroleum National Agency (ANP or Agência Nacional do Petróleo 
in Portuguese), during the past 5 years, Macaé has accumulated around 
600 million US dollars in royalties, with the lowest income being in 2016 
at US$ 73 million and the highest in 2018 at US$ 149 million (ANP, 2019).

Passive air sampling deployment
The use of the PUF-PAS technique is a simple and cheap method to 

monitor atmospheric organic contaminants at several sampling sites si-
multaneously (Prats et al., 2022; Anh et al., 2020). Passive samplers are 
stainless-steel chambers consisting of two domes with diameters of 30 and 

20 cm, allowing air to flow through a 2.5-cm gap between them (Figures 
1B-1D). They were designed to protect PUF disks from direct meteoro-
logical conditions, such as precipitation, windy conditions, and UV radia-
tion (Shoeib and Harner, 2002). For each passive sampler chamber, a PUF 
disk (dimensions: 14 cm diameter; 1.35 cm thick; surface area: of 365 cm2; 
volume: 207 cm3; density: 0.0213 g.cm-3; TISCH Environmental, Cleves, 
OH, USA) was fixed inside. Previously, PUF disks were preextracted with 
acetone and petroleum ether (Tedia High Purity Solvents, Fairfield, OH, 
USA) in an automatic Soxhlet extractor (Extraction System B-811; Büchi, 
Switzerland) and stored in glass recipients sealed with Teflon.

The sampling campaign was conducted in Macaé city and its sur-
roundings during the spring/summer period, from October 2018 to Jan-
uary 2019. PUF-PAS samplers were deployed at six sampling sites (P01–
P06) along a spatial transect, including urban, industrial, and background 
sites. Urban areas (P01, P03, and P04), urban/industrial areas (P02), and 
natural preservation areas (P05 and P06) represented the main scenarios 
of the city. PUF disks were deployed for a period of 90 days and then 
stored at -20°C until analysis. Additionally, three field blanks were sam-
pled to monitor possible transport and storage contamination. PAS pro-
cedure details for PUF samplers have been extensively reported elsewhere 
(Pozo et al., 2012; Harner et al., 2013; Guida et al., 2018).

 
Figure 1 – (A) Details of PUF-PAS deployment at sampling sites in Macaé city and surroundings (Rio de Janeiro, Brazil). (B and C) Sampling sites of PUF-
PAS (photo: the author). (D) Schematic illustration of PUF-PAS design.
P01: Downtown; P02: NUPEM/UFRJ; P03: IFF; P04: Alto da Glória; P05: Natural Municipal Atalaia Park; P06: Santana Island.

http://g.cm
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Analytical procedure
PAHs were identified by a comparison between the measured mass 

spectra and retention times of reference PAH standards. Target PAHs 
were naphthalene (Naph); 1-methylnaphthalene (1-MN); 2-methyl-
naphthalene (2-MN); acenaphthylene (Acy); acenaphthene (Ace); flu-
orene (F); dibenzothiophene (DBT); phenanthrene (Phe); anthracene 
(Ant); fluoranthene (Fl); pyrene (Pyr); benzo[a]anthracene (B[a]Ant); 
chrysene (Chr); benzo[b]fluoranthene (B[b]Fl); benzo[k]fluoranthene 
(B[k]Fl); benzo[e]pyrene (B[e]P); benzo[a]pyrene (B[a]P); perylene 
(Per); indeno[1,2,3-cd]pyrene (I[123cd]P); dibenzo[a,h]anthracene 
(Db[ah]Ant); and benzo[g,h,i]perylene (B[ghi]Per).

PAH quantification consisted of a linear calibration curve, regard-
ing area versus concentration, for six different concentrations (from 10 
to 250 ng mL-1), using an analytic standard solution: PAH surrogates + 
Terphenyl D14 + Isooctane.

To monitor possible contaminations during transport and storage, 
three field blanks were collected at random sites during the sampling 
campaign. Moreover, an analytical blank was also included for each sam-
ple batch to assure analytical quality. All glassware was previously cleaned 
with water-soap-water, acetone, dichloromethane, and n-hexane to avoid 
analytical interferences. Prior to exposure, PUF disks were washed in 
running water, extracted with acetone, dichloromethane, and n-hexane, 
and finally stored in pre-cleaned glass recipients sealed with Teflon® tape.

Samples were spiked with labeled PAHs as surrogates (D8-Naph-
thalene, D10-Acenaphthene, D10-Phenanthrene, D12-Chrysene, and 
D12-Benz[a]pyrene) and then extracted by the automatic Soxhlet sys-
tem (Extraction System B-811) with 150 mL of petroleum ether and 
1 mL of isooctane (Tedia High Purity Solvents) in a warm extraction 
program, 40 min of extraction followed by 20 min of rinsing for each 
solvent. After extraction steps, samples were concentrated under a gen-
tle nitrogen flow until ~5 mL. The extract was cleaned-up in a glass 
column with sodium sulphate and activated neutral silica. The cleaned 
extracts were eluted with n-hexane and blown down to 0.5 mL under 
a gentle N2 flux. Terphenyl D14 (Sigma-Aldrich Corp., Bellefonte, PN, 
USA), at 1 μg/mL, was added as an internal standard before analysis.

The analysis was conducted on a gas chromatograph (Agilent 7890, Palo 
Alto, CA, USA) equipped with a capillary silica column (HP-5MS, 60 m, 250 
μm, 0.25 μm) and a mass spectrometry detector (Agilent 5975), operated in 
electronic impact (EI) ionization and selected ionization mode (SIM).

Atmospheric PAH calculation
To calculate PAH air concentration and convert data to the most 

usual unit (ng m-3), we assumed a PUF sampling rate (R) of 5 m3/day, 
defined by Harner et al. (2013), which represents air mass sampled per 
day. This rate was defined by the first study to calibrate and use PUF 
samplers for polycyclic aromatic compounds, including PAHs, alkylat-
ed PAHs, and dibenzothiophenes, and compare the results with those 
from high-volume air samplers.

The calculation for each sample site was based on exposure time (in 
days) and the concentration of individual PAHs, using the Equation 1:

[  ] PAHair = PAHind / (R × Days) (1)

Where:
[  ] PAHair: the atmospheric PAH concentration (ng.m-3);
PAHind: the individual PAH concentration in each sample (ng/PUF);
R: the sampling rate;
Days: the exposure time.

Air mass back trajectory analysis
To investigate the influence of the atmospheric large-scale circula-

tion on PAH air concentrations over the Macaé coastline, 5 days (120 
h) back trajectories arriving at P06 (Santana Island) were calculated ev-
ery 48 h at 01:00 UTC using the HYSPLIT model (Draxler and Rolph, 
2012). Air mass back trajectories were calculated weekly at the P06 
sampling site during all PUF sampler exposure periods.

Benzo[a]Pyrene-equivalent
PAH properties may lead to acute or chronic effects, mutations, 

cancer development, and pulmonary function reduction (Talaska et al., 
2014; Gao et al., 2018; Mohammadi et al., 2022). In general, PAHs un-
dergo some transformation in human organs and tissues, producing 
carcinogenic intermediaries by enzymatic reactions (Talaska et  al., 
2014; Lee et al., 2017; Stading et al., 2021). As the most carcinogenic 
PAH compound is benz[a]pyrene, the results are also given in ben-
zo[a]pyrene-equivalent (BaPeq) for each sample, which is the sum of 
the concentrations of the seven carcinogenic compounds multiplied by 
their toxic equivalent factor (TEF) (IARC, 1987). The TEF points out 
the carcinogenic potential of each PAH when compared to benzo[a]
pyrene (Azeredo et al., 2014).

Quality control
Field blanks showed relatively high concentrations of selected 

PAHs such as naphthalene (0.23–0.34 ng m-3), 1-methylnaphthalene 
(0.12–0.18 ng m-3), 2-methylnaphthalene (0.07–0.10 ng m-3), and 
phenanthrene (0.03–0.05 ng m-3). On the contrary, most other indi-
vidual PAHs showed lower concentrations in the field blanks ranging 
from 0.0 to 0.34 ng m-3. Analytical blanks followed the same trend as 
field blanks, with higher concentrations of naphthalene (0.05–0.12 ng 
m-3), 1-methylnaphthalene (0.05–0.11 ng m-3), 2-methylnaphthalene 
(0.03–0.07 ng m-3), and phenanthrene (0.01–0.02 ng m-3).

To assure data quality, recovery was calculated using tests with 
a surrogate concentration of a labeled standard mixture. Individual 
PAH concentrations were calculated based on the recoveries of those 
labeled surrogates, considering the number of aromatic rings. The av-
erage recovery was 70%, where 65, 66, 80, and 74% were calculated 
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for two-, three-, four-, and five-membered ring PAHs, respectively. 
The limits of quantification (LOQ) were determined as the average 
concentration of blank fields corrected by the analytical blanks plus 
three times the standard deviation (Pozo et al., 2009). The LOQ val-
ues ranged from 0.07 (dibenzo[a,h]anthracene) to 146 ng m−3 (naph-
thalene). Concentration below the LOQ was not considered for fur-
ther discussion.

Results and Discussion

PAH air concentrations
In total, 21 PAHs were monitored in this study. Four of them 

(naphthalene, acenaphthylene, acenaphthene, and benz[a]pyrene) 
were below the LOQ in all samples. The total PAH air concentrations 
ranged from 0.3 to 3.3 ng m-3, with an average of 1.7 ng m-3. Basically, 
the PAH air concentrations observed in this study were much lower 
than in several urban and suburban areas around the world (Table 
1). Our results were only comparable to rural and remote sites (Me-
lymuk et al., 2012; Pozo et al., 2012; Harner et al., 2013; Peverly et al., 
2015; Schuster et al., 2015; Meire et al., 2019), even though the Macaé 
city is considered highly urbanized. Meteorological factors are also 
important pieces in understanding PAH profiles, showing a seasonal 
trend. Usually, during winter, PAHs atmospheric concentrations are 
higher because of intense heating systems, which is not Macaé’s situ-
ation, considering its tropical location, dry periods that lead to forest 
burning and less photolytic degradation (shorter daylight hours), as 
well as humid deposition due to drought events (Schuster et al., 2015; 
Pokhrel et al., 2018; Miura et al., 2019).

Regarding cities with a similar population (200,000–215,000 in-
habitants), such as Pokhara, Nepal (average of 14.1 ng m-3), Concep-
ción, Chile (average of 100 ng m-3), and Burgas, Bulgaria (average of 
13.8 ng m-3), Macaé city and surroundings (206,728 inhabitants) re-
veal much lower concentrations of PAH in the air (Pokhrel et al., 2018; 
Naydenova et al., 2022; Pozo et al., 2022). Concepción (Chile), a South 
American coastal city like Macaé, reported higher PAH concentrations 
(average of 100 ng m-3, maximum of 230 ng m-3) in the air than report-
ed here. This city has ~221,000 inhabitants and intense industrial ac-
tivities such as steel manufacturing plants, which probably raised PAH 
emissions locally (Pozo et al., 2022).

Three- to four-membered ring PAHs (low-molecular weight 
— LMW) were the most frequently (76%) detected in Macaé city 
(Figure   2). Among them, phenanthrene (0.5 ng.m-3), anthracene 
(0.5 ng.m-3), and fluoranthene (0.7 ng.m-3) showed the highest air 
concentrations (Figure 3). This PAH profile is similar compared to 
other studies around the world, such as those in Concepción, Chile, 
Mexico City, Mexico, Tuscany Region, Italy, Manila, Philippines, 
Dalian, China, and Seoul, Korea, where three- and four-membered 
ring PAHs were the most frequently detected groups, generally 
above 90% contribution to the total PAH contamination (Santiago 
and Cayetano, 2007; Bohlin et al., 2008; Estellano et al., 2012; Pozo 
et al., 2012; Wang et al., 2019; Thang et al., 2020). LMW compounds 
are more abundant in passive sampling methods because they par-
tition in an easier way than high-molecular weight (HMW) PAHs, 
which have lower volatility (Pozo et al., 2012).

The highest total PAH air concentration (3.3 ng m-3) was detect-
ed in Santana Island (P06), a well-preserved island that is part of an 

Table 1 – Atmospheric PAH concentrations at worldwide cities and locations. 

aTotal PAH; bPAH detected method; cPopulation number; 1(13-15) PAH; 2(16-18) PAH; 3(19-21) PAH; *average value; PUF: polyurethane foam disks; Hi-vol: active 
high-volume air sampling; LDPE: low-density polyethylene sampling.

World cities TPAHa Methodb Popul.c References
Manila, Philippines 41-170 PUF 1,780,000 Santiago and Cayetano (2007)1

Mexico City, Mexico 6.1-180 PUF 8,918,653 Bohlin et al. (2008)1

Concepción, Chile 26-230 PUF 215,413 Pozo et al. (2012)1

Toronto, Canada 0.3-51 PUF/Hi-vol 2,731,571 Melymuk et al. (2012)1

Alberta, Canada 0.02-182 PUF 4,334,025 Harner et al. (2013)2

Alberta, Canada 0.03-210 PUF 4,334,025 Schuster et al. (2015)2

Chicago, USA 8.7-52 PUF 2,695,598 Peverly et al. (2015)2

Santiago de Cali, Colombia 25-66 PUF 2,754,078 Álvarez et al. (2016)1

Kathmandu, Nepal 6.4-29 PUF 1,442,271 Pokhrel et al. (2018)1

Pokhara, Nepal 6.8-29 PUF 200,000 Pokhrel et al. (2018)1

Hetauda, Nepal 4.1-38 PUF 84,775 Pokhrel et al. (2018)1

National Parks, Brazil 0.70-90 LDPE - Meire et al. (2019)3

Burgas, Bulgaria 14* Hi-Vol 206,728 Naydenova et al. (2022)
Concepción Bay, Chile 1-2 Hi-vol - Pozo et al. (2022)1

Macaé, RJ, Brasil 0.3-3.3 PUF 251,631 Present study3
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environmentally preserved area (APA — Área de Preservação Ambi-
ental), which suggests different emission sources (Stogiannidis and 
Laane, 2015). Ship navigation routes, their proximity to the continent’s 
coastline, and the lighthouse energy generator may influence the PAH 
profile at this site (Drotikova et al., 2021). The high concentration of 
1-methylnaphthalene (0.4 ng m-3) reported at Santana Island may in-
dicate diesel combustion sources (Stogiannidis and Laane, 2015), re-
inforcing the probable role of ship traffic frequency in Macaé coastal 
waters and fuel combustion in the lighthouse generator.

As an Atlantic Forest Fragment, the P05 site is protected by an exu-
berant vegetation canopy (235 hectares) and is relatively far away from 
the urban perimeter, which probably explains why it shows the lowest 
air concentration of total PAH (0.3 ng m-3). Phenanthrene (0.15 ng.m-3) 
and pyrene (0.13 ng.m-3) were the PAHs most frequently reported at this 
site. Naphthalene (0.08 ng.m-3) was also detected at site P05 but was be-
low LOQ limits. The presence of these light PAHs (two and three rings) 
at this site could be linked to biogenic origins, associated with termite 
nests and plant secondary metabolites such as terpenes (Wilcke et al., 
2000; Krauss et al., 2005). Wood and soil digestion by termites may pro-
duce PAHs and release these compounds into the environment (Krauss 
et al., 2005). The pyrene concentration in this site is comparable with the 
concentration of the same compound in Costa Rica, 0.003–0.64 ng m-3 
(Daly et al., 2007), a similar environment in a tropical region. Moreover, 
several studies have pointed out the biogenic origins of PAHs in abiotic 
environmental matrices worldwide, especially in Natural Conservation 
Units (Wilcke et al., 2000; Wilcke et al., 2003; Meire et al., 2019).

Total PAH air concentrations between the highest and lowest values are 
associated with vehicle emissions (fossil combustion) in highly populated 
urban areas (P01, P02, P03, and P04), close to important roads, showing 
high levels of phenanthrene, anthracene, and fluoranthene. The highest 
concentration among these sites (2.1 ng m-3) is not only in an urban area 
but close to an industrial area as well (P02). Its PAH profile indicates an 
emission mixture by the presence of phenanthrene (a petrogenic source), 
pyrene and fluoranthene (biomass burning sources) and benz[e]pyrene (a 
pyrolytic source) (Stogiannidis and Laane, 2015; Alani et al., 2021).

 Figure 3 – PAH individual air concentration in each sample site. Compounds: 1-methylnaphthalene — 1-MN; 2-methylnaphthalene — 2-MN; fluorene — F; 
dibenzothiophene — DBT; phenanthrene — Phe; anthracene — Ant; fluoranthene — Fl; pyrene — Pyr, benz[a]anthracene — B[a]Ant; chrysene — Chr; 
benz[b]fluoranthere — B[b]Fl; benz[k]fluoranthere — B[k]Fl; benz[e]pyrene — B[e]P; perylene — Per; indeno[1,2,3-cd]pyrene — I[123cd]P; dibenzo[a,h]
anthracene — Db[ah]Ant; benz[g,h,i]perylene — B[ghi]Per.
P01: Downtown area; P02: NUPEM/UFRJ; P03: IFF; P04: Alto da Glória; P05: Natural Municipal Atalaia Park; P06: Santana Island. 

 
Figure 2 – Atmospheric PAH profile along spatial transects in Macaé 
city pointing out three- to four-membered rings compounds as the most 
abundant at sampling sites. 
P01: Downtown area; P02: NUPEM/UFRJ; P03: IFF; P04: Alto da Glória; P05: 
Natural Municipal Atalaia Park; P06: Santana Island.



Euzebio, C.S. et al.

600
RBCIAMB | v.57 | n.4 | Dez 2022 | 594-605  - ISSN 2176-9478

Figure 4 – The air-back trajectory analysis (HYSPLIT model) at the P06 site (Santana Island) over October 29 and November 2018, and January 8, 2019.

PAH ratio profile
Different emission sources are usually associated with variations 

in the composition and concentration of PAHs. To identify them, 
the most common method is the molecular diagnostic ratio (MDR) 
analysis, which is calculated using ratios of similar properties of PAHs 
(Tobiszewski and Namiésnik, 2012). Some pairs of PAHs were used to 
calculate the MDR and to infer PAH sources, though this tool is not 
completely accurate because many factors may influence the PAH pro-
file (Schuster et al., 2015). Atmospheric samples usually have low con-
centrations of PAH compounds that have different degradation rates, 
which could change PAH composition (Schuster et al., 2015; Balmer 
et al., 2019; Gbeddy et al., 2020).

To differentiate petrogenic sources from pyrogenic sources, Anthra-
cene (Ant)/Anthracene + Phenanthrene (Phe) (petrogenic ≤ 0.1 and 
pyrogenic > 0.1) and Fluoranthene (Fl)/Fluoranthene + Pyrene (Pyr) 
(petrogenic ≤ 0.5 and pyrogenic > 0.5) ratios were both used in this study 
(Khalikov et al., 2018; Ambade et al., 2022). Moreover, these LMW PAHs 
were the most abundant compounds in our PUF samples. In general, Ant/
Ant + Phe ratios showed values lower than 0.1 (P01, P02, and P06), while 
Fl/Fl + Pyr ratios were around 0.5 (P01, P02, P03, and P04), indicating 
mainly petrogenic PAH sources. These results could be partly explained 
by fossil fuel combustion sources in Macaé city and its surroundings, es-
pecially downtown and at industrial sites. Indeed, petrogenic sources are 
the major contributor to atmospheric PAH in Macaé for most samples 
(P01, P02, and P06), even though pyrolytic sources were also reported 
for P03 and P04 sites. As PAHs are emitted as complex mixtures of com-
pounds and may travel long distances, establishing their sources accu-
rately is not trivial. The influence of pyrolytic sources may be justified by 
waste burning, which is still a common practice in communities with in-

appropriate waste collection. Moreover, the proximity of the city to rural 
areas, where biomass combustion occurs, may also drive the PAH levels 
towards the pyrolytic origin. The P05 site had concentrations below the 
LOQ and was not considered for source determination in this study.

Air mass back trajectory analysis
The air-back trajectory analysis performed on the 5-day back tra-

jectories (Figure 4) unveiled that the trajectories arriving at the P06 
site (Santana Island) basically come from the south and southwestern 
origins with purely Atlantic Ocean influences during the early expo-
sure weeks (October). East and northeast airflow back trajectories 
also reached the Macaé coast with a major maritime influence (No-
vember). A minor contribution of west and southwest back trajectories 
was also identified, arriving at the P06 site as high altitudinal airflows 
(500–1,000 m above sea level — m.a.s.l.). Despite marine first origin 
(open Atlantic Ocean), the continental influences were minor, repre-
sented by north and northeast trajectories that stemmed from Espírito 
Santo State coastline and surroundings before reaching the sampling 
site (December and early January). Moreover, south trajectories were 
also identified coming from the Argentine coastline. The exposure of 
Macaé city, as a whole, to large-scale marine airflows (south and the 
eastern Atlantic Ocean origin), may partly explain the low atmospheric 
PAH concentrations at all monitored sampling sites in this study.

Benzo[a]pyrene-equivalent
Although the PAH air concentrations are considered low in Ma-

caé, probably due to marine air mass influence, some scenarios could 
lead to toxicological concerns for humans. BaPeq ranged from 0.02 to 
0.10 ng m-3 (Figure 5), indicating relatively low carcinogenic potential.
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Site P05 did not show carcinogenic compounds above the LOQ and 
was not considered for results. In this case, dibenzo[a,h]anthracene was 
the most abundant and the only carcinogenic compound occurring in 
almost all field sample sites, ranging from 0.02 to 0.07 ng m-3. The highest 
BaPeq were found at the sample site P02, in a highly populated and vul-
nerable community with waste burning, close to an important road and 
an industrial complex. P02 was the only sample site where six of the sev-
en IARC carcinogenic compounds were found and shows a profile that 
indicates many emission sources (petrogenic, pyrolytic, and biomass 
burning). The lowest BaPeq was found in the most preserved area (At-
lantic Forest — P05), showing the importance of vegetation in the con-
trol of PAH dispersion, especially for carcinogenic potential compounds.

 
Figure 5 – Carcinogenic potential of each sample site in Macaé, RJ, 
regarding benzo[a]pyrene-equivalent parameter, in ng m-3. 
P01: Downtown area; P02: NUPEM/UFRJ; P03: IFF; P04: Alto da Glória; P05: 
Natural Municipal Atalaia Park; P06: Santana Island.

Conclusions
In total, 17 PAHs were considered to calculate total PAH con-

centrations. Results show low concentrations, comparable to rural 
sites around the world, even though Macaé is a highly urbanized 
city. These results may be justified by the proximity to the ocean, 
where the air mass coming from the sea usually disperses air pol-
lutants. The sampling period, during the summer, is another reason 
for low PAH concentrations, as it is a rainy season, decreasing forest 
burning and increasing scavenging from the atmosphere. Moreover, 
the summer season may increase photolytic PAH degradation due 
to longer daylight periods. Establishing a source for PAHs is not 
simple, because PAHs are complex compounds and may be present 
in samples far away from the sources. Petrogenic sources seem to 
be the major contributor to atmospheric emissions, especially from 
fossil fuel combustion, with some influence from pyrolytic sourc-
es. Background PAH concentrations do not mean that there is no 
carcinogenic potential, indicating no direct dependence on PAH air 
concentration levels. The BaPeq indicates higher concentrations of 
carcinogenic compounds in the most urbanized/industrialized ar-
eas. Populations living close to important roads, traffic workers, and 
people with waste burning habits are the most exposed and may suf-
fer the most from atmospheric pollution consequences. The study 
indicates that urban/industrial areas raised human exposure to car-
cinogenic chemicals locally.
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