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A B S T R A C T
The intense use of pesticides can be harmful to the environment 
and human health, being necessary to monitor the environmental 
concentrations of pesticides. The legislation on drinking water for 
human consumption is one of the guiding regulations about monitoring 
priority. Therefore, a systematic review was carried out to compile 
information on the contamination of surface water, groundwater, 
and treated water in Brazil. Thereby, we selected those pesticides 
which, although they are authorized for use and are among the top-
selling pesticides, are not regulated by GM Ordinance of the Ministry 
of Health (GM/MS) No. 888, of May 4, 2021. The databases used 
were PubMed, Scielo, Science Direct, Scopus, and Web of Science. 
Of the 122 pesticides in the market, 11 were selected. Analyses of 
environmental dynamics, concentration, and health effects were 
carried out. The Goss methodology and the Groundwater Ubiquity 
Score (GUS) index were used to estimate the risk of surface water and 
groundwater contamination, respectively. The concentrations found 
were compared with the values provided for in the guidelines   adopted 
by international agencies, determining the Brazilian population’s 
margin of exposure (MOE) to the target pesticides. The results indicate 
a high probability of finding imidacloprid and hexazinone in the water, 
the prevalence of studies on surface waters, and the need to conduct 
additional studies as papers on some of the target pesticides were not 
found. It is concluded that the pesticides studied pose a low risk to 
human health, however, further studies are still required.

Keywords: legislation; microcontaminants; health; agrochemicals.

R E S U M O
O intenso uso de agrotóxicos pode ser prejudicial ao meio ambiente 
e à saúde humana, tornando necessário o monitoramento de suas 
concentrações ambientais. Como um dos dispositivos norteadores sobre 
a prioridade de monitoramento é a legislação de água potável para 
consumo humano, foi realizada uma revisão sistemática da literatura 
com o objetivo de compilar informações sobre a contaminação das águas 
superficiais, subterrâneas e tratadas por agrotóxicos. Foram considerados 
os agrotóxicos mais vendidos em território brasileiro entre 2009 e 2019 
e que possuem autorização de uso, mas que não são regulamentados 
pela Portaria GM do Ministério da Saúde nº 888, de 4 de maio de 2021. 
Dos 122 agrotóxicos comercializados, 11 foram selecionados. Analisaram-
se a dinâmica ambiental, concentração em águas e efeitos na saúde 
humana. Na estimativa do risco de contaminação das águas superficiais e 
subterrâneas, empregou-se a metodologia Goss e o índice Groundwater 
Ubiquity Score (GUS), respectivamente. Uma comparação crítica sobre 
as concentrações encontradas e os valores-guia adotados por agências 
internacionais foi realizada, determinando-se a margem de exposição da 
população brasileira aos agrotóxicos. Os resultados do trabalho mostraram 
a maior probabilidade de que imidacloprido e hexazinona sejam 
encontrados em águas; a prevalência de estudos realizados em águas 
superficiais; e a necessidade de que mais trabalhos sejam realizados, uma 
vez que não foram encontrados artigos sobre alguns dos compostos-alvo. 
Conclui-se que os agrotóxicos estudados apresentam baixo risco à saúde, 
todavia se vê a necessidade de que mais estudos sejam desenvolvidos.

Palavras-chave: legislação; microcontaminantes; saúde; pesticidas.
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Introduction
Pesticides are used to modify the composition of flora or fauna to 

preserve them from the action of harmful living beings (Brasil, 1989). 
Historically, since there were problems related to the cultivation pro-
cess, the Brazilian agricultural production model was based on pesti-
cides (Wahlbrinck et al., 2017). Since 2008 Brazil has been one of the 
world’s largest agricultural producers, the second top exporter of pesti-
cides (Pignati et al., 2017). According to the Brazilian Institute for the 
Environment and Natural Resources (IBAMA), in 2009, the accumu-
lated sales in Brazil were approximately 270,000 tons of Active Ingredi-
ents (AI). In 2019, it was over 560,000, corresponding to a percentage 
increase of around 108% (IBAMA, 2021).

The current model of agriculture requires the use of pesti-
cides, as they help increase crop productivity (Sharma et  al., 2019). 
 However,  when they are used excessively, pesticides can be harmful 
to the environment and contaminate aquatic matrices, the air, and the 
soil (Lorenzatto et al., 2020). Contamination of aquatic matrices can 
occur through soil runoff, spray drift, or improper disposal of pesti-
cide containers (Olisah et al., 2020). Once in the aquatic environment, 
pesticides can bioaccumulate in organisms (Belchior et al., 2014) and 
may have deleterious effects on the aquatic biota, such as fish (Améri-
co-Pinheiro et al., 2019, 2020). In addition, it is noted that pesticides 
can evaporate, infiltrate the soil, or be carried through rivers (Souza 
et al., 2020) and, depending on their properties, they can be transport-
ed through the atmospheric process and reach new areas, extending 
the degree of contamination (Carvalho, 2017). The population can be 
exposed to the risks of pesticides mainly through food, as humans are 
at the top of the food chain and depend on resources (i.e., water, land, 
air) for survival (Belchior et al., 2014). 

Considering the aforementioned, it is necessary to analyze the risks 
associated with human exposure to pesticides. In this context, the risk 
assessment (RA) methodology stands out. This methodology aims to 
identify the risks associated with a chemical agent through four steps: 
• Hazard identification; 
• Dose (concentration) –  response (effect) relation; 
• Exposure assessment; 
• Risk characterization (UNEP, 1999). 

The RA methodology is used to establish water potability stan-
dards and guidelines worldwide (WHO, 2017), as well as the standards 
reviewing process (Vigiagua, 2020). Usually, substances are considered 
potential candidates to integrate the potability standard according to 
factors like the pattern of occurrence in springs, toxicity, environmen-
tal dynamics, persistence/mobility in environmental matrices, and re-
moval in water treatment plants (WTPs).

In Brazil, water quality control for human consumption is regu-
lated by Annex XX, of Consolidation Ordinance No. 5, of September 
28, 2017, amended by GM Ordinance of the Ministry of Health (MS) 
No.  888, of May 4, 2021, in which pesticides and other substances 

harmful to humans are listed (Brasil, 2021). It is worth mentioning 
that some pesticides, even though they are not listed in the Ordinance, 
deserve attention. Especially the top-selling ones whose properties in-
crease their occurrence in water matrices.

Therefore, in this study, we aimed to carry out a risk assessment, 
based on a systematic literature review, of pesticides found in water for 
human consumption in Brazil, including exposure factors (commer-
cialization, environmental dynamics, and occurrence on the surface, 
groundwater, and treated water) and chronic toxicity data. To this end, 
we focused on the top-selling authorized pesticides in Brazil but not 
listed in the water potability standard.

Material and Methods

Pesticide selection
To identify the top-selling pesticides in Brazil, the data available in 

IBAMA’s current Marketing Reports were compiled (2009-2019) (IBA-
MA, 2021). Our exclusion criteria were: 
• pesticide covered by GM/MS Ordinance No. 888 of 2021 (Brasil, 

2021) because the purpose of this study is to evaluate the pesticides 
not covered by the Brazilian potability ordinance; 

• unauthorized pesticides or those that do not have a monograph at 
the Brazilian Health Surveillance Agency (ANVISA, 2021); 

• pesticides with a low percentage of sales — the 70th percentile was 
applied to the accumulated sales data, and the corresponding value 
was adopted as the cutoff point; 

• adjuvant compounds (those that are used in association with the 
AI to improve application).

Environmental dynamics
To analyze the probability of pesticides reaching the water, we 

verified their physicochemical properties: coefficient of adsorption 
in organic matter (Koc);  typical half-life (DT50) in the soil and water 
phase; solubility in water; octanol-water partition coefficient (Kow); and 
Henry’s law constant (KH). These properties were obtained through the 
Pesticides Properties Database  (PPDB) (IUPAC, 2020) and, in cases 
when the information was absent, using the Oregon State University 
(OSU) Extension Pesticide Properties Database (NPIC, 2020). 

The contamination potential of surface water and groundwater was 
estimated using the Goss methodology (Goss, 1992) and the GUS In-
dex (Gustafson, 1989), respectively.

A systematic review of environmental concentrations  
in surface water, groundwater, and treated water

A systematic review was carried out using the PRISMA methodol-
ogy (Moher et al., 2009). 

We searched for studies concerning the target pesticides in Brazil-
ian waters using PubMed, Scielo, Science Direct, Scopus, and Web of 
Science platforms since there is broad literature regarding the subject 
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of this study. The following search codes were used: (pesticides AND 
water AND Brazil) and ((clomazone OR hexazinone OR “monosodi-
um methyl arsenate” OR MSMA OR tebuthiuron OR cypermethrin 
OR imidacloprid OR “lambda-cyhalothrin” OR “lambda cyhalothrin” 
OR methomyl OR azoxystrobin OR “thiophanate-methyl” OR “thio-
phanate methyl” OR ethephon) AND water AND Brazil). The pres-
ent review considers articles in English or Portuguese language, pub-
lished by October 4, 2021. We did not consider review articles since 
it is expected that the original ones have already been contemplated 
through the search made. After excluding duplicate articles, screening 
was performed on two levels: first, by analyzing the title, abstract, and 
keywords; and second, by reading the entire content of each one of the 
articles.

We excluded those articles in which at least one of the following 
pieces of information was absent: 
• limit of detection (LOD) and limit of quantitation (LOQ); 
• number of samples in which there was detection or quantitation;
• individual concentration of each sample and no information about 

the frequency of detection/quantitation or the average value. 

Also, we did not consider articles that quantified pesticides in 
mixtures (i.e., with metabolites or other compounds); and when it was 
not possible to identify the analysis matrix (e.g., raw or treated water). 
For papers that did not specify the individual environmental concen-
trations but presented the average and the frequency of detection and/
or quantitation, we determined the individual concentrations as fol-
lows:  concentration = average ÷ number of samples. Due to the occur-
rence of censored data, lower than the limit of detection (< LOD) or not 
detected (ND) and/or lower than the limit of quantitation (< LOQ), 
the substitution method for censored data was applied (Sanford et al., 
1993). Therefore, when elaborating the graphical representation of pes-
ticide occurrence, in those studies where the environmental concen-
tration was reported as < LOD or ND, we used LOD/2; and when the 
concentration was reported as < LOQ, we used LOQ/2. We also con-
sidered as outliers (higher concentrations) the values   that were at least 
1.5 times the interquartile range (Q3 - Q1), from the edge of the box 
(Minitab, 2020), which were not represented due to the graphic scale.

Pesticide occurrence in surface  
water, groundwater, and treated water

Based on the occurrence data of pesticides in surface water, 
groundwater, and treated water, we carried out an analysis to identify 
the most abundant pesticide in each of them. Also, we correlated the 
detection frequency with the pesticide’s position in IBAMA’s sales rank, 
considering total sales from 2009 to 2019. 

Human health effects
To analyze the potential effects of pesticides on human health, we 

gathered information about chronic toxicity data from the Internation-

al Agency for Research on Cancer (IARC, 2020a) and the United States 
Environmental Protection Agency (USEPA, 2020a). 

Critical comparison of environmental occurrence 
and maximum acceptable values in drinking water

We searched for information about the target pesticides presence 
on international agencies and guidelines for drinking water quality 
to obtain the maximum acceptable values (MAV) on drinking wa-
ter. We selected USEPA and the World Health Organization (WHO) 
guidelines, as they are considered the main references used on drink-
ing water standards in several countries (Araújo, 2018); New Zealand, 
Canada, and Australia guidelines that are also international references 
and employ the risk assessment methodology; and the European En-
vironmental Agency (EEA), considering its high restrictiveness (Souza 
et al., 2019). Based on the occurrence data and the MAV in drinking 
water, we made a critical comparison of the environmental concen-
trations to identify its potential risk for human health. According to 
USEPA, the occurrence value (OV) can be obtained by the 90th, 95th or 
99th percentile of the concentrations found or through the maximum 
value detected in drinking water (USEPA, 2016a). On the other hand, 
the Australian Drinking Water Guidelines use only the maximum val-
ue found in drinking water (NHMRC, 2021). Given the impossibility 
of calculating the percentile for some pesticides due to the reduced 
amount of data, we chose to use the recommendation proposed by the 
Australian guidelines, with some modifications. Thus, to obtain the 
MOE, we calculated the ratio between MAV and OV in each of the 
matrices — and not only for drinking water, as the methodology pro-
poses. This approach was adopted considering a conservative view on 
those cases in which the water resources are used for public supply and 
considering that water treatment would not effectively remove residual 
pesticides. The OV of each pesticide was obtained using the maximum 
concentration found in each matrix (disregarding  outliers). In cases 
where more than one MAV was available, we used the most restrictive 
one. From the values obtained, the MOE was stipulated: MOE ≤ 1: the 
pesticide poses a risk to human health; 1 ≤ MOE ≤ 10: the pesticide 
deserves attention since its occurrence is in the same order of magni-
tude as the concentrations that would represent a risk to human health; 
and MOE ≥ 10: the pesticide is less likely to cause adverse health effects.

Results and Discussion

Pesticide selection
The research started with 122 pesticides and, based on the ap-

plication of the criteria, 111 were excluded: 32 according to criteria 
1 (covered by GM/MS Ordinance No. 888 of 2021);  8 according to 
criteria 2 (ANVISA monograph absent/excluded);  66 based on cri-
teria 3 (total sales were less than 12128t); and 5 according to criteria 
4 (adjuvants). Finally, a total of 11 pesticides remained in the study: 
clomazone, hexazinone, monosodium methyl arsonate (MSMA), and 
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tebuthiuron (herbicides);  cypermethrin, imidacloprid, lambda-cy-
halothrin and methomyl (insecticides);  azoxystrobin and thiophan-
ate-methyl (fungicides); and ethephon (growth regulator).

Environmental dynamics
The physicochemical properties of the pesticides influence their 

environmental dynamics, defining major or minor tendencies to reach 
water matrices. Using the International Union of Pure and Applied 
Chemistry (IUPAC, 2020) and OSU (NPIC, 2020) data, we evaluated 
the water contamination potential of pesticides. Among the regarded 
pesticides, hexazinone and imidacloprid have greater contamination 
probability, as they have high solubility (33,000 and 2,500 mg/L, re-
spectively), showing a tendency for surface runoff (Elias et al., 2018) 
and high DT50 (soil) (105 and 191 days, respectively). These properties, 
although being influenced by soil type and climate conditions (New 
Zealand, 2020), indicate that these pesticides are persistent in the en-
vironment. Furthermore, hexazinone and imidacloprid have low Koc 
(54 and 13 ml/g, respectively), i.e., they are poorly retained on soil 
particles (Pérez-Lucas et  al., 2021); low Kow (1.17 and 0.57, respec-
tively), an indication that they can easily pass into the aqueous phase 
(Yang et  al., 2018), and low KH (1.10 x 10-⁷ and 1.7 x 10-¹⁰ Pa m³/
mol, respectively), which means they do not volatilize easily, remain-
ing in the aquatic environment for longer periods (Chao et al., 2017). 
In addition, methomyl has high solubility (55,000 mg/L) and low Koc 
(72 ml/g); MSMA is strongly retained on soil particles (200 days) and 
shows low log Kow (-3.1), an indication that it has a higher affinity to 
the water phase.

Otherwise, some pesticides did not show a tendency for contami-
nation: cypermethrin, which has low solubility (0.009 mg/L), is strongly 
adsorbed to the soil matrix (3 x 105 ml/g), shows volatilization tendency 
(0.31 Pa m³/mol), and has high log Kow (5.55), with a less pronounced 
hydrophilic characteristic; lambda-cyhalothrin shows low solubility 
(0.005 mg/L) and is strongly retained to the soil (Koc = 283,707 ml/g 
and DT50 (soil) = 175 days); methomyl, which in addition to having high 
solubility (55,000 mg/L) and low Koc (72 ml/g), shows low DT50 (water) 
(2.9 days), an indication that it is poorly persistent in the environment; 
tebuthiuron that despite showing high soil permanency (400 days) and 
low log Kow (1.79), tends to volatilize (KH  = 2.47 x 10-5 Pa m³/mol); 
clomazone and ethephon are not persistent in the soil since they have 
DT50 (soil) equal to 22.6 and 13.1 days, respectively. Also, ethephon is 
poorly persistent in the water matrix (DT50 (water) = 2.4 days).

It is worth mentioning the fungicide class, since both azoxystrob-
in and thiophanate-methyl have low solubility (6.7 and 18.5 mg/L, re-
spectively) and are slightly mobile on the solid surface (Koc = 589 and 
1830 ml/g, respectively), tending to remain retained to the soil matrix. 
Also, they have DT50 (water) equal to 6.1 and 3 days, respectively, indicat-
ing that they are slightly persistent in the water matrix. 

According to the Goss methodology (Goss, 1992), hexazinone, 
tebuthiuron, and azoxystrobin have a high potential for water con-

tamination, considering their transportation as dissolved in the water; 
and lambda-cyhalothrin is a potential contaminant considering its 
transportation in the soil. MSMA has a high contamination potential 
through both water and soil transportation.  

The other target pesticides have a moderate to low probability of 
surface water contamination.

Regarding groundwater contamination, we verified that hexazi-
none and tebuthiuron tend to contaminate groundwater, according 
to the GUS index (Gustafson, 1989). Moreover, clomazone, metho-
myl, azoxystrobin, and ethephon can also be potential contaminants 
since they are at the transition state. The other pesticides have little 
contamination probability. However, it is worth noting that even those 
compounds that are unlikely to reach water matrices, given their prop-
erties, could also be potential contaminants since climate and soil char-
acteristics can be favorable to leach (Pérez-Lucas et al., 2019). We were 
not able to calculate the contamination probability of imidacloprid for 
both surface water and groundwater since its Koc value is absent in the 
PPDB (IUPAC, 2020), and this insecticide is not listed in the OSU Ex-
tension Pesticide Properties Database (NPIC, 2020).

A systematic review of concentrations in  
surface water, groundwater, and treated water

A total of 1,775 articles were found (number of articles = N = 1,775), 
104 from PubMed, 40 from Scielo, 197 from Science Direct, 870 from 
Scopus, and 564 from Web of Science (Figure 1). After screening, only 
30 articles were included in our analysis based on the inclusion and 
exclusion criteria.

Source: adapted from PRISMA (Moher et al., 2009).
Figure 1 – Flowchart of the systematic review.
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Among the target pesticides of this study, we observed that imidaclo-
prid was the top-selling product and also the most detected in surface wa-
ters (F = 27.3%). Likewise, the least selling, cypermethrin, was not detected 
(Figure 3). These results are in line with the expectations, as top-selling 
pesticides are more likely to have a higher detection percentage.

Azoxystrobin is one of the most widely used fungicides worldwide 
(Uçkun and Öz, 2021) and it is applied mainly against brusone (Pyric-
ularia oryzae), the main fungal disease that affects irrigated rice (Back 
et al., 2016). Approximately 2900 tons of this fungicide are sold annu-
ally in Brazil. Concentrations of this pesticide were found in the range 
of 0.001 to 0.125 μg L– 1 (Figure 3) in Rio Grande do Sul (RS) (Amaral 
et al., 2020; Severo et al., 2020) and São Paulo (SP) states (López-Doval 
et al., 2017; Montagner et al., 2014, 2019). In Montagner et al. (2019), an 
outlier of 0.431 μg L– 1 was observed in the sample collected in the city 
of Indaiatuba (SP). In the region of Londrina, Paraná (PR), azoxystrobin 
was quantified at an average concentration of 0.027 μg L– 1 in 15 of the 24 
samples analyzed (Souza et al., 2019). In other studies carried out in the 
southern region of Brazil, it was not found at quantifiable levels (Amaral 
et al., 2018; Almeida et al., 2019) and it was not detected in the Camand-
ucaia River and its tributaries (SP) (Barizon et al., 2020).

Cypermethrin, a synthetic pyrethroid used against agricultural and 
domestic pests (Bhatt et al., 2020), has average annual sales in Brazil of 
about 1230 tons. It was not detected in any of the 10 samples collected 
in Minas Gerais (MG) in a study that showed relatively high LOD and 
LOQ (1.5 and 5 μg L– 1, respectively) (Rodrigues et al., 2018). 

Clomazone has average annual sales in Brazil of approximate-
ly 5164 tons and it is widely used in rice crops (Guo et  al., 2021). 
 Studies  on this herbicide were conducted in RS, PR, and SP, being 
found in quantifiable levels in 11 (Zanella et al., 2002; Bortoluzzi et al., 
2006, 2007; Armas et al., 2007; Silva et al., 2009; Primel et al., 2010; 
Marchesan et al., 2007, 2010; Caldas et al., 2013; Severo et al., 2020; 
Guarda et al., 2020b) of the 16 articles considered in at least one sample 
analyzed in each of the studies, totaling 218 of 1064 samples (Figure 3). 

*2020 and 2021 sales data are still not available by IBAMA.

Figure 2 – Annual sales (2009-2019) and Scientific production (2009-
2021)*.

Usually, the articles found evaluated the occurrence of more than 
one pesticide in waters.

The most studied pesticide was clomazone (N = 17), followed by 
imidacloprid (N = 12), azoxystrobin (N = 10), tebuthiuron (N = 5), hex-
azinone (N = 4), and lambda-cyhalothrin (N = 2). Cypermethrin and 
methomyl were studied in only one article each. We did not find arti-
cles regarding ethephon, MSMA, and thiophanate-methyl. About 57% 
of the studies referred to the occurrence of pesticides in surface water, 
approximately 3% in groundwater matrices, and the same percentage 
in drinking water. The remaining percentage referred to the occurrence 
in more than one matrix (e.g., surface and groundwater). We observe a 
larger number of studies related to both surface and treated water, ap-
proximately 23%.

Establishing a comparison between scientific production and com-
mercialization over the years, it was possible to note a growing trend 
(Figure 2). It is worth noting that the 2020 and 2021 sales data were not 
plotted because they were not available yet (IBAMA, 2021).

Although scientific production showed some periods of decline, a growth 
tendency is observed since 2018, as suggested by the trendline (Figure 2).

Most of the studies were carried out in the South (N = 19) and 
Southeast (N = 8) regions of Brazil, where the trade of agricultural 
products is highly significant (Oliveira and Rodrigues, 2019). The Mid-
west region showed two articles. The North and Northeast regions, 
which have little participation in the Brazilian agribusiness (Oliveira 
and Rodrigues, 2019), had only one study each.

Pesticide occurrence in Brazilian surface water
We found 27 articles related to surface water contamination in 

Brazil. Most of them was about clomazone (N = 16), imidacloprid 
(N = 11), and azoxystrobin (N = 9); followed by tebuthiuron (N = 5), 
hexazinone (N = 4), and lambda-cyhalothrin (N = 2). Cypermethrin 
and methomyl were reported by only one article each. Figure 3 shows 
pesticide concentration in Brazilian surface water.

Figure 3 – Pesticide occurrence in Brazilian surface water.
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Of this amount, about 41% were between 0.002 and 0.1 μg L– 1; and ap-
proximately 50% were found between 0.15 and 1.72 μg L– 1. Outliers of 
3.21 and 15.69 μg L– 1 were identified, associated with the increased use 
of this herbicide and reduced manual weed control (Bortoluzzi et al., 
2007). Moreover, outliers between 5.4 and 23 μg L– 1 were found, pos-
sibly because clomazone has high water stability and is widely used in 
the study area (Primel et al., 2010). There was no detection/quantita-
tion in other studies (Vieira et al., 2016; López-Doval et al., 2017; Vieira 
et al., 2017; Souza et al., 2019; Barizon et al., 2020).

Hexazinone, widely used in sugarcane crops (Acayaba et al., 2021), 
has average annual sales in Brazil of approximately 1374 tons. A study 
carried out in Mato Grosso (MT) identified this pesticide in two of 
the 18 samples collected, at concentrations of 0.009 and 0.02 μg L– 1 
(Sposito et al., 2018) (Figure 3). In PR, it was quantified in the range 
of 0.01 and 0.03 μg L– 1 (Figure 3) and outliers from 0.07 to 0.14 μg L– 1 
(Almeida et al., 2019). There was no detection in MT (Duarte et al., 
2016) and no quantitation in PR (Souza et al., 2019).

Imidacloprid, of which about 7659 tons are sold per year in Brazil, 
is a neonicotinoid used against a variety of insects (Tuelher et al., 2018) 
and it was found at concentrations between 0.001 and 0.125 μg L– 1 in 
RS (Amaral et  al., 2018, 2020; Severo et  al., 2020), SP (López-Doval 
et al., 2017), MT (Sposito et al., 2018), PR (Almeida et al., 2019; Sou-
za et al., 2019) and Tocantins (TO) (Guarda et al., 2020b) (Figure 3). 
Studies carried out in RS detected outliers between 0.38 and 2.18 μg L– 1 
(Bortoluzzi et  al., 2006), from 0.55 to 2.59 μg L– 1 (Bortoluzzi et  al., 
2007) and from 0.17 to 0.82 μg L– 1 (Severo et al., 2020). In Bortolu-
zzi et al. (2006, 2007), the high concentrations found were justified by 
the increase in the use of imidacloprid to replace other insecticides 
that were used in tobacco cultivation; whereas in Severo et al. (2020), 
although the meteorological conditions of the collection were not re-
ported, it was possible that extreme rainfall events had occurred, since 
high concentrations can be recorded after heavy rainfall (Pérez et al., 
2017). There was no detection in a study carried out in SP (Barizon 
et al., 2020).

Lambda-cyhalothrin, a synthetic pyrethroid insecticide that mim-
ics the insecticidal properties of natural pyrethrin (Sharma et al., 2021), 
has annual sales in Brazil of approximately 1241 tons. It was detected 
in the region of Guaíra (SP) at concentrations of 0.1 and 0.2 μg L– 1 and 
an outlier of 5.66 μg L– 1 (Filizola et al., 2002). There was no detection 
in a study carried out in Sergipe (SE) (Pinheiro and Andrade, 2009).

Methomyl is widely used due to its broad-spectrum properties 
(He et al., 2022) and has average annual sales in Brazil of 6106 tons. 
It was not detected in any of the 28 samples collected in Formoso River 
(PR) (Guarda et al., 2020c).

Tebuthiuron, an herbicide widely used in sugarcane crops (Teixeira 
et al., 2018), has average annual sales in Brazil of 3475 tons. Its occur-
rence was reported in SP (Monteiro et al., 2014), PR (Almeida et al., 
2019), and MT (Sposito et  al., 2018) at concentrations between 0.01 
and 0.05 μg L– 1 (Figure 3) and outliers from 0.06 to 0.18 μg L– 1 (Almei-

da et al., 2019). There was no detection in another study carried out in 
SP (Barizon et al., 2020) and no quantitation in PR (Souza et al., 2019).

Pesticide occurrence in Brazilian groundwater
The risk of groundwater contamination depends on the physico-

chemical properties of pesticides, soil properties, hydrological and cli-
matic conditions, and the management practices adopted in the crops 
(Gaona et  al., 2019). We found a total of four studies carried out in 
groundwater matrices. Clomazone, hexazinone, and imidacloprid had 
two articles each; azoxystrobin and tebuthiuron only one; and no ar-
ticles were found on the other pesticides. Among the pesticides that 
are more likely to be found in groundwater due to their high leach-
ing potential, clomazone, hexazinone, and tebuthiuron were detect-
ed. Tebuthiuron was the most detected (F = 100%), although its total 
number of samples (n = 4) is much lower than the second most found, 
imidacloprid (F = 35%; n = 40) (Figure 4).

Clomazone was quantified in the range of 0.001 to 0.008 μg L– 1 in 
the southern region of Brazil (Silva et al., 2011) (Figure 4) and in out-
liers of 2.68 and 10.84 μg L– 1 (Bortoluzzi et al., 2007), possibly related 
to the expansion of tobacco farming in RS and the reduction of manual 
weed control (Bortoluzzi et al., 2007).

Hexazinone was quantified in PR at concentrations of 0.04 to 
0.11 μg L– 1 (Almeida et al., 2019), not being detected in a study carried 
out in MT, in which the LOD and LOQ were 2.65 and 8.04 μg L– 1, re-
spectively (Duarte et al., 2016). 

Imidacloprid was detected in PR at concentrations between 0.05 
and 0.16 μg L– 1 (Almeida et al., 2019); and in RS in 10 of the 36 samples 
analyzed, in which outliers between 0.67 and 6.22 μg L– 1 were identi-
fied, possibly due to the increased use of this insecticide in the cultiva-
tion of tobacco (Bortoluzzi et al., 2007) (Figure 4). 

The occurrence of tebuthiuron has been reported in PR at concen-
trations between 0.01 and 0.02 μg L– 1 (Almeida et al., 2019) (Figure 4). 

Figure 4 – Pesticide occurrence in Brazilian groundwater.
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Pesticide occurrence in Brazilian treated water
Pesticides can be leached from soils (Singh et  al., 2018) and 

since conventional treatment processes are generally not effective 
enough in removing residual pesticides (Elfikrie et al., 2020), they 
may be found in drinking water. We found eight studies on the tar-
get pesticides in treated water: azoxystrobin (N = 5); clomazone, 
imidacloprid, and tebuthiuron (N = 3); hexazinone (N = 2); and 
cypermethrin (N = 1). Cypermethrin data were not plotted because 
they comprise two samples only. No studies were found on the other 
pesticides. It is worth mentioning that the frequency of detection 
in treated water was lower than in the two environmental matrices 
previously addressed.

The top-selling pesticide, imidacloprid, had the second-highest 
frequency of detection (F = 12.8%) and, as in surface water, it was ob-
served that the least selling product, in this case, hexazinone, was not 
detected (Figure 5). Once again, these results were in line with the ex-
pectations since less intense commercialization implies a lower proba-
bility that the pesticide will be found in the environment.

Azoxystrobin was found at concentrations between 0.001 and 
0.002 μg L– 1 in PR (Souza et al., 2019) and SP states (Montagner et al., 
2019). This fungicide was not quantified in other studies carried out 
in PR (Almeida et al., 2019), SP (Montagner et al., 2014), and RS (von 
Ameln Lovison et al., 2021) (Figure 5).

Clomazone was quantified in RS at an average concentration of 
0.063 μg L– 1 in 4 of the 10 samples analyzed (Caldas et al., 2013). It was 
not detected in other studies carried out in the southern region (Primel 
et al., 2010; Souza et al., 2019) (Figure 5). 

Hexazinone was not quantified in any of the 24 samples collected 
in the Tibagi River (PR) (Souza et al., 2019). Imidacloprid was found at 
concentrations between 0.01 and 0.02 μg L– 1 in studies carried out in 
PR (Almeida et al., 2019; Souza et al., 2019), and it was not quantified 
in RS (von Ameln Lovison et al., 2021) (Figure 5).

Cypermethrin was not detected in any of the two samples collect-
ed in MG (Rodrigues et al., 2018). Studies related to tebuthiuron were 
conducted in PR (Souza et al., 2019) and SP (Monteiro et al., 2014); 
however, it was only quantified in the SP study (at a concentration of 
0.01 μg L– 1, in filtered water). After treatment, tebuthiuron was at 
levels lower than LOQ (Monteiro et al., 2014).

Human health effects
Pesticides are considered highly toxic as they persist in the 

environment and tend to accumulate in organisms (Porter et al., 
2018). In humans, the effects are diverse, such as cancer, mal-
formation, and chromosomal alterations (Sabarwal et  al., 2018). 
Cypermethrin, an endocrine disruptor (IARC, 2020b) that poses 
risks to the gastrointestinal system (USEPA, 2020a), is a potential 
human carcinogen ( USEPA, 2016b).  Ethephon can affect the ner-
vous system, and thiophanate-methyl the endocrine and repro-
ductive systems (USEPA, 2020a). Methomyl, although it can affect 
the urinary and immune systems (USEPA, 2020a), showed evi-
dence of non-carcinogenicity in humans, as did hexazinone and 
tebuthiuron, which are non-carcinogenic (USEPA, 2020b). While 
it is not likely to be carcinogenic to humans, lambda-cyhalothrin 
is neurotoxic (USEPA, 2017). We did not find information on the 
other pesticides.

Due to the adverse effects pesticides can have on human health, it 
is necessary to remove these contaminants before water is distributed 
to the population (Mekonen et al., 2016). However, most pesticides are 
not effectively removed in conventional WTPs (Elfikrie et al., 2020). 
Therefore, advanced technologies are required, which must be chosen 
based on the characteristics of the contaminant (Rodriguez-Narvaez 
et al., 2017), such as zeolite coated with zero-valent iron nanoparticles 
(Rashtbari et al., 2020), gamma irradiation (Khedr et al., 2019), mem-
brane filtration (Fini et al., 2019), advanced oxidative processes (Mala-
kootian et al., 2020), adsorption (Salomão et al., 2021), and ozonation 
(Cruz-Alcalde et al., 2017).

A critical comparison between environmental occurrence 
and maximum acceptable values in drinking water

The compilation of pesticide occurrence data in Brazilian 
aquatic matrices showed that they are usually present at low con-
centrations. However, even small concentrations can be harmful 
to the health of the population since the toxic potential of pesti-
cides can be increased through bioaccumulation and/or biomag-
nification (Guarda et al., 2020a). Thus, pesticide toxicity must be 
analyzed and reference values should be established for the Brazil-
ian reality. The reference values for drinking water obtained from 
international water quality agencies and guidelines are shown in 
Table 1.

Four of the target pesticides of this study are listed in at least one of 
the water quality agencies/guidelines considered (Table 1).Figure 5 – Pesticide occurrence in Brazilian treated water.
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Pesticides WHO US 
EPA EU Australia Canada NZ

Surface water Groundwater Treated water

MC MOE MC MOE MC MOE

Cypermethrin * - - 200 - - ND WS ND

Hexazinone - - - 400 - 400 0.03 13333.3 0.11 3636.36 NQ

Methomyl * - - 20 - - ND WS WS

Thiophanate 
methyl - - - 90 - - WS WS WS

Table 1 – Reference Values (μg/L), maximum concentration found, and margin of exposure in drinking water.

EU: European Union; NZ: New Zealand; MC: Maximum concentration found; MOE: Margin of exposure; -guide value not presented/not included in the legislation; 
*pesticide has no guide value as it is unlikely to be found in drinking water; ND: not detected; NQ: not quantified; WS: without studies in the matrix of interest.
Source: WHO (2017), European Parliament (2020), Health Canada (2020), New Zealand (2020), NHMRC (2021) and USEPA (2021).

MOE calculation was not possible for pesticides that did not have 
a MAV (azoxystrobin, clomazone, ethephon, imidacloprid, lambda-cy-
halothrin, MSMA, and tebuthiuron). It is worth mentioning that in 
some cases, even when a MAV was available, we could not calculate 
the MOE in cases with no detection/quantitation (cypermethrin and 
methomyl); when the only detectable concentration referred to an out-
lier; and when associated studies were lacking (thiophanate-methyl) 
(Table 1). It was only possible to establish the MOE for hexazinone 
and, for both surface water and groundwater, the values were above 10 
(Table 1), indicating a small probability that adverse health effects will 
occur (USEPA, 2016a). This result is possibly due to concentrations 
as high as MAV were not reported and, for cases in which the occur-
rence was higher, as for imidacloprid, no associated MAV was found. 
 Considering that none of the OV exceeded the reference values, and 
the analysis referring to the MOE showed a satisfactory result, it would 
be possible to infer that the concentrations found would not be harm-
ful to the population’s health. However, despite the occurrence at low 
levels having the potential to be dangerous, pesticides are not found 
alone in the environment, and the interaction between them and other 
substances can increase the adverse effects (Lei et al., 2015).

Conclusions
The systematic review showed more studies carried out on surface 

water, followed by treated water and groundwater. We noted that some 
pesticides had more studies than others, highlighting clomazone in 
the surface water matrix, and azoxystrobin in the treated water one. 
No monitoring data were found for ethephon and thiophanate-methyl, 
probably due to unfavorable environmental dynamics, which reduces 
their probability of environmental occurrence. Imidacloprid and hex-
azinone are the most likely to be found in aquatic matrices. Howev-
er, the MOE of the Brazilian population to hexazinone showed that this 
compound was not found at levels that would potentially cause harm 
to the population’s health. Nevertheless, it is recommended to continue 
monitoring this and other pesticides in the water and analyze the risks 
associated with a mixture of pesticides. We conclude that the target 
pesticides pose a low risk to human health. However, some objections 
must be raised, especially for cypermethrin, because it is a potential 
carcinogen. Due to MSMA’s favorable environmental dynamics, it is 
necessary to monitor it. Furthermore, it is important to carry out tox-
icological studies for pesticides for which a MAV has not been found, 
such as imidacloprid.
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