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A B S T R A C T 
The wet areas of the Pantanal provide important services such as water 
and carbon storage, improved water quality, and climate regulation. 
Analysis and monitoring of vegetated land and precipitation on a regional 
scale using remote sensing data can provide important information 
for the preservation of the landscape and biodiversity of the region. 
Thus, the purpose was to analyze characteristics of the green cycle of the 
vegetated surface and to what extent the vegetated surface responds 
to the variability of precipitation in the Pantanal. The areas include the 
regions of Cáceres (CAC), Poconé (POC), and Barão de Melgaço (BAM) in 
Mato Grosso. Time series of accumulated precipitation (PPT) and NDVI 
(Normalized Difference Vegetation Index) were used for the period 
from 2000 to 2016, obtained on NASA’s Giovanni platform (National 
Aeronautics and Space Administration). The analysis of the wavelet 
transform was applied for NDVI data and there was cross-correlation 
analysis for PPT and NDVI data. The results showed that the highest 
correlation between PPT and NDVI was positive with a 1-month lag, 
but was significant with a lag of up to 3 months. The wavelet analyses 
showed that the largest wavelet powers occurred at the frequency 
between 0.5 and 1.3 years, i.e., the NDVI series presented the main 
variances on the approximately annual scale, indicating that these 
characteristics are important aspects of local phenology variability, such 
as cumulative green throughout the year and generalized senescence.
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R E S U M O
As áreas úmidas do Pantanal fornecem importantes serviços, como 
armazenamento de água e carbono, melhoria da qualidade da água e 
regulação do clima. A análise e o monitoramento da superfície vegetada e da 
precipitação em escala regional, com uso de dados de sensoriamento remoto, 
podem oferecer informações importantes para a preservação da paisagem 
e da biodiversidade da região. Assim, o objetivo deste estudo foi analisar 
características do ciclo do verde da superfície vegetada e em que medida a 
superfície vegetada responde pela variabilidade da precipitação no Pantanal. 
As áreas analisadas compreendem as regiões de Cáceres (CAC), Poconé (POC) 
e Barão de Melgaço (BAM), em Mato Grosso. Foram usadas séries temporais 
de precipitação acumulada (PPT) e índice de vegetação Normalized Difference 
Vegetation Index (NDVI) para o período de 2000 a 2016, obtidos na plataforma 
Giovanni da National Aeronautics and Space Administration (NASA). 
Foram aplicadas a análise da transformada wavelet para os dados de NDVI e 
a análise de correlação cruzada para os dados de PPT e NDVI. Os resultados 
mostraram que a maior correlação entre a PPT e o NDVI foi positiva com 
defasagem de um mês, mas foi significativa em até uma defasagem de três 
meses. As análises wavelet mostraram que as maiores potências ocorreram 
na periodicidade entre 0,5 e 1,3 anos, isto é, as séries de NDVI apresentaram 
as principais variâncias na escala aproximadamente anual, indicando que 
essas características são aspectos importantes da variabilidade da fenologia 
local, como o verde cumulativo ao longo do ano e a senescência generalizada.

Palavras-chave: NDVI; wavelet; correlação cruzada; sazonalidade.
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Introduction
The Pantanal, considered the largest tropical wet area in the world, 

has numerous rivers and is predominantly covered by different types 
of savannas and forests characterized by seasonal floods with varying 
intensities (Junk et  al., 2006; Junk et al., 2014). The heterogeneity of 
the Pantanal is represented, according to Silva and Abdon (1998), by 
11 sub-regions based on the flood, relief, soil, and vegetation aspects. 
The swamp plain has a periodic cycle of droughts and flooding (flood 
pulse), which plays an essential role in nutrient cycling and carbon 
sequestration, by preserving organic matter in flooded soils (Erwin, 
2009; Hiraishi et al., 2014). These cycles govern all biodiversity and fa-
cilitate the development of animal and plant species in the Pantanal 
(Muniz et al., 2017).

The flood pulse of the Pantanal is controlled not only by local 
precipitation but also by precipitation in the headlands, where the 
Paraguay River has access to the Pantanal mainly from the North, in 
the subregions of Baron de Melgaço and Poconé (Lázaro et al., 2020). 
The disposition and diversity of species vary in and between different 
habitats, arranged along the flood gradient, from non-flooding to sea-
sonal and permanently flooded (Junk et al., 2011). Thus, the interannu-
al variability of precipitation also affects the vegetation of these regions 
differently near the flooded areas, with weaker and defaced responses 
to precipitation due to local water storage (de Deus et al., 2020).

However, several changes have impacted the biodiversity of the 
Pantanal, such as the expansion of agricultural activities and hydro-
electric development (Bergier, 2013; Ioris et  al., 2014), and recent 
studies based on predictive models also indicate a gradual growth in 
the frequency of intense precipitation and long periods of stress (Hi-
rabayashi et al., 2013; Marengo et al., 2015, 2021). In addition to these 
disturbances, the vegetation is highly sensitive to the ocean-atmo-
sphere climatic phenomena El Niño and La Niña, which cause chang-
es in the hydrological cycle (Vicente-Serrano et al., 2013; Hilker et al., 
2014; Penatti et al., 2015; Li et al., 2016). Thus, extreme events show 
that climate change poses a high risk of environmental degradation 
for the Pantanal and many other wet areas around the world (Thielen 
et al., 2020).

Knowledge of the current behavior and the possible changes of 
the cycle of increase and decrease of the green of the vegetation, in 
response to climatic changes, is fundamental to the understanding 
of the ecosystem dynamics of the Pantanal. For example, precipita-
tion availability and periodicity are key factors controlling biogeo-
chemical cycles, primary productivity, and vegetation growth and 
reproduction phenology, while regulating agricultural production 
(Feng et  al., 2013; Baptista et  al., 2018). However, more studies 
are needed, with greater scope, over several long time scales (> 
10 years) to understand the complex relationship between precip-
itation regimens and vegetation, as well as the system’s responses 
to different magnitudes of human and climate pressures (Schulz 
et al., 2019).

Monitoring of regional environmental data in the Pantanal at a 
reasonable cost is a challenge due to difficulties in representing the 
spatial heterogeneity of precipitation and some parameters of vegeta-
tion (Penatti et al., 2015). However, orbital remote sensing is an effi-
cient source of data to observe potential impacts that climate change 
can cause on the Pantanal (Miranda et al., 2018a).

Due to the spectral response characteristic of the vegetation, 
it is possible to use geoprocessing techniques for its identification 
and evaluation, which allows obtaining information, such as those 
of complexity and heterogeneity of the vegetation (Miranda et  al., 
2018a), changes in the use and coverage of the land (Paranhos Fil-
ho et al., 2014; Corrêa et al., 2017), classification of vegetation types 
(Bispo et al., 2013), the relationship between vegetation indices and 
soil water content (Danelichen et al., 2016), hydrological dynamics 
(Penatti et al., 2015) and spatial-temporal variability of vegetation (de 
Almeida et al., 2015).

Among the vegetation indices we can highlight the Normalized 
Difference Vegetation Index (NDVI), which is widely used in the 
evaluation of various biophysical parameters (Tartari et  al., 2015; 
de Morais Danelichen and Biudes, 2020), proving suitable for mon-
itoring phenological changes in plant formations (Miranda et  al., 
2018a). In addition, NDVI time series are generally non-station-
ary, i.e. they have different frequency components, such as seasonal 
variations, long-term and short-term fluctuations, whose analysis 
of these components cannot be limited to just the average of the se-
ries, as these components affect their general structure of variance 
(Qiu et al., 2013).

In addition to the trend analysis for a time series of vegetation 
index, the interannual changes may also contain significant infor-
mation on the response of vegetation to forced weather (Zoffo-
li et  al., 2008; Martínez and Gilabert, 2009). Therefore, different 
mathematical techniques and statistics can be used to monitor veg-
etation dynamics from multi-temporal data, among which the anal-
ysis of main components (de Almeida et al., 2015) and curve adjust-
ment (Zhang et al., 2006), self-correlating function (Zoffoli et al., 
2008) and spectral frequency techniques, such as Fourier analysis 
(Quiroz et al., 2011; Vourlitis and Rocha, 2011), and, recently, the 
wavelet decomposition (Soto-Mardones and Maldonado-Ibarra, 
2015), which was also used to identify the phenological dynamics 
of vegetation (Martínez and Gilabert, 2009; Kuplich et al., 2013; Qiu 
et al., 2013). However, the wave analysis is an efficient resource to 
expose many characteristics of a time series, such as trends, period-
icity, discontinuities, and points of change (Nikhil Raj and Azeez, 
2012; Joshi et al., 2016).

The analyses carried out in this study may show whether the 
green increase of the vegetated surface will respond positively to pre-
cipitation on a monthly scale, whether these vegetation responses dif-
fer based on local characteristics of the areas, and lastly whether the 
wavelet analysis can provide relevant information on the vegetation 
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dynamics of northern Pantanal, such as the essential aspects of the 
temporal variability of surface phenology, that is, the characteristics 
of the phenological cycle of the vegetated surface.

To understand the different key characteristics related to the phe-
nology of the vegetated surface and to what extent the vegetated sur-
face responds to the variability of precipitation in the northern region 
of the Pantanal, the objective was: analyzing the periodicity and in-
tensity of the phenology of the vegetated surface at various time scales 
using the transformed wavelet applied to the NDVI (Normalized Dif-
ference Vegetation Index) time series and analyzing the green response 
of the vegetation of the surface in reaction to the variability of the pre-
cipitation through the analysis of cross-correlation, i.e., measuring the 
degree of association between the monthly average of NDVI and the 

monthly accumulated precipitation in the region of CAC, BAM, and 
BAM in the Pantanal.

Materials and methods

Description of the study area
The study areas are in the north of the Pantanal, comprising the 

southern region of the state of Mato Grosso, located in the central 
west of Brazil (Figure 1), in the municipalities of Cáceres, Poconé, and 
Barão de Melgaço. Three quadrants were selected, one quadrant in 
each of the municipalities of Cáceres, Poconé, and Baron de Melgaço 
for seasonal monthly NDVI analysis and monthly accumulated precip-
itation (Figure 1).

Figure 1 – Location of the Pantanal in Brazil and the areas of study (line in white color) selected respectively in the municipalities of Cáceres (CAC), Poconé 
(POC) and Barão de Melgaço (BAM).
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According to the Köppen classification, the climate of the study 
area, in the north of the Pantanal, is the Aw, characterized by being 
warm and humid with precipitation in summer and dry in winter. 
The  annual precipitation is approximately 1,400 mm and there is a 
marked dry season between May and September. The average air tem-
perature ranges from 29 to 32°C, and the minimum from 17 to 20°C 
(Machado et al., 2015).

The characteristics of the predominant types of vegetation, soil, lo-
cation, and sizes of the selected areas in each of the municipalities of 
Cáceres, Poconé, and Baron de Melgaço (respectively, CAC, POC, and 
BAM) are described in Table 1.

Products derived from orbital remote sensors used
The analysis of the dynamics of vegetative vigor was based in a 

monthly NDVI time series from 2000 to 2016, derived from the prod-
uct MODIS-TERRA MOD13C2, obtained on the platform Giovanni 
National Aeronautics and Space Administration (NASA), through the 
link http://giovanni.gsfc.nasa.gov/. NDVI data have a spatial resolution 
of 0.05° X 0.05° (5600 m) and monthly temporal resolution (Didan, 
2015).

Vegetation indices are generally calculated from remote detection 
data based on the fundamental optical characteristics of vegetation that 
are strongly absorbent in the red, but highly reflective in the near-in-
frared (NIR) regions of the solar spectrum (Rouse Jr. et al., 1974; Tuck-
er, 1979). This is possible because vegetation has low reflectance in the 
visible band (as a function of the absorption of electromagnetic radi-
ation by photosynthetically active leaf pigments) and high in the near 
infrared (due to the spread of electromagnetic radiation in the internal 
leaf structure) (Rosemback et al., 2013).

The product (TRMM 3B42 7) of the TRMM (Tropical Rainfall 
Measuring Mission) mission from NASA’s Giovanni platform (site: 
https://giovanni.gsfc.nasa.gov/giovanni/) was used for the study. 
The  precipitation data have a spatial resolution of 0.25° X 0.25° and 
monthly temporal resolution (from 2000 to 2016).

Subsequently, cross-correlation analysis was performed on a 
monthly scale for the monthly average precipitation and NDVI series 
for the same precipitation data period 2000-2016. Cross-correlations 

reveal the degree of interconnection between two variables in certain 
time series (Derrick and Thomas, 2004). The coefficient was used to 
measure the degree of association between the monthly mean of NDVI 
and the monthly accumulated precipitation in the region of CAC, 
POC, and BAM in the Pantanal.

The transformed wavelet
The temporal variations of the NDVI were evaluated using wave 

analysis, which allows the decomposition of the series as a function 
of time and frequency, that is, it allows the identification of the main 
modes of variability and the way they vary over time, as well as analyzes 
the periodicity at different time scales (Santos et al., 2013). The wavelet 
transform implements the decomposition of a signal at different spa-
tial or temporal scales into a set of basic functions. It has been widely 
applied in remote sensing data analysis (Galford et al., 2008; Martínez 
and Gilabert, 2009; Quiroz et  al., 2011; Kuplich et  al., 2013; Shihua 
et al., 2014; Fontana et al., 2015).

The set of basic functions {ψ a, b (t)}, can be generated by trans-
lating and staggering the so-called parent wave (t), according to the 
Equation 1:

, ( ) = 1
√

( − )  (1)

where a is the “dilation” parameter used to change the scale, and b is 
the translation parameter used to slide in time. The spectral frequency 
technique of the wavelet transform (or wavelet) is a relatively recent 
tool in trend detection studies and there are few studies based on the 
wavelet technique (Pandey et  al., 2017). The main idea of the wave 
transformation is to analyze a signal or time series according to dif-
ferent scales or resolutions (Martínez and Gilabert, 2009), so the main 
advantage in using this technique concerning time methods is to inves-
tigate the variability of variables in a range of time and frequency scales 
(Rhif et al., 2019).

In this study, the wavelet transform was applied through the DOG 
(Derivative of Gaussian) parent function with parameter 2 and a 
significance level of 0.05. The DOG function was chosen for greater 
precision in the time domain as compared to frequency (Farge, 1992; 

Table 1 – Areas of study and types of vegetation and soil.

Área Sub-Region Coordinates of 
studied polygons Study Area (Km2) Vegetation Soil

Cac Cáceres 17°13’ S; 58º22’ W
16º52’ S; 57º56’ W 1580

Savana, with pioneering formations of river influence 
near the Paraguay River, grassy savannah, shrubby 

savannah and forest formations
sandy

Poc Poconé 17º13’ S; 56º59’ W
16º51’ S; 56º35’ W 1580 Cerrado, vegetation under river influence and forest 

formations clay

BAM Barão de Melgaço 16º56’ S; 56º51’ W
16º34’ S; 55º27’ W 1580 Shrubby cerrado, wooded savanna and vegetation 

under river influence sandy

Source: adapted from Silva and Abdon (1998) and Paranhos Filho et al. (2014).

http://giovanni.gsfc.nasa.gov/
https://giovanni.gsfc.nasa.gov/giovanni/
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Torrence and Compo, 1997; Santos et al., 2013), and also made it pos-
sible to represent a time series through a time-frequency diagram 
called a scalogram (Mallat, 2008). The coefficients are defined by the 
color scale, the blue color representing less intensity of the wave coef-
ficient, energy, or power, and the red color representing greater power. 
Thus,  the wave analysis was applied using the algorithm available in 
http://paos.colorado.edu/research/Wavelets, for the code, and the Mat-
lab Software was used.

Results and Discussion

Seasonal dynamics of precipitation and NDVI
Seasonal trends were observed in the monthly accumulated pre-

cipitation time series and the monthly average of NDVI, with approx-
imately coincident maximum and minimum values for the analyzed 
regions (Figure 2). The monthly precipitation accumulated during the 
wet season represented approximately 63% of the annual total sum in 
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Figure 2 – Monthly seasonal change of NDVI and Precipitation of the period 2000-2016, the line (in black) represents the lower and higher limits of the 
standard deviation of the period average. (A) Cáceres – CAC, (B) Poconé – POC, and (C) Barão de Melgaço – BAM, in the northern region of the Pantanal in 
the State of Mato Grosso.

http://paos.colorado.edu/research/Wavelets
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the BAM, 73% in the CAC, and POC (Figure 2). These seasonal pat-
terns occurred synchronously for the regions analyzed and were con-
sistent with the climatology of the region (Biudes et al., 2012; Machado 
et al., 2015; Novais et al., 2015; Penatti et al., 2015).

The synchronicity of the seasonal pattern of precipitation is associ-
ated with a unimodal pattern with precipitation occurring throughout 
the Upper Paraguay basin (Ivory et al., 2019). During the wet period, 
the South Atlantic Convergence Zone (ZCAS) is associated with a con-
vergent moisture output from the Amazon to the Brazilian Southeast, 
which is responsible for extreme precipitation events (Rao et al., 1996).

Moreover, as observed in Figure 2, the seasonal cycle of vegetation 
follows the pattern of annual variability of precipitation in the Pan-
tanal, with the river line and greenness coinciding with the beginning 
of the rains (de Almeida et  al., 2015). These patterns indicates that 
vegetation phenology tends to follow relatively well-defined temporal 
patterns (Fontana et al., 2015; Schwieder et al., 2018). Also, according 
to de Almeida et  al. (2015), the cycle of vegetation observed by the 
NDVI of the Pantanal regions can be explained by two factors together, 
the seasonal pattern of precipitation and the seasonal pattern of floods.

Observing the variability of the average monthly precipitation 
between the regions, the CAC values corresponded to the maximum 
value of 212.19 mm in February and a minimum of 15.4 mm in June 
(Figure 2A), while the mean value is 99.9 ± 11.4 (mean ±  standard 
deviation). In the POC area, the average monthly precipitation was 
229.7 mm/month in January (Figure 2B), a minimum of 16.5 in Au-
gust, and an average of 107.6 ± 12.3 (average ± confidence interval). 
Finally, in the BAM area the average monthly precipitation was the 
maximum of 252.4 mm/month in January (Figure 2C), a minimum of 
11.9 in August, and the mean value was 116.2 ± 13.5. These differences 
observed in the monthly precipitation values between the regions an-
alyzed CAC and POC, POC and BAM may be related to the difference 
in the amount of precipitation over the Upper Paraguay watershed, 
where the largest precipitated amounts occurred in the northern and 
eastern regions of the basin (Penatti et al., 2015; Macedo et al., 2019), 
strongly influenced by regional differences (Bergier et al., 2018).

There was greater standard deviation and greater predominance of 
below-average values (observing the bottom line of the standard devi-
ation of Figure 2A) in the minimum NDVI phase (average September 
0.51 ± 0.02) in CAC (2005, 2007, 2008, 2010, 2011, 2012 and 2013) 
as compared to BAM areas (0.59 ± 0.02) (2004, 2005, 2010 and 2011) 
and POC (0.71 ± 0.02) (2005, 2010, 2011 and 2013) (Figure 2). High-
er variability (standard deviation) and higher predominance of low-
er-than-average NDVI values (0.51 ± 0.02) of CAC can be explained 
by the greater sensitivity of planted, natural and arable pasture areas to 
rainfall, although precipitation and NDVI are approximately synchro-
nous in the region, vegetation responses differ based on the geographic 
location of the flooded areas (Ivory et al., 2019). However, the lowest 
standard deviation of the NDVI and the lowest prevalence of extreme 
values (Figure 2B) in POC may be related to local characteristics, such 

as being close to river flows and bodies of water (Miranda et al., 2018a; 
Ivory et al., 2019). The lower mean NDVI in the CAC may also be re-
lated to high ligneous mortality rates, which favors the development 
of grass species (Lehmann et  al., 2011; Miranda et  al., 2018b), and 
human interference (Wessels et al., 2004; Jacquin et al., 2010). On the 
other hand, the highest NDVI value in POC may be related to the in-
fluence of precipitation, as the highest precipitated values occurred in 
the northern and eastern regions of the Upper Paraguay basin (Penatti 
et al., 2015; Macedo et al., 2019).

The temporal patterns of NDVI were approximately sinusoidal with 
the maximum value in March and April, an intense decline from the end 
of April until the phase of minor NDVI in August, and resuming the 
increase in October completing the formation of the cycle (Figure 3). 
According to Zhang et al. (2006), these points of change in the curvature 
of the monthly NDVI averages of Figure 3 correspond to the transition 
dates of a phenological cycle of the vegetated surface, which does not 
change abruptly, but gradually, such as senescence, Greenup, dormancy, 
and maturity. This vegetative development is determined by the con-
tinuous increase of green biomass until reaching a maximum quantity 
(Fontana et al., 2015). For example, in deciduous vegetation in many 
crops, the emergence of leaves tends to be followed by a period of rapid 
growth, followed by a relatively stable period of maximum foliar area 
(Dalmolin et al., 2015; Schwieder et al., 2018).

Based on the standard deviation to the second of the year (peri-
od of 2000-2016) in Figure 3, the greatest variabilities occurred in the 
phase of decrease and increase of the NDVI (dry period and beginning 
of wet period). However, the smallest deviations occurred in the phase 
of maximum NDVI (March, April, and May). The greater variability of 
NDVI in the dry period may be related to the change in the availability 
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Figure 3 – Monthly average and standard deviation of the NDVI from the 
period 2000-2016, in three areas of study, Cáceres (CAC), Poconé (POC) 
and Barão de Melgaço (BAM), in the northern region of the Pantanal in the 
State of Mato Grosso.
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of soil water due to the difference in the amount of precipitation be-
tween years (Miranda et al., 2018b). Due to the lower water availability 
during dry season, early senescence may occur causing more severe 
and longer dormancy period, as an artifice to maximize the carbon 
gain, increasing the rates of carbon assimilation of vegetation when the 
first rains begin (Franco et al., 2005; Rossatto et al., 2009).

So, the biggest difference in the intensity and the variability of the 
NDVI in the regions of CAC, POC, and BAM can be associated with 
strategies of use of the water, in other words, gramineous like those in 
the CAC region are considered intensive explorers, while in the trees 
and shrubs of forests of POC and BAM, explorers are spread out (Bur-
gess, 1995). Therefore, grasses with dense and shallow root systems 
make use of provisional water available in the upper layer of the soil, 
while trees, which have root systems that enter the shallow and deep 
layers of the soil, have a more constant supply of water in the soil (Scan-
lon et al., 2002).

The data from the analysis of the cross-correlation between month-
ly accumulated precipitation and monthly mean NDVI are provided 
in Table 2 for CCS, POC, and BAM regions for the period from 2000 
to 2016. The correlation coefficients of the sites were positive and sig-
nificant in up to a 3-month lag, however, the maximum correlations 
occurred with a one-month lag between precipitation and NDVI (Ta-
ble 2). The greatest correction between precipitation and NDVI was for 
the BAM region (β = 0.71, p < 0.001), followed by CAC and CDVI (re-
spectively, α = 0.69 and β = 0.64 p < 0.001). Thus, the results of Table 2 
indicate the strong synchronicity of precipitation between CCS, POC, 
and BAM regions. In addition, vegetation productivity is out of phase 
with a delay of at least one month regarding precipitation (Ivory et al., 
2019). The higher coefficient of CAC and BAM, as mentioned above, 
may be related to the greater dependence of vegetation on precipita-
tion, since in the Pantanal, differences in vegetation type and soil cover 
can result in a strong dependence on climate or local conditions (Viana 
and Alvalá, 2011; Ivory et al., 2019).

Other studies (de Almeida et al., 2015; Penatti et al., 2015; Ivory 
et  al., 2019) indicate that the seasonal pattern of vegetation produc-
tivity in the Pantanal is heterogeneous and complex in its relation to 
the regional climate, such as Penatti et al. (2015), as compared to the 

time series of EVI, precipitation and water storage in the Pantanal in 
the Upper Paraguay basin, and observed a strong relationship between 
precipitation and vegetation variability, and, in addition, water storage 
time in different regions of the basin varies based on geomorphology, 
soil type and plain drainage (Ivory et al., 2019).

NDVI analysis by wavelet transformation
Figures 4A, 5A and 6A show that the highest concentrations of 

wave powers (ranging from -1 to 1, from light blue to dark red) of 
NDVI in the Wave Power Spectrum (WPS) were significant, as they 
occurred within the line-delimited region (blue) representing the level 
of significance. These major wavelet powers occurred periodically be-
tween 0.5 and 1.3 years, indicating that the CAC NDVI series, POC, 
and BAM have a strong annual variation throughout 2000 – 2016. It is 
also observed (Figures 4B, 5B, and 6B) that the time series of the aver-
age scale (selected for the period range of 0.3 to 1.3 years) has a Gauss-
ian distribution, centered on the peak of the drought, coincident with 
the generalized senescence.

The annual periodicity observed in Figure 4A, also observed in 
Figures 2A and 3A, may be associated with the essential aspects of the 
spatial-temporal variability phenology of the vegetated surface of these 
sites, that is, the cumulative green throughout the year (Fontana et al., 
2015; Schwieder et al., 2018). The higher power intensity (Figure 6A) 
and the higher variance (Figure 4B) in CAC, as compared to POC and 
BAM, may be associated with greater variability of vegetation produc-
tivity due to a greater influence of the climax of the drought season (de 
Almeida et al., 2015).

It was observed in Figures 4B and 6B that there was greater vari-
ance and greater predominance of higher power intensities for CAC 
and BAM (in the years 2005, 2007, 2008, 2010, 2011, 2012, and 2013) 
as compared with the area of POC (Figure 5B). The higher mean-vari-
ance and higher predominance of higher power intensities of CAC and 
BAM, as mentioned above, may be related to the greater dependence of 
vegetation on precipitation, but other authors also attribute the higher 
sensitivity of these areas to extreme weather events such as El Niño, 
for example. Gris et al. (2020) analyzed the influence of precipitation 
on an arboreal species (Erythrina fuscano) in the Cáceres region and 

Table 2 – Cross-correlation between Precipitation and NDVI.

lag (month)
Places

CAC POC BAM

All correlations are significant for p < 0.001

0 0.66* 0.59* 0.68*

1 0.69* 0.64* 0.71*

2 0.57* 0.50* 0.55*

3 0.29* 0.22* 0.27*

*p ≤ 0.001
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Figure 4 – (A) The wave power spectrum of NDVI for the Cáceres region (C) from 2000-2016. The region bounded by the U-shaped curved line represents the 
cone of influence (level of 5% significance). (B) Time series of the average band scale 0.3-1.3 years. The line dashed in blue is the 95% confidence level.

Figure 5 – (A) The wave power spectrum of NDVI for the Poconé region of 2000-2016. The region bounded by the U-shaped curved line represents the cone 
of influence (level of 5% significance). (B) Time series of the average band scale 0.3-1.3 years. The line dashed in blue is the 95% confidence level. 

observed that El Niño events reduce precipitation in the Pantanal, and 
in turn result in a decrease in the growth of individuals.

Also, Fortes et al. (2018) identified that El Niño events significantly 
reduced precipitation in the Pantanal and resulted in a drop in trunk 
diameter increment for arboreal species V. divergens. Thus, the occur-
rence of El Niño may result in a decrease in precipitation compared 
to the neutral period (Moura et al., 2019) and, consequently, with the 
reduction of precipitation, the ecosystems respond in a highly plastic 
way to the availability of water (Hilker et al., 2014). 

Average variance values on the 0.3 to 1.3 positive years scale 
have a Gaussian distribution (Figures 4B, 5B, and 6B) starting ap-
proximately in May, peaking in September, and ending in October. 
This temporal variation of the series, centered on the peak of the 
drought, coincides with the generalized senescence, the rift, and the 
greening of the vegetation of the regions, as seen in Figures 2 and 3. 
Thus, the series also exhibits an annual cycle and may be associated 
with a phenological variation of the vegetated surface (Penatti and 
Almeida, 2012). 
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Conclusion
The cycle of increase and decrease of the green of the vegetation 

follows the pattern of annual variability of precipitation in the Pantanal 
and the rift and greenness (greenness) coincident with the beginning 
of the rains. In addition, it was observed that the seasonality of precip-
itation is synchronized and is related to a strongly unimodal pattern 
with precipitation occurring throughout the Upper Paraguay basin. 

In the NDVI time-series Profiles, of CAC, POC and BAM, an in-
tense decline occurred from April until the phase of lower NDVI in 
August., These points of change in the curvature of the monthly aver-
ages of NDVI may correspond to the transition dates of a phenological 
cycle of the vegetated surface, which changes gradually, such as senes-
cence, Greenup, numbness, and maturity.

The correlation between precipitation and NDVI for CAC, POC, 
and BAM was positive and significant in up to 3 months of lag. How-
ever, maximum correlations occurred with a 1-month lag. The greatest 
correction between precipitation and NDVI was for the BAM region, 
followed by CAC and POC, respectively. Thus, the results indicate the 
strong synchronicity of precipitation between CAC, POC, and BAM 
regions. In addition, vegetation productivity is out of phase with a de-
lay of at least one month regarding precipitation. These results may 

be indicative that the seasonal relationships between precipitation and 
vegetation productivity differ based on the position relative to flooded 
areas.

The largest wavelet powers occurred periodically between 0.5 and 
1.3 years, indicating that the NDVI time-series for CAC, POC, and 
BAM has a strong annual variation throughout the 2000-2016 period. 
The annual periodicity observed in CAC, such as those of POC and 
BAM, may be associated with the essential aspects of spatial-temporal 
phenology variability of the vegetated surface of these sites, i.e., cumu-
lative green throughout the year. And the higher power intensity and 
the higher variance in CAC as compared to POC and BAM may be 
associated with greater variability in vegetation productivity due to a 
greater influence of the climax of the drought season.
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