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A B S T R A C T 
Fire has always exerted a great attraction on humans. Fires generally 
provide social and environmental impacts at the places where they 
occur. Several Brazilian localities, especially in the driest months of the 
year, are more susceptible to this phenomenon. In this paper, an index 
able of classifying levels of fire risk in areas geographically located in 
Brazil. This paper presents an index capable of classifying fire risk levels 
elaborated from neuro-fuzzy systems. Data from the municipality of 
Sorocaba were used to test the proposed models. The results obtained 
by this index are promising, reaching values of mean absolute error 
below 3% when applied in the prediction of the risk of fire for the 
maximum period of up to 3 days. The proposed index can be used as 
a tool to support and assist various research agencies or institutes that 
need to identify the possibility of burning, corroborating the measures 
to reduce atmospheric emitters and meeting Goal 15 of Agenda 30 
as defined by the UN in 2015, which aims to stimulate conservation 
actions and the recovery and sustainable use of ecosystems.

Keywords: fuzzy modeling; forecast model; machine learning; neuro-
fuzzy model; artificial neural networks.

R E S U M O
O fogo sempre exerceu grande atração sobre os seres humanos. 
As queimadas, de maneira geral,  proporcionam impactos sociais e 
ambientais nos locais onde ocorrem. Diversas localidades brasileiras, 
especialmente nos meses mais secos do ano, estão mais suscetíveis 
a esse fenômeno. O estudo e o monitoramento do risco do fogo são 
uma poderosa ferramenta adotada no mapeamento e sensoriamento 
de áreas afetadas ao longo do território brasileiro e em outras partes 
do mundo. Este trabalho apresenta um índice para classificar os 
níveis de risco de fogo, elaborado com base nos sistemas neuro-fuzzy. 
Dados da cidade de Sorocaba foram utilizados para testar os modelos 
propostos. Os resultados obtidos mostram-se promissores, alcançando 
valores referentes à média de erros absolutos abaixo de 3%, aplicados 
na previsão do risco de queima pelo período máximo de até três dias. 
O índice proposto poderá ser utilizado como ferramenta de apoio 
e auxílio a diversos órgãos ou institutos de pesquisa que necessitam 
identificar a possibilidade de ocorrência de queimadas. Pode, assim, 
colaborar nas medidas para a redução de emissores atmosféricos, de 
modo a satisfazer o objetivo 15 da Agenda 30 definido pela Organização 
das Nações Unidas em 2015, o qual visa estimular ações de conservação, 
recuperação e uso sustentável de ecossistemas, especialmente. 

Palavras-chave: modelagem fuzzy; modelo de previsão; machine 
learning; modelo neuro-fuzzy; redes neurais artificias.
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Introduction
In recent decades, fires have intensified throughout Brazil. This phe-

nomenon has caused the emission of gases and pollutants into the atmo-
sphere, contributing to changes in air quality and climate, influencing the 
quality of life of the population, and contributing to the occurrence of 
health problems in countless human beings. Fire has also influenced en-
vironmental patterns and processes worldwide by altering the distribu-
tion and structure of vegetation and creating new cycles of carbon emis-
sions that directly affect the climate across the planet (Malmström, 2010). 

The numerous impacts and alterations caused by fires are present 
in changes in soil characteristics that lead to the death of living beings, 
interfering with the environmental balance and causing incalculable 
environmental damage.

The analysis and monitoring of fire risk is a powerful tool adopted 
for mapping and sensing affected areas throughout the Brazilian terri-
tory and worldwide. Studies on the classification of indexes as fire risk 
indicators began in the mid-1930s in Canada and the United States. 
Through these studies, it was possible to divide indexes into cumulative 
and non-cumulative (Setzer et al., 2019). 

Non-cumulative indexes are based only on the weather conditions 
prevailing on the day of data collection, while cumulative indexes take 
into account the climatic conditions of a succession of days for a maxi-
mum period of to 30 days (Soares and Batista, 2007).

In Brazil, since the mid-1960s it has been understood that adopt-
ing this type of resource is essential as a source of learning in order to 
create quick and effective actions against possible occurrences of fires 
caused by various natural or non-natural actions. The first classifica-
tion of the level of fire risk was elaborated in Brazil in 1965, being mo-
tivated by the effect caused by the great fire of 1963 on Monte Alegre 
farm (Setzer et al., 2019).

Initially, a system whose main purpose was to serve as a form of 
protection against the occurrence of fires in localities of the state of 
Paraná was created by the company Klabin S.A, which was the most 
affected by the fire of 1963. Based on the information consolidated by 
Klabin, it was possible to establish one of the largest databases compris-
ing data related to the occurrence of fires in Brazil. 

Since the beginning of the 1980s, the National Institute for 
Space Research (INPE, acronym in Portuguese) has carried out 
daily activities related to the monitoring of fires throughout South 
America and especially Brazil. In 1998, the Satellite Division and 
Environmental Systems were created by INPE with the aim of de-
veloping, improving, and creating methods to estimate fire risk in a 
timely manner (Setzer et al., 2019). 

In recent years, environmental issues have become increasingly 
evident worldwide due to the importance of the subject in association 
with the search for environmental preservation and ways to obtain an 
increasingly sustainable development. 

After the consolidation of Agenda 21, the United Nations (UN) es-
tablished in 2015 the Agenda 30, which refers to an action plan for the 

planet, for people, and for the future, consisting of 17 Sustainable De-
velopment Goals and 169 targets. Among its 17 goals, Goal 15 stands 
out, addressing how to protect, restore, and promote the sustainable 
use of terrestrial ecosystems, as well as how to manage the sustainabili-
ty of forests to combat desertification, in order to stop and reverse land 
degradation and loss of biodiversity (supported by item 15.1). This 
item emphasizes the need to establish the conservation, recovery, and 
the sustainable use of ecosystems (especially forests), and stop land 
degradation by 2020 (ONU, 2015).

Establishing a way of learning and creating new knowledge 
through the classification of the risk levels of occurrence of fires over 
a period of days in the most diverse geographic areas of Brazil has be-
come essential. 

Thus, with the purpose of developing, improving, and creating 
methods to estimate fire risk in a timely manner, this paper presents a 
predictive model to establish a way of classifying fire risks in the Bra-
zilian territory.

Literature review
The occurrence of fires, as well as their propagation, has a strong 

relationship with climatic factors, which influence the development of 
hotspots, especially in certain areas or regions of Brazil. 

In this context, the use of meteorological data as a source of 
analysis has become an important tool for the elaboration of a pre-
vention plan. 

The adoption of preventive measures through the use of an in-
dex capable of reliably classifying the levels of fire risk is essential 
for planning prevention measures more efficiently, as well as adopt-
ing quick and effective actions in firefighting activities (Soares and 
Batista, 2007). 

When thinking of how to estimate the possible occurrence of fires 
or the presence of fire risk, we are referring to the principles of the me-
teorological estimation called “fire risk” applied to vegetation burning. 
Burnings can be the result of the lack of rainfall or precipitation, which 
is caused by different types of climatic factors and decreases soil mois-
ture (Soares and Batista, 2007).

To estimate or predict fire risk, we must initially consider the count 
of consecutive days without rain in a given location for the maximum 
amount of 120 consecutive days. This is a basic and simple way of at-
tempting to establish a factor that allows stating that the possibility of 
occurrence of a fire is higher due to the lack of rainfall. 

Other factors can be adopted in the creation of a method or in-
dex. Among them, the number of previous days that are analyzed in 
a given study to predict what may occur in the future is highlighted. 
According to the number of days, it is possible to identify values re-
lated to the number of days accumulated without rainfall, the volume 
of daily rainfall, and the rainfall accumulated for one or more days 
in relation to the presence of a previously observed fire risk (Setzer 
et al., 2019). 
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These factors are considered in the calculation and classification 
of fire risk. The values related to one or more factors must represent a 
period from 1 to 30 days. 

Considering different studies that allowed us to design indicators 
related to the occurrence of fires, we highlight those shown in Table 1.

The Observed Fire Risk Index (RFO, acronym in Portuguese) was cre-
ated by the Center for Weather Forecasting and Climate Studies/National 
Institute for Space Research (CPTEC/INPE, acronym in Portuguese) as a 
result of the analysis and recording of the occurrences of hundreds of thou-
sands of fires in the main biomes present in the Brazilian territory, as well as 
in other South American countries. Its first version was applied to estimate 
the observed fire risk, which is dated from 2002 (Setzer et al., 2019). 

Since then, this index is considered one of the main tools and 
sources of learning originating from the Forest Fire Monitoring Pro-
gram by INPE. The index can be easily accessed and consulted through 
the website: https://queimadas.dgi.inpe.br/queimadas/portal.

The CPTEC/INPE uses different satellites (sensors) on a daily basis 
in order to produce essential data that can help to identify the so-called 
“thermal radiation”, through which it is possible to recognize sources of 
high emission of radiation that are capable of causing a fire or that can 
be considered as a new heat source.

Methodology

Study area
The study was carried out in the municipality of Sorocaba, which 

stands out for being the fourth largest population in the countryside of 
the state of São Paulo and having the largest population in the south-
eastern region of the state, with approximately 695,000 inhabitants ac-
cording to IBGE (2021). The municipality has an area of 449,872 km2 
and is located 87 km away from the state capital. 

According to the Köppen climate classification, the climate is 
Cwa (subtropical), with mean temperatures of 37°C in summer and 
22°C in winter, as well as annual rainfall of approximately 1,297 mm.  

The relief is classified as wavy, being characterized by the presence of 
slopes and high mountains, and an average altitude of 632 meters. 

The highest altitude in the municipality (1,028 meters) is found at 
the headwaters of the Pirajibu River, Serra de São Francisco, close to 
the municipality of Alumínio, while the lowest altitude (539 meters) is 
found in the Sorocaba River valley. 

The original natural vegetation is formed by the Atlantic For-
est, with areas of dense ombrophilous forest consisting of Cerrado 
and secondary vegetation at various stages of succession. The mu-
nicipality of Sorocaba was selected as the study area based on the 
variation in the level of fire risk presented in recent years, especially 
in the period defined for this paper. Figure 1 shows the map of the 
municipality of Sorocaba.

Historical rainfall data combined with spatial data referring to 
the record of the presence of fire risk for the municipality of Sorocaba 
were submitted to the processing of the Observed Fire Risk Index. 
Figure 2 shows the distribution of the 565 fires recorded in the mu-
nicipality of Sorocaba. 

Regarding rainfall data, the presence of the EDEN (Pirajibu) 
weather station, located in the neighborhood of Eden, met the 
needs of this study. Regarding the historical fire record, the munici-
pality of Sorocaba presents an interesting variation of fire outbreaks 
per year among the 27 municipalities that comprise the metropoli-
tan region of Sorocaba. 

Model development
The Index of Level of Fire Risk in Brazil (ICRFB, acronym in Por-

tuguese) was developed based on the analysis of the occurrence of ob-
served fire risk and rainfall in the municipality of Sorocaba. 

Through the combination of data from the National Institute for 
Space Research and data from the National Institute of Meteorology, 
the necessary conditions to build the ICRFB were obtained. Figure 3 
highlights the sequence of processes and subprocesses used to build 
the ICRFB. 

Table 1 – Studies on fire risk indicators

Study Title Authors Type Origin Year

01 Development of a Forest Fire Risk Factor using Fuzzy 
Logic.

Isaac D. B. da Silva, Antonio C. F. 
Pontes Jr. Paper National 2011

02 Fire risk calculation method from the INPE program 
(2019).

Alberto W. Setzer, Raffi A. Sismanoglu, 
José G. M. dos Santos Paper National 2019

03 Assessment of the performance of three algorithms for 
land use classification using free geotechnologies. Miqueias L. Duarte, Tatiana A. da Silva Paper National 2019

04
A hybrid neuro-fuzzy inference system-based 

algorithm for time series forecasting applied to energy 
consumption prediction.

Mohamed Ali Jallal, Aurora González-
Vidal, Antonio F. Skarmeta, Samira 

Chabaa, Abdeouhab Zeroual
Paper International 2020

Source: elaborated by the authors based on Silva and Pontes (2011); Duarte and Silva (2019); Setzer et al. (2019); Jallal et al. (2020).

https://queimadas.dgi.inpe.br/queimadas/portal
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Source: adapted from Lourenço et al. (2014).
Figure 1 – Map of the municipality of Sorocaba.

Figure 2 – Annual distribution of fires that occurred in the municipality of 
Sorocaba.

Figure 3 – Flowchart – Processes to build the ICRFB.Variable selection
After understanding the elements that form the structure of the in-

dexes presented above, the input variables selected for this study were 
defined, namely: day without rainfall and rainfall, which store data re-
lated to the daily occurrences of the presence or absence of rainfall. 

The variable Observed Fire Risk was defined as the component 
responsible for presenting the result, being established based on the 
studies carried out by Lemos (2012). 

However, if only these variables were used, the result would pos-
sibly be biased and not concrete due to the existence of values in the 
pre-established variables that only address the occurrence of fire and 
rainfall in the study area. 

The absence of these phenomena was not identified. Thus, it be-
came necessary to establish the other input variables that would be 
combined with the ones that were already defined, in order to increase 
the reliability of the process of analysis of the values in the databases.  

During the research, analysis, and simulations, new variables were rec-
ognized precisely to address issues related to the non-occurrence of 
fires and rainfall, namely: presence of rainfall and presence of fire. 

The databases did not present any data related to the non-occur-
rence of these two natural phenomena in their observations. There were 
only observations regarding fire or rainfall that occurred in the munic-
ipality of Sorocaba for each day in 2018, 2019, and 2020.

The creation of these variables was conditioned to the need to offer 
a form of assistance for the implemented models that would ensure 
greater assertiveness in defining the result to be obtained, considering 
all the possibilities for each of the days under analysis, and knowing 
that there could be the two phenomena, only one phenomenon or none 
of them on the same date. 
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Given the needs highlighted above, the relevant variables were de-
fined, as shown in Table 2.

Database
The data was obtained from the fire database of INPE, which was 

made available by its Fire Program. Only data related to the munici-
pality of Sorocaba from the period of days between 01/01/2018 and 
12/31/2020 were selected. 

These data represent the occurrence of fire records identified 
throughout each day. Table 3 describes the representation of each vari-
able in the fire database of INPE.

The database of daily rainfall kept by INMET was also used, which 
is associated with the Pirajbu weather station. Table 4 describes the 
variables selected from this database.

These data sets can be obtained directly by downloading the files 
corresponding to a period between 30 and 365 days, preferably in the 
format of values separated by commas.

Database preparation
As only the data of fires related to the municipality of Sorocaba 

stored in the database of INPE should be identified and there was 
the need to combine the rainfall data existing in the database of 
INMET, it was necessary to prepare the relevant databases for sub-
sequent use. 

For this stage, the Microsoft SQL Server 2019 Database Manage-
ment System (DBMS) was used, following the steps presented in the 
methodology by Wong (2017). Thus, the data of fires in 2018, 2019, 
and 2020, in combination with the data referring to daily rainfall, were 
identified. Figure 4 provides a summary of the database preparation 
process. A brief summary of each step is described below. 
• Raw data: data in the fire database of INPE that presented records 

of the fire outbreaks in every state and municipality in Brazil be-
tween 2018 and 2020 totaled more than 11 million records. Among 
them, 560 records related to the study area in association with the 
rainfall data found in the database of INMET were selected;

Table 2 – Description of selected variables

Name of variable Description Value range Unit Type

DayWithoutRainfall Represents the number of days without rainfall. 0-120 Days Input

RainfallonthePreviousDay Represents the amount of rainfall from the previous day. 0-120 Milimeters Input

AccumulatedRainfallonthePreviousThreeDays Represents the total amount of rainfall accumulated in the 
previous three-day period. 0-120 Milimeters Input

PresenceofRainfall Represents the identification of the presence or absence of 
rainfall. 0 or 1 True/False Input

PresenceofFire Represents the identification of the occurrence or not of 
a fire. 0 or 1 True/False Input

ObservedFireRisk Represents the value related to the Observed Fire Risk for 
1 or 3 days. 0.1-1 Decimals Output

Table 3 – Description of the variables that make up the INPE Fireworks 
Database.

Name of variable Description

Datehour Displays the reference time of the passage of the 
satellite in Greenwich Mean Time (GMT);

Satellite Identifies the name of the algorithm used and 
references the satellite that provided the image;

Country/State/
Municipality

Political-geographical entities in the Brazilian 
territory where the presence of fires were identified;

Biome
Name of the biome according to the Brazilian 
Institute of Geography and Statistics (IBGE, 

acronym in Portuguese);

DayWithoutRainfall

Number of days without rainfall until the detection 
of the heat source, which are measured within 

the range of values between 0 (zero) and 120 (one 
hundred and twenty);

Rainfall

Rainfall accumulated on the day until the detection 
of the heat source, which is measured within the 

range of values between 0 (zero) and 120 (one 
hundred and twenty);

ObservedFireRisk

Represents the value corresponding to the Observed 
Fire Risk for the day of detection of the heat source, 

which is identified within the range of values 
between 0.1 (zero point one) and 1 (one);

Latitude / Longitude
Displays the geographic coordinates of the center 
of the pixel that contains a possible fire source or 

presence of heat above 47º C.

Source: INPE (2019)

Table 4 – Description of the variables of the rainfall database.

Name of 
variable Description

Days with 
Rainfall

Total of rainy days for the month referring to the 
precipitation date.

Monthly 
Rainfall

Total rainfall accumulated over the month according to the 
rainfall date.

Daily Rainfall Value referring to the rainfall volume identified for the date 
of rainfall.

Source: INMET (2021).
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Figure 4 – Steps of the database preparation process.

• Treatment of data:
• Cleaning: to input missing values, remove noise, and correct 

inconsistencies;
• Integration: to unite data related to fires and rainfall, forming a 

single data source. In this task, the non-occurrence of fires and 
rainfall was also considered;

• Reduction: to reduce the dataset to be analyzed, considering 
the occurrence of fire or rainfall according to the date, and not 
date and time;

• Transformation: to standardize data by establishing a specific 
format for the study; 

• Discretization: to reduce the amount of continuous values ex-
isting in some variables.

• Observations: Result of the treatment of data, from which 1286 ob-
servations were selected to be applied to the models. In addition, 
the correlation between the record of fires, fire risk, and rainfall for 
the same period of days was identified.

Cross validation
Cross validation is a technique used to evaluate the generalization 

capacity of a model from a dataset, being widely used in problems 
where the modeling purpose is prediction. It aims to estimate the accu-
racy of the model in practice based on performance and assertiveness 
in relation to a new dataset (Ling et al., 2019). 

One of the ways to divide these data is using the “holdout” method, 
which consists of randomly dividing the data into 70-30, that is, 70% 
of the data for the training step and 30% for the test or check steps. 
The  disadvantage of using this technique is that the portion of data 
selected for training, testing or checking may be very similar, and thus 
present a good evaluation of the model. 

However, when we put the model into production, the new data 
turns out to be very different from the data already known by the mod-
el, which generates bad results and practically makes this dataset unus-
able (Wong, 2017). 

Another way of dividing the data is called “cross validation”, which 
allows avoiding problems of randomness. Thus, variance can be avoid-
ed and the results are more robust. 

The only disadvantage presented by this technique is directly related to pos-
sible impacts regarding processing time and performance (Ling et al., 2019).  
If the database presents a large number of observations to be analyzed, 
cross validation may become a longer process in relation to the pro-
cessing time for the presentation of the results. 

For this study, the k-fold cross validation technique was used, 
where a number of k (folds = 5) represents the amount of data clusters 
created, considering four combined groups that form a single group 
selected for the stage of data training, while the remaining group is 
used in the checking stage. 

Out of the total of 1,286 observations identified in the stage of data 
preparation, 900 were distributed into five (5) groups consisting of 180 
observations that were randomly selected, not allowing for the use of 
observations that were previously selected to comprise this new group. 
Figure 5 shows how k-fold cross validation was developed, as well as 
how observations are separated into the four (4) training groups, to-
gether with one (1) checking group.

ANFIS model
The neuro-fuzzy model is called a hybrid model for establishing 

a relationship between the fuzzy inference system and neural net-
works, allowing the information to be trained and creating the rule 
bases automatically. 

This integration between the different techniques (neural net-
works, genetic algorithms, and fuzzy logic) allows creating a com-
putational system that incorporates human knowledge, being able to 
learn and adapt it to the environment according to uncertainties and 
inaccuracies, which is known as adaptive neuro-fuzzy inference system 
(ANFIS). 

The Takagi-Sugeno fuzzy inference system represents a dy-
namic system or a control that associates a set of linguistic rules 
in the antecedent (“if ” part) with fuzzy propositions, while in 
the consequent (“then” part) functional expressions of the type 
and linguistic variables of the antecedent are presented instead 
of fuzzy sets, as used in the Mamdani model. The adaptive neu-
ro-fuzzy inference system (ANFIS) uses the methodology pro-

Figure 5 – 5-folds cross validation.
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posed by Takagi and Sugeno and can be divided into up to 5 layers, 
as shown in Figure 6.

Layers can be divided into linear and non-linear. The fuzzy logic is 
responsible for dividing these two blocks (non-linear and linear) (Cue-
vas et al., 2018). 

Layer 1: corresponds to the input of values defined according to the 
set of input variables (input pairs) established for the model that will 
be submitted to the ANFIS. This layer is formed by the membership 
function, which specifies the degree of membership of the values to 
satisfy the linguistic terms (Eq. 1). 

 (1)

Layer 2: corresponds to the logical operator of the fuzzy set, which 
assigns degrees of membership to each of the variables, being described 
by “linguistic variables” (Eq. 2).

  (2)

Layer 3: Calculates the normalized degree of activation of each 
node through the ratio between the applicability of the i-th rule (wi) 
and the sum of the applicability (Eq. 3).

   (3)

Layer 4: Multiplies the output of the 3rd layer with a function fi, 
establishing a linear combination for each existing value within the set 
of input pairs. The values (𝑝𝑖𝑞𝑖𝑟𝑖) represent the adjustable parameters 
that determine the response of the function (Eq. 4).

 (4)

Layer 5: Calculates the sum of all nodes from the previous layer 
(Eq. 5).

 (5)

The possibility of interaction between the existing layers in an AN-
FIS allows stating that the inference system has the same advantages 
compared to systems created by specialists (Mubarak et al., 2021).

The learning of the ANFIS system takes place through two sets of 
parameters directly involved in the training stage. One set is known 
as the antecedent variables, treated by constants that characterize the 
membership functions, while the other is known as the consequent 
variables, defined with linear functions applied to the output of the 
inference model. 

The structure of an ANFIS system involves the use of a vari-
able selection by determining the number of membership functions 
per variable and obtaining a set of fuzzy rules. When the amount 
of clusters for a given data set is not previously known, subtrac-
tive clustering is a fast and robust algorithm to obtain this number 
(Azad et al., 2019). 

In addition, this technique allows the location of the cluster 
center, thus obtaining membership functions and rules from these 
cluster centers. With this information, it is possible to generate a 
Takagi-Sugeno fuzzy inference system that models the behavior of 
the data.

Models for fire risk prediction
After preparing the database and selecting the variables that are 

relevant to the purpose of this paper, several models were elaborated, 
trained, and tested in order to be able to identify the most assertive 
ones regarding mean absolute errors, the lowest level of complexity in 
its elaboration, and the processing time related to the amount of pro-
cessed observations. Six different models were defined with the pur-
pose of predicting the occurrence of the observed fire risk from one (1) 
up to three (3) days. 

These models were named through a numerical sequence as Mod-
el 1, Model 2, Model 3, and so on, up to Model 6. Models 1, 2, and 3 
present the prediction of fire risk for 1 day, while Models 4, 5, and 6 are 
designed to predict fire risk for 3 days. 

In a practical way, the models present differences in their struc-
tures, that is, they do not have the same amount of input variables. 
This difference was established in order to identify changes in the be-
havior of each model, especially variations in the results. 

The equality existing in each model refers to the output variable. All 
models have a single output variable called fire risk. Tables 5, 6, and 7 
describe the structure of Models 1, 2 and 3, which were reused for the 
other models.

Results and Discussion
From the processing of the 1286 observations identified during 

the stage of data preparation, 386 observations (30% of the total) 
were randomly selected to comprise the data set conditioned to the 
training stage. 

Figure 6 – Typical architecture of an adaptive neuro-fuzzy inference system 
(ANFIS).
Source: adapted from Cuevas et al. (2018).
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Table 5 – Description of input and output variables selected in Model 1.

Name of variable Value range Unit Type

DayWithoutRainfall 0-120 Days Input

RainfallonthePreviousDay 0-120 Milimeters Input

AccumulatedRainfallonthePreviousThreeDays 0-120 Milimeters Input

PresenceofRainfall 0 and 1 True/false Input

PresenceofFire 0 and 1 True/false Input

ObservedFireRiskforOneDay 0.1-1 Risk level Output

Table 6 – Description of input and output variables selected in Model 2.

Name of variable Value range Unit Type

DayWithoutRainfall 0-120 Days Input

RainfallonthePreviousDay 0-120 Milimeters Input

AccumulatedRainfallonthePreviousThreeDays 0-120 Milimeters Input

ObservedFireRiskforOneDay 0.1-1 Risk level Output

Table 7 – Description of input and output variables selected in Model 3.

Name of Variable Value range Unit Type

DayWithoutRainfall 0-120 Days Input

RainfallonthePreviousDay 0-120 Milimeters Input

ObservedFireRiskforOneDay 0.1-1 Risk level Output

The other 900 observations were used in the cross validation pro-
cess, which established the five (5) groups consisting of 180 observa-
tions also randomly selected without repetition. These groups were 
submitted to the training and data checking stages for each of the six 
(6) models. 

The models were processed through the ANFIS hybrid model 
configured for the Fuzzy Inference System (FIS) applied to the sub-
tractive clustering method, being processed over 100 epochs within 
the MATLAB computing environment through the toolbox called 
AnfisEdit. 

The subtractive clustering method enabled better results in terms 
of data processing time due to its greater agility to read and process 
historical series that have more than four input items of data (Milan 
et al., 2021). 

Table 8 shows the results obtained for the models developed to 
predict the presence of fire risk for one (1) day right after the train-
ing and data checking stages, according to the 5-fold cross valida-
tion technique.

Through the results shown in Table 8, Model 1, formed by five (5) 
input variables, presented the lowest mean absolute error and the high-
est standard deviation compared to the other two models. 

This difference is caused by the amount of input data and their re-
spective value ranges. 

Table 9 shows the results referring to the models developed to 
predict the presence of fire risk for a maximum period of 3 days. The 
values were obtained at the end of the training and checking stages, 
according to the definitions of the 5-fold cross validation technique.

Based on the results shown in Tables 8 and 9, among the models 
created to predict the observed fire risk for one day, Model 3 was 
highlighted. 

This model stands out for its simplicity, being formed by a small 
structure consisting of the input variables “day without rainfall” and 
“rainfall on the previous day”, unlike Models 1 and 2, which consist of 
these and other input variables that did not initially exist in the data-
base, such as the variable “accumulated rainfall on the previous three 
days”, generated by calculating the sum of the rainfall volume of the 
three days prior to the date of analysis of the observed fire risk. 

During the processing of each model submitted to the fuzzy infer-
ence system through the MATLAB computing environment, different 
types of membership functions were used by the inference system in 
relation to the set of values existing in the input and output variables.

Figure 7 highlights the list of membership functions defined for Model 3.
Figure 7 shows that the second input variable (“rainfall on the pre-

vious day”) practically used only one membership function, unlike the 
first input variable (“day without rainfall”), which used three (3) Gauss-
ian membership functions for its set of values. 
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Table 8 – Summary of results – Models in the one-day period.

Models
Variables

Mean error Standard 
deviationInput Output

Model 1 5 1 0.02 0.05

Model 2 3 1 0.03 0.01

Model 3 2 1 0.03 0.01

Table 9 – Summary of results – Models in the three-day period.

Models
Variables

Mean error Standard 
deviationInput Output

Model 4 5 1 0.05 0.18

Model 5 3 1 0.05 0.01

Model 6 2 1 0.04 0.00

This behavior becomes evident when the values in each observation 
line selected by ANFIS present very close intervals, that is, the difference 
between these values is considered small. Thus, the same membership 
function ends up being used in the analysis and definition of results.

Regarding the output variable “observed fire risk for one day”, it 
uses the Takagi-Sugeno linear output function, making it possible to 
establish a pattern of recognition and presentation for each line of out-
put data recognized by the model. 

Figure 8 shows the surface graph established by the ANFIS hybrid 
model according to the combination of some input variables, day with-
out rain and precipitation existing in Model 3. 

As Model 3 stood out among the set of models implemented to 
predict the presence of fire risk for one day, the models developed for 
three days also presented a possible candidate, Model 6. 

Model 6 presented a mean absolute error of approximately 4%. It 
is worth mentioning that Model 6 is formed by the same set of input 
variables as Model 3. 

Soon after the execution of the training and checking stages, all 
models were submitted to the evaluation stage of the fuzzy inference 
system, whose purpose is to ensure that the results returned by the AN-
FIS hybrid model are close to the so-called real values. 

The evaluation process of the fuzzy inference system was car-
ried out using the command EvalFIS of the MATLAB software. This 
functionality enabled the validation of the structure of the fuzzy 
inference system by taking into account the set of rules established 
for its learning.

At the end of the evaluation, the EvalFIS tool presents a comparison 
between the real data used by the system and the output data obtained. 
This comparison creates a list containing the values of the calculated 
outputs resulting from the combination of the so-called real data to-
gether with the calculated data. Thus, it becomes possible to concretely 
recognize the output results that the inference system is returning. 

Figure 7 – Membership functions in Model 3.

Figure 8 – Surface graph – “day without rainfall” and “rainfall”.

Table 10 illustrates some values presented by the output variable 
“observed fire risk” for one day, which has real data, combined with 
the output generated after the evaluation of the fuzzy inference system 
belonging to Model 3.

Through the combination of the input variables together with the 
definition of the output variable “observed fire risk” for one or three 
days, it was possible to achieve the final objective of this study. Table 11 
shows the levels of classification and their respective value intervals.

From the definition of the classification of levels of fire risk and 
intervals of values, the fuzzy matrix was applied in order to identify the 
number of observations belonging to each level.

The fuzzy matrix enabled verifying the degree of assertiveness of 
the results, besides recognizing the values related to the statistical class-
es “sensitivity” and “specificity”. 

Table 12 presents the fuzzy matrix conceived from the levels of 
classification.

The statistical class of sensitivity helps to measure the ability to 
minimize false negatives, which is recognized as the ability to correctly 
identify observations that the model also correctly identified. 

However, the statistical class of specificity has the purpose of mea-
suring the negative values in the set of values returned by the model, 
which are also preestablished as negative. The values of each class range 
between zero (0) and one (1). 
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Table 10 – Variable “observed fire risk” combined with the calculated 
output.

ObservedFireRisk 
(real output)

ObservedFireRisk 
(calculated output)

Difference 
(module)

0.84 0.88 0.04

0.85 0.89 0.04

0.94 0.89 0.05

0.95 0.89 0.06

1 0.89 0.11

Table 11 – Classification of levels of fire risk. 

Level of Classification Intervals

Minimum [0; 0.15]

Low  (0.15; 0.40]

Medium (0.40; 0.70]

High (0.70; 0.95]

Critical (0.95; 1]

Source: adapted from INPE (2019).

Table 12 – Fuzzy matrix.

Minimum Low Medium High Critical

Minimum 0 0 0 0 0

Low 0 0 0 0 0

Medium 0 0 0 0 0

High 0 6 21 313 0

Critical 0 2 6 28 10

Table 13 – Results of the statistical classes of sensitivity and specificity.

Minimum Low Medium High Critical

Sensitivity 0 0 0 0.92 1

Specificity 1 1 1 0.40 0.90

Table 13 shows the values correlated between the level of classifica-
tion and the statistical class.

Through the values shown in Table 13, an analysis to examine the 
values returned from the execution of the fuzzy matrix in relation to 
the critical level of classification can be carried out. 

In this analysis, it is shown that that specificity was very close to 
one (1), while sensitivity reached the value of one (1). In general, the 
mean value for sensitivity and specificity was approximately 0.38 and 
0.86, respectively. These values were calculated right after the fuzzy ma-
trix was built. 

The set of values returned by these statistical classes belonging 
to each level of classification was taken into consideration. Thus, the 
sum of all values and their subsequent division was carried out ac-
cording to the levels of classification, in order to use them to build 
the fuzzy matrix. 

The results obtained through the confusion matrix show that Mod-
el 3 demonstrates a good ability to be able to specifically identify a 
value that was assigned to a classification but which actually should 
belong to another. 

The ability to correctly identify the observations that the hybrid 
model recognized as true can be considered correct in relation to its 
sensitivity to the “high” and “critical” levels of classification, based on 
the data set used to build the fuzzy matrix. 

Specificity also represented the low existence of negative values for 
the “minimum”, “low”, “medium”, and “critical” levels of classification, 
which present values close to one (1).

In short, Model 3 is the most suitable for use as a hybrid model to 
build a classification index of levels of fire risk in Brazil, reaching the 
goals proposed by this paper.

Conclusion
According to the models presented in this study, ways of assess-

ing the presence of fire risk were identified for the intervals of 1 or 3 
days applied to the municipality of Sorocaba, which can also be re-
produced in other locations around the world. The comprehension 
of behaviors, rules, and conditions that can cause the occurrence of 
natural phenomena, especially fires was predominant to establish a 
form of initial analysis of the data set selected for the study. 

The database preparation enabled a clearer definition of the scenar-
io to be worked on, that is, after data was processed, standardized, and 
ready to be recognized as observations, the path of application of the 
ANFIS hybrid model was defined. 

The results found become a valuable source of knowledge offered 
to the society in general, companies, and teaching or research institu-
tions regarding the definition of programs and public policies for the 
prevention, conservation, and combat of fires. 

The proposed model is prepared to learn based on its level of 
assertiveness and all the factors applied to it, which allow its repro-
duction in other studies and as a support tool to be applied in new 
public policies, together with expert systems, or simply as a new 
source of knowledge.

This study was limited to the use of spatial data provided by INPE 
related to fires and fire risk, which were combined with rainfall data 
provided by INMET, both related to the municipality of Sorocaba, to 
establish the prediction of the presence of fire for the maximum period 
of three days. 
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