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A B S T R A C T
Extreme rain events can cause social and economic impacts in 
various sectors. Knowing the risk of occurrences of extreme events 
is fundamental for the establishment of mitigation measures and 
for risk management. The analysis of frequencies of historical series 
of observed rain through theoretical probability distributions is 
the most commonly used method. The generalized extreme value 
(GEV) and Gumbel probability distributions stand out among those 
applied to estimate the maximum daily rainfall. The indication of 
the best distribution depends on characteristics of the data series 
used to adjust parameters and criteria used for selection. This study 
compares GEV and Gumbel distributions and analyzes different 
criteria used to select the best distribution. We used 224 series of 
annual maximums of rainfall stations in Santa Catarina (Brazil), with 
sizes between 12 and 90 years and asymmetry coefficient ranging 
from -0.277 to 3.917. We used the Anderson–Darling, Kolmogorov-
Smirnov (KS), and Filliben adhesion tests. For an indication of the 
best distribution, we used the standard error of estimate, Akaike’s 
criterion, and the ranking with adhesion tests. KS test proved to be 
less rigorous and only rejected 0.25% of distributions tested, while 
Anderson–Darling and Filliben tests rejected 9.06% and 8.8% of 
distributions, respectively. GEV distribution proved to be the most 
indicated for most stations. High agreement (73.7%) was only found 
in the indication of the best distribution between Filliben tests and 
the standard error of estimate.

Keywords: heavy rain; drainage; probability; territorial management.

R E S U M O
Eventos extremos de chuvas podem causar impactos sociais e econômicos 
em vários setores. Conhecer o risco de ocorrência de eventos extemos é 
fundamental para o estabelecimento de medidas mitigadoras e para a 
gestão de riscos. A análise de frequências de séries históricas de chuva 
observadas por meio de distribuições teóricas de probabilidades é o 
método mais usado. As distribuições de probabilidade generalizada de 
valores extremos (GEV) e Gumbel destacam-se entre aquelas aplicadas à 
estimativa das chuvas máximas diárias. A indicação da melhor distribuição 
depende das características da série de dados usada no ajuste dos 
parâmetros e do critério utilizado para a seleção. Este trabalho teve como 
objetivo comparar as distribuições GEV e Gumbel e analisar os critérios 
usados para a seleção da melhor distribuição. Foram empregadas 224 
séries de máximas anuais de estações pluviométricas de Santa Catarina, 
com tamanho entre 12 e 90 anos e coeficiente de assimetria variando de 
-0,277 a 3,917. Adotaram-se os testes de aderência de Anderson–Darling, 
Kolmogorov-Smirnov e Filliben. Para a indicação da melhor distribuição 
foram usados o erro padrão de estimativa, o critério de Akaike e o ranking 
com os testes de aderência. O teste Kolmogorov-Smirnov mostrou-se 
pouco rigoroso e somente rejeitou 0,25% das distribuições testadas, 
enquanto os testes de Anderson–Darling e de Filliben rejeitaram 9,06 e 
8,8% das distribuições, respectivamente. A distribuição GEV mostrou-se 
a mais indicada na maioria das estações. Somente foi constatada alta 
concordância (73,7%) na indicação da melhor distribuição entre os testes 
de Filliben e o erro padrão de estimativa.

Palavras-chave: chuvas intensas; drenagem; probabilidade; gestão territorial.
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Introduction
The study of intense rainfall events is important for understanding 

the climatic reality of a place and for understanding and evaluating the 
consequences of the impacts they generate on different sectors of soci-
ety. Selge et al. (2015) showed a high vulnerability of agricultural pro-
duction and regional income due to the low adaptation to local climate 
conditions.

Most of the extreme rain events when they reach occupied areas, 
especially urban areas, negatively impact the socioeconomic sys-
tem of these locations (Souza et al., 2014). Fernandes and Valverde 
(2017) highlighted that located and extreme climatic events impact, 
especially, the most socioeconomically susceptible populations, 
with higher levels of exposure and less resilience. From a social 
point of view, extreme events are considered as those episodes of 
rain in which material, human, and economic damage of great im-
portance occurs and in which vulnerability and resilience play an 
important role in the analysis of the extreme event (Monteiro and 
Zanella, 2017).

Impacts related to extreme rainfall events cause a huge number of 
disorders and loses (Bork et al., 2017). Investigation of spatial and tem-
poral distributions of heavy rains provides information for planning 
actions to prevent and minimize their impact.

Risk assessment is an important tool in natural disaster manage-
ment. According to Mouri et al. (2013), risk assessment of natural di-
sasters is defined as the assessment of both the probability of natural 
disaster occurrence and the degree of damage caused by natural di-
sasters. Recently, many studies have focused on natural disaster risk 
analysis with probability distributions based on historical data, which 
are usually converted to frequencies. Regarding frequency analysis, 
particularly for extreme events, the objective is to define the events as-
sociated with a return period that provide information to carry out the 
design of hydraulic works, decreasing the uncertainty of the forecast 
(Molina-Aguilar et al., 2019). 

Costa et al. (2018) commented that studies about the risks of ex-
treme events enable the development of actions that minimize the ef-
fects of these events, thus strengthening the resilience of the affected 
communities, which generally have low technological development to 
overcome the damage triggered during disasters.

Water resource analysis using a statistical approach can increase 
our understanding of environmental contexts. These approaches have 
played important roles in disaster prevention, the environment, and 
climate change prediction. In some communities, extreme flood events 
no longer result in disasters because prevention strategies such as the 
construction of structured rivers and levees have been implemented 
(Mouri et al., 2013). 

For insurance and indemnity matters, it is necessary to define the 
expected indemnity or the insured amount, which depends, of course, 
on the probability of an extreme event occurring. For this, it is neces-

sary to adequately estimate the risks of extreme events, which requires 
the use of an appropriate probability distribution. Skees (2010) point-
ed out that ignoring this limitation can lead professionals to believe 
that they accurately accounted for exposure to catastrophic risk when 
this may not be true. A limited probability distribution adjustment in 
the sample data may underestimate or overestimate exposure to cata-
strophic risk.

Knowledge of extreme rainfall events is a requirement in drainage, 
waterproofing, and other engineering works, whether in urban or ru-
ral areas, because it allows the designer to consider the existing risks 
with the execution of the work and associate it with the best alternative, 
from an economic point of view, without disregarding technical issues 
of performance and safety (Souza et  al., 2014). It is also important 
for proper soil management and prevention of water erosion (Santos 
et al., 2010). Maximum rainfall estimation with a given return period 
is essential for dimensioning hydraulic works such as drainage chan-
nels, manholes, storm drain, bridges, and dams (Almeida et al., 2015). 
The procedure adopted normally consists of using a theoretical distri-
bution of probabilities, which must have its parameters previously ad-
justed based on the historical series of the annual maximums observed 
(De Paola et al., 2018).

There are several probability distributions, such as type I and type 
II extreme distributions, generalized extreme value (GEV), Pearson 
Type III, and Log-Pearson type III distributions, that can be used 
(Vivekanandan, 2015a). The type I extreme or Gumbel distribution 
and extensions have been applied to different areas of scientific knowl-
edge such as hydrology, meteorology, climatology, insurance, finance, 
and geology, among many others (Nanvapisheh, 2021). The Gumbel 
distribution has been widely used to study maximum rainfall (Marques 
et al., 2014; Affonso et al., 2020).

The GEV distribution is widely employed for modeling the extreme 
precipitation in the environmental sciences and many other fields (Bel-
la et  al., 2020). GEV distribution has recently been indicated and is 
being widely used for precipitation frequency analysis for its capacity 
to include all three types of asymptotic distributions of extreme values 
(Gumbel, Fréchet, and Weibull).

In recent decades, many studies have been performed on the 
best fit of probability distributions for hydrological series. In addi-
tion, many countries use specific probability distributions to analyze 
maximum hydrologic events. Pearson type III distribution is recom-
mended in China (Rizwan et al., 2018), while the United States ad-
opted the Log-Pearson type III distribution (USWRC, 1981). Gumbel 
distribution is recommended in Canada (Das and Simonovic, 2011). 
Marra et al. (2017) highlighted that GEV is a three-parameter distri-
bution of extreme values used worldwide to model rainfall extremes. 
Several European countries, such as Austria, Germany, Italy, and 
Spain, recommend the use of GEV distribution in studies of extreme 
events, such as rain and flood (Salinas et al., 2014). 
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Several studies in the literature have investigated probability dis-
tribution models for extreme values of climatic variables, mainly 
Gumbel and GEV models, which are currently the best-fits models, 
with best performance (Das and Simonovic, 2011; Marques et  al., 
2014; Pérez-Sánchez and Senent-Aparicio, 2017; Alam et  al., 2018; 
Yuan et  al., 2018; González-Álvarez et  al., 2019). Many studies indi-
cate Gumbel distribution as the most suitable method (Almeida et al., 
2015; Vivekanandan, 2015b; Cremoneze et al., 2017; Mistry and Sury-
anarayana, 2019), while others cite GEV distribution as the superior 
method (Das and Simonovic, 2011; Beskow et al., 2015; Namitha and 
Vinothkumar, 2019).

Besides the distribution to be used, the method to adjust param-
eters can interfere in the evaluation of distribution (Marques et  al., 
2014). Among methods for adjusting probability distribution parame-
ters, we highlight the method of moments (MM), the method of maxi-
mum likelihood (ML), and the method of L-moments (LM) (Hosking, 
1990). The method by Chow (1964) is still often used in Gumbel dis-
tribution, with this distribution being known as Gumbel–Chow (Back 
and Cadorin, 2020). The method of moments is considered simpler, 
but also less precise when compared with other procedures, such as 
the method of maximum likelihood (Vivekanandan and Shukla, 2015). 
The ML method is considered to maximize the plausibility of a given 
distribution to be represented by the parameters estimated. However, 
in some cases, small samples can produce estimators comparable or 
even inferior to other methods. The ML method also has the drawback 
of increased complexity in calculation routines to estimate parameters, 
as is the case of GEV distribution. Naghettini and Pinto (2007) high-
lighted that the method of moments can produce low-quality estimates 
compared with the ML method, especially when the distribution has 
three or more parameters. The authors highlighted that the LM meth-
od results in estimates comparable in quality with those of ML, being 
often more precise for samples with small number of observations. 
Hosking (1990) highlighted that the LM method is less affected by ex-
tremes in the data series.

Maximum precipitation series can be represented by more than 
one probability distribution, and it is important to select the best dis-
tribution to be used (Zhang et al., 2002; Mandal and Choudhury, 2015; 
Vivekanandan, 2015a; Feyissa and Tukura, 2019). We can select the 
best model based on tests comparing observed frequencies with theo-
retical frequencies. The adhesion tests most used in hydrology are the 
Kolmogorov–Smirnov (KS), Anderson–Darling (AD), chi-square, and 
Filliben correlation (Rf) tests.

The distribution to be adopted depends on the characteristics of 
the hydrological series, the method for parameter adjustment, and the 
criterion to be adopted in the selection of probability distribution. 
Numerous studies performed by different researchers show that the 
best distribution can be defined based on the analysis of adhesion 
distribution adjusted to the observed data. Therefore, no distribution 

should be indicated according to region or country (Vivekanandan and 
Shukla, 2015). Thus, identifying the most adequate probability distri-
bution to the extreme events observed, as well as adjusting its parame-
ters and evaluating the quality of this adjustment, is challenging in the 
study of extreme events.

Leite and Virgens Filho (2011) highlighted that an error can occur 
in data analysis because of disregarding the characteristics of the most 
appropriate probability distribution for the data under study. The au-
thors stated that mistakes may result in the unnecessary use of a more 
complex and laborious model, as well as in the use of a simplified mod-
el, which would result in wrong conclusions, if the data do not adhere 
to this distribution. However, we observe that most studies show only 
the best fit obtained, while in many cases, two or more models fit prop-
erly, with very small differences, and often less laborious and some-
times equally efficient model options are not shown.

Feyissa and Tukura (2019) highlighted that the proper evaluation 
of flood frequency distribution is one of the main problems faced by 
hydrologists. This issue is very important as different distributions can 
produce significantly different estimates for the same return period 
(Coulson, 1991). Thus, this study evaluates Gumbel and GEV distribu-
tions with parameters estimated by different methods for the series of 
annual maximum daily rainfall in Santa Catarina.

Materials and Methods

Data
We analyzed daily rainfall data from rainfall stations located in 

the state of Santa Catarina, Brazil. We used rainfall stations belong-
ing to the Hydrometeorological network of the National Water Agency 
(ANA, 2020) and the network of rainfall stations from the Santa Cata-
rina Agricultural Research Company (EPAGRI, 2020). For each rain-
fall station, we determined the series of annual maximums between 
1912 and 2019. We selected stations with series over 10 years, exclud-
ing years with failures in observations. We selected 224 rainfall stations 
with these criteria, with 201 stations from ANA and 23 stations from 
Epagri, whose spatial distribution can be observed in Figure 1.

Probability distributions tested
The GEV distribution incorporates three asymptotic forms of max-

imum extreme values in a single expression. The probability density 
function is given by Equation 1:

𝑓𝑓(𝑥𝑥) = 1
𝛼𝛼 [1 − 𝑘𝑘 (𝑥𝑥 − 𝛽𝛽
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, (1)

Where:
α = scale parameter.
β = position parameter.
k = form parameter.
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The value of signal k determines the asymptotic form of maximum 
extreme values, that is, if k < 0, GEV represents type II distribution, 
defined only for X > (β + α)/k. If k > 0, GEV represents type III dis-
tribution, defined only for X < (β + α)/k. If k = 0, GEV corresponds 
to Gumbel distribution with scale (α) and position (β) parameters. 
Fréchet and Weibull extreme value distributions correspond to the 
particular cases in which k > 0 and k < 0, respectively.

Type I extreme distribution, also known as Gumbel distribution, 
has its probability density function given by Equation 2:
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 (2)

Where:
α = the scale parameter (standard deviation of Gumbel distribution);
β = the location parameter (Model) of Gumbel distribution.

Parameter estimation
We obtained parameter estimation of Gumbel and GEV distri-

butions by the method of moments and maximum likelihood, as de-
scribed by Kite (1977). For the method of L-moments, we used the 
procedures described by Hosking (1994, 2005).

Adhesion tests
We applied adhesion tests to test the following null hypothesis 

(H0): maximum daily rainfall data follow the distribution specified, 
against the alternative hypothesis H1: maximum daily rainfall data 
do not follow the distribution specified. We used the adhesion tests 
of Kolmogorov–Smirnov, Anderson–Darling, and Filliben correlation 
(Rf), all at 5% significance level (α = 0.05).

For the KS test (Abreu et al., 2018), we calculated D+ and D− differ-
ences given by Equations 3 and 4:
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𝐷𝐷+ = Max|Fn(𝑥𝑥) − 𝐹𝐹(𝑥𝑥)|, 
 

𝐷𝐷− = Max|𝐹𝐹(𝑥𝑥) − Fn(𝑥𝑥)| 
 

𝐴𝐴2 = −𝑁𝑁 −∑
(2𝑖𝑖 − 1){ln𝐹𝐹𝑋𝑋(𝑥𝑥(𝑖𝑖)) + ln[1 − 𝐹𝐹𝑋𝑋(𝑥𝑥(𝑁𝑁−𝑖𝑖+1))]}

𝑁𝑁

𝑁𝑁

𝑖𝑖=1
 

 

ADc = A2(1+0.20/√N) 

 

𝑊𝑊𝑖𝑖 = 𝐹𝐹𝑥𝑥−1(1 − 𝑞𝑞𝑖𝑖) 
 

qi=
i-a

N+1-2a, 

 

Rf =
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑤𝑤𝑖𝑖 − �̅�𝑤)𝑁𝑁
𝑖𝑖=1

√∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)²𝑁𝑁
𝑖𝑖=1 ∑ (𝑤𝑤𝑖𝑖 − �̅�𝑤)²𝑁𝑁

𝑖𝑖=1

, 

 

�̅�𝑥 =
∑ 𝑥𝑥(𝑖𝑖)𝑁𝑁
𝑖𝑖=1
𝑁𝑁  

 

�̅�𝑤 =
∑ 𝑤𝑤𝑖𝑖
𝑁𝑁
𝑖𝑖=1
𝑁𝑁  

 

Se = √∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑋𝑋𝑖𝑖)2𝑛𝑛
𝑖𝑖1

𝑛𝑛 − 𝑘𝑘 , 

 

. (4)

The test statistic is given by the highest D+ and D− value, 
which was compared with the critical value (Dcrit) at 5% signifi-
cance level. Whenever Dmax value exceeds the Dcrit value, the dis-
tribution is rejected.

For the Anderson–Darling test (Abreu et al., 2018), we calculated 
the statistic by Equation 5:

𝑓𝑓(𝑥𝑥) = 1
𝛼𝛼 [1 − 𝑘𝑘 (𝑥𝑥 − 𝛽𝛽

𝛼𝛼 )]
( 1
𝑘𝑘−1)

exp {− [1 − 𝑘𝑘 (𝑥𝑥 − 𝛽𝛽
𝛼𝛼 )]

1/𝑘𝑘
} 

 

𝑓𝑓(𝑥𝑥) = 𝛼𝛼exp{−𝛼𝛼(𝑋𝑋 − 𝛽𝛽) − exp(−𝛼𝛼(𝑋𝑋 − 𝛽𝛽))}, 

 

𝐷𝐷+ = Max|Fn(𝑥𝑥) − 𝐹𝐹(𝑥𝑥)|, 
 

𝐷𝐷− = Max|𝐹𝐹(𝑥𝑥) − Fn(𝑥𝑥)| 
 

𝐴𝐴2 = −𝑁𝑁 −∑
(2𝑖𝑖 − 1){ln𝐹𝐹𝑋𝑋(𝑥𝑥(𝑖𝑖)) + ln[1 − 𝐹𝐹𝑋𝑋(𝑥𝑥(𝑁𝑁−𝑖𝑖+1))]}

𝑁𝑁

𝑁𝑁

𝑖𝑖=1
 

 

ADc = A2(1+0.20/√N) 

 

𝑊𝑊𝑖𝑖 = 𝐹𝐹𝑥𝑥−1(1 − 𝑞𝑞𝑖𝑖) 
 

qi=
i-a

N+1-2a, 

 

Rf =
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑤𝑤𝑖𝑖 − �̅�𝑤)𝑁𝑁
𝑖𝑖=1

√∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)²𝑁𝑁
𝑖𝑖=1 ∑ (𝑤𝑤𝑖𝑖 − �̅�𝑤)²𝑁𝑁

𝑖𝑖=1

, 

 

�̅�𝑥 =
∑ 𝑥𝑥(𝑖𝑖)𝑁𝑁
𝑖𝑖=1
𝑁𝑁  

 

�̅�𝑤 =
∑ 𝑤𝑤𝑖𝑖
𝑁𝑁
𝑖𝑖=1
𝑁𝑁  

 

Se = √∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑋𝑋𝑖𝑖)2𝑛𝑛
𝑖𝑖1

𝑛𝑛 − 𝑘𝑘 , 

 

. (5)

For Gumbel distribution and GEV distribution, as recommended 
by Naghettini and Pinto (2007), we corrected the AD test statistic by 
Equation 6:

𝑓𝑓(𝑥𝑥) = 1
𝛼𝛼 [1 − 𝑘𝑘 (𝑥𝑥 − 𝛽𝛽

𝛼𝛼 )]
( 1
𝑘𝑘−1)

exp {− [1 − 𝑘𝑘 (𝑥𝑥 − 𝛽𝛽
𝛼𝛼 )]

1/𝑘𝑘
} 

 

𝑓𝑓(𝑥𝑥) = 𝛼𝛼exp{−𝛼𝛼(𝑋𝑋 − 𝛽𝛽) − exp(−𝛼𝛼(𝑋𝑋 − 𝛽𝛽))}, 

 

𝐷𝐷+ = Max|Fn(𝑥𝑥) − 𝐹𝐹(𝑥𝑥)|, 
 

𝐷𝐷− = Max|𝐹𝐹(𝑥𝑥) − Fn(𝑥𝑥)| 
 

𝐴𝐴2 = −𝑁𝑁 −∑
(2𝑖𝑖 − 1){ln𝐹𝐹𝑋𝑋(𝑥𝑥(𝑖𝑖)) + ln[1 − 𝐹𝐹𝑋𝑋(𝑥𝑥(𝑁𝑁−𝑖𝑖+1))]}

𝑁𝑁

𝑁𝑁

𝑖𝑖=1
 

 

ADc = A2(1+0.20/√N) 

 

𝑊𝑊𝑖𝑖 = 𝐹𝐹𝑥𝑥−1(1 − 𝑞𝑞𝑖𝑖) 
 

qi=
i-a

N+1-2a, 

 

Rf =
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑤𝑤𝑖𝑖 − �̅�𝑤)𝑁𝑁
𝑖𝑖=1

√∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)²𝑁𝑁
𝑖𝑖=1 ∑ (𝑤𝑤𝑖𝑖 − �̅�𝑤)²𝑁𝑁

𝑖𝑖=1

, 

 

�̅�𝑥 =
∑ 𝑥𝑥(𝑖𝑖)𝑁𝑁
𝑖𝑖=1
𝑁𝑁  

 

�̅�𝑤 =
∑ 𝑤𝑤𝑖𝑖
𝑁𝑁
𝑖𝑖=1
𝑁𝑁  

 

Se = √∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑋𝑋𝑖𝑖)2𝑛𝑛
𝑖𝑖1

𝑛𝑛 − 𝑘𝑘 , 

 

. (6)

We compared the calculated values of ADc statistics with the crit-
ical value at 5% significance level (ADcrit = 0.757), recommended for 
Gumbel and GEV distributions (Naghettini and Pinto, 2007).

The Filliben adhesion test (1975) is based on the linear correlation 
coefficient Rf between observations ordered in increasing order and 
theoretical quantiles calculated by Equation 7:

Figure 1 – Location of rainfall stations.
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𝑓𝑓(𝑥𝑥) = 1
𝛼𝛼 [1 − 𝑘𝑘 (𝑥𝑥 − 𝛽𝛽

𝛼𝛼 )]
( 1
𝑘𝑘−1)

exp {− [1 − 𝑘𝑘 (𝑥𝑥 − 𝛽𝛽
𝛼𝛼 )]

1/𝑘𝑘
} 

 

𝑓𝑓(𝑥𝑥) = 𝛼𝛼exp{−𝛼𝛼(𝑋𝑋 − 𝛽𝛽) − exp(−𝛼𝛼(𝑋𝑋 − 𝛽𝛽))}, 

 

𝐷𝐷+ = Max|Fn(𝑥𝑥) − 𝐹𝐹(𝑥𝑥)|, 
 

𝐷𝐷− = Max|𝐹𝐹(𝑥𝑥) − Fn(𝑥𝑥)| 
 

𝐴𝐴2 = −𝑁𝑁 −∑
(2𝑖𝑖 − 1){ln𝐹𝐹𝑋𝑋(𝑥𝑥(𝑖𝑖)) + ln[1 − 𝐹𝐹𝑋𝑋(𝑥𝑥(𝑁𝑁−𝑖𝑖+1))]}

𝑁𝑁

𝑁𝑁

𝑖𝑖=1
 

 

ADc = A2(1+0.20/√N) 

 

𝑊𝑊𝑖𝑖 = 𝐹𝐹𝑥𝑥−1(1 − 𝑞𝑞𝑖𝑖) 
 

qi=
i-a

N+1-2a, 

 

Rf =
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑤𝑤𝑖𝑖 − �̅�𝑤)𝑁𝑁
𝑖𝑖=1

√∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)²𝑁𝑁
𝑖𝑖=1 ∑ (𝑤𝑤𝑖𝑖 − �̅�𝑤)²𝑁𝑁

𝑖𝑖=1

, 

 

�̅�𝑥 =
∑ 𝑥𝑥(𝑖𝑖)𝑁𝑁
𝑖𝑖=1
𝑁𝑁  

 

�̅�𝑤 =
∑ 𝑤𝑤𝑖𝑖
𝑁𝑁
𝑖𝑖=1
𝑁𝑁  

 

Se = √∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑋𝑋𝑖𝑖)2𝑛𝑛
𝑖𝑖1

𝑛𝑛 − 𝑘𝑘 , 

 

, (7)

Where:
qi = the empirical probability corresponding to the order of classifica-
tion given by Equation 8:

𝑓𝑓(𝑥𝑥) = 1
𝛼𝛼 [1 − 𝑘𝑘 (𝑥𝑥 − 𝛽𝛽

𝛼𝛼 )]
( 1
𝑘𝑘−1)

exp {− [1 − 𝑘𝑘 (𝑥𝑥 − 𝛽𝛽
𝛼𝛼 )]

1/𝑘𝑘
} 

 

𝑓𝑓(𝑥𝑥) = 𝛼𝛼exp{−𝛼𝛼(𝑋𝑋 − 𝛽𝛽) − exp(−𝛼𝛼(𝑋𝑋 − 𝛽𝛽))}, 

 

𝐷𝐷+ = Max|Fn(𝑥𝑥) − 𝐹𝐹(𝑥𝑥)|, 
 

𝐷𝐷− = Max|𝐹𝐹(𝑥𝑥) − Fn(𝑥𝑥)| 
 

𝐴𝐴2 = −𝑁𝑁 −∑
(2𝑖𝑖 − 1){ln𝐹𝐹𝑋𝑋(𝑥𝑥(𝑖𝑖)) + ln[1 − 𝐹𝐹𝑋𝑋(𝑥𝑥(𝑁𝑁−𝑖𝑖+1))]}

𝑁𝑁

𝑁𝑁

𝑖𝑖=1
 

 

ADc = A2(1+0.20/√N) 

 

𝑊𝑊𝑖𝑖 = 𝐹𝐹𝑥𝑥−1(1 − 𝑞𝑞𝑖𝑖) 
 

qi=
i-a

N+1-2a, 

 

Rf =
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑤𝑤𝑖𝑖 − �̅�𝑤)𝑁𝑁
𝑖𝑖=1

√∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)²𝑁𝑁
𝑖𝑖=1 ∑ (𝑤𝑤𝑖𝑖 − �̅�𝑤)²𝑁𝑁

𝑖𝑖=1

, 

 

�̅�𝑥 =
∑ 𝑥𝑥(𝑖𝑖)𝑁𝑁
𝑖𝑖=1
𝑁𝑁  

 

�̅�𝑤 =
∑ 𝑤𝑤𝑖𝑖
𝑁𝑁
𝑖𝑖=1
𝑁𝑁  

 

Se = √∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑋𝑋𝑖𝑖)2𝑛𝑛
𝑖𝑖1

𝑛𝑛 − 𝑘𝑘 , 

 

 (8)

Where:
N = the series size;
a = 0.4, according to the formula suggested by Cunnane (1973).

The Filliben test statistic is expressed by Equations 9, 10 and 11 
(Abreu et al., 2018):

𝑓𝑓(𝑥𝑥) = 1
𝛼𝛼 [1 − 𝑘𝑘 (𝑥𝑥 − 𝛽𝛽

𝛼𝛼 )]
( 1
𝑘𝑘−1)

exp {− [1 − 𝑘𝑘 (𝑥𝑥 − 𝛽𝛽
𝛼𝛼 )]

1/𝑘𝑘
} 

 

𝑓𝑓(𝑥𝑥) = 𝛼𝛼exp{−𝛼𝛼(𝑋𝑋 − 𝛽𝛽) − exp(−𝛼𝛼(𝑋𝑋 − 𝛽𝛽))}, 

 

𝐷𝐷+ = Max|Fn(𝑥𝑥) − 𝐹𝐹(𝑥𝑥)|, 
 

𝐷𝐷− = Max|𝐹𝐹(𝑥𝑥) − Fn(𝑥𝑥)| 
 

𝐴𝐴2 = −𝑁𝑁 −∑
(2𝑖𝑖 − 1){ln𝐹𝐹𝑋𝑋(𝑥𝑥(𝑖𝑖)) + ln[1 − 𝐹𝐹𝑋𝑋(𝑥𝑥(𝑁𝑁−𝑖𝑖+1))]}

𝑁𝑁

𝑁𝑁

𝑖𝑖=1
 

 

ADc = A2(1+0.20/√N) 

 

𝑊𝑊𝑖𝑖 = 𝐹𝐹𝑥𝑥−1(1 − 𝑞𝑞𝑖𝑖) 
 

qi=
i-a

N+1-2a, 

 

Rf =
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑤𝑤𝑖𝑖 − �̅�𝑤)𝑁𝑁
𝑖𝑖=1

√∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)²𝑁𝑁
𝑖𝑖=1 ∑ (𝑤𝑤𝑖𝑖 − �̅�𝑤)²𝑁𝑁

𝑖𝑖=1

, 

 

�̅�𝑥 =
∑ 𝑥𝑥(𝑖𝑖)𝑁𝑁
𝑖𝑖=1
𝑁𝑁  

 

�̅�𝑤 =
∑ 𝑤𝑤𝑖𝑖
𝑁𝑁
𝑖𝑖=1
𝑁𝑁  

 

Se = √∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑋𝑋𝑖𝑖)2𝑛𝑛
𝑖𝑖1

𝑛𝑛 − 𝑘𝑘 , 

 

 (9)

where 

𝑓𝑓(𝑥𝑥) = 1
𝛼𝛼 [1 − 𝑘𝑘 (𝑥𝑥 − 𝛽𝛽

𝛼𝛼 )]
( 1
𝑘𝑘−1)

exp {− [1 − 𝑘𝑘 (𝑥𝑥 − 𝛽𝛽
𝛼𝛼 )]

1/𝑘𝑘
} 

 

𝑓𝑓(𝑥𝑥) = 𝛼𝛼exp{−𝛼𝛼(𝑋𝑋 − 𝛽𝛽) − exp(−𝛼𝛼(𝑋𝑋 − 𝛽𝛽))}, 

 

𝐷𝐷+ = Max|Fn(𝑥𝑥) − 𝐹𝐹(𝑥𝑥)|, 
 

𝐷𝐷− = Max|𝐹𝐹(𝑥𝑥) − Fn(𝑥𝑥)| 
 

𝐴𝐴2 = −𝑁𝑁 −∑
(2𝑖𝑖 − 1){ln𝐹𝐹𝑋𝑋(𝑥𝑥(𝑖𝑖)) + ln[1 − 𝐹𝐹𝑋𝑋(𝑥𝑥(𝑁𝑁−𝑖𝑖+1))]}

𝑁𝑁

𝑁𝑁

𝑖𝑖=1
 

 

ADc = A2(1+0.20/√N) 

 

𝑊𝑊𝑖𝑖 = 𝐹𝐹𝑥𝑥−1(1 − 𝑞𝑞𝑖𝑖) 
 

qi=
i-a

N+1-2a, 

 

Rf =
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑤𝑤𝑖𝑖 − �̅�𝑤)𝑁𝑁
𝑖𝑖=1

√∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)²𝑁𝑁
𝑖𝑖=1 ∑ (𝑤𝑤𝑖𝑖 − �̅�𝑤)²𝑁𝑁

𝑖𝑖=1

, 

 

�̅�𝑥 =
∑ 𝑥𝑥(𝑖𝑖)𝑁𝑁
𝑖𝑖=1
𝑁𝑁  

 

�̅�𝑤 =
∑ 𝑤𝑤𝑖𝑖
𝑁𝑁
𝑖𝑖=1
𝑁𝑁  

 

Se = √∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑋𝑋𝑖𝑖)2𝑛𝑛
𝑖𝑖1

𝑛𝑛 − 𝑘𝑘 , 

 

 (10)

and 

𝑓𝑓(𝑥𝑥) = 1
𝛼𝛼 [1 − 𝑘𝑘 (𝑥𝑥 − 𝛽𝛽

𝛼𝛼 )]
( 1
𝑘𝑘−1)

exp {− [1 − 𝑘𝑘 (𝑥𝑥 − 𝛽𝛽
𝛼𝛼 )]

1/𝑘𝑘
} 

 

𝑓𝑓(𝑥𝑥) = 𝛼𝛼exp{−𝛼𝛼(𝑋𝑋 − 𝛽𝛽) − exp(−𝛼𝛼(𝑋𝑋 − 𝛽𝛽))}, 

 

𝐷𝐷+ = Max|Fn(𝑥𝑥) − 𝐹𝐹(𝑥𝑥)|, 
 

𝐷𝐷− = Max|𝐹𝐹(𝑥𝑥) − Fn(𝑥𝑥)| 
 

𝐴𝐴2 = −𝑁𝑁 −∑
(2𝑖𝑖 − 1){ln𝐹𝐹𝑋𝑋(𝑥𝑥(𝑖𝑖)) + ln[1 − 𝐹𝐹𝑋𝑋(𝑥𝑥(𝑁𝑁−𝑖𝑖+1))]}

𝑁𝑁

𝑁𝑁

𝑖𝑖=1
 

 

ADc = A2(1+0.20/√N) 

 

𝑊𝑊𝑖𝑖 = 𝐹𝐹𝑥𝑥−1(1 − 𝑞𝑞𝑖𝑖) 
 

qi=
i-a

N+1-2a, 

 

Rf =
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑤𝑤𝑖𝑖 − �̅�𝑤)𝑁𝑁
𝑖𝑖=1

√∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)²𝑁𝑁
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The Rf value calculated is compared with the critical value (Rcrit). 
The Filliben test has the disadvantage that critical values depend on 
sample size, distribution to be tested, and the expression used to cal-
culate empirical probability. In this study, we calculated critical values 
according to the equations shown by Heo et al. (2008).

Distribution selection criteria
In order to select the best distribution, we calculated values of stan-

dard error of estimate (Se) and used the Akaike’s criterion. In addition, 
we considered a global ranking based on the total score obtained in 
three adhesion tests along with the other selection criteria. Each test 
was assigned a value from 1 to 7, with the best distribution receiving 
the lowest value. Thus, the final score for each series tested ranges from 
5 to 35, and the best distribution was given by the lowest overall score 
of each series.

For the standard error of an estimate, we used the expression sug-
gested by Equation 12 (Kite, 1977):
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Where:
Se = the standard error for a given probability distribution; 
Xi = the precipitation recorded of order i; 
Xei = the precipitation estimated by the theoretical probability distribution;

n = the number of elements in the series of annual maximums;
k = the number of parameters estimated for probability distribution (k 
= 2 for Gumbel distribution and k = 3 for GEV distribution).

Akaike’s information criterion was developed to test whether a giv-
en model is suitable, defining its criterion as Equation 13:
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Where:
LogLike = the Log-likelihood function of the probability distribution;
k = the number of model parameters.

For Gumbel distribution, we calculate the Log-likelihood function 
by Equation 14:
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While for GEV distribution, the Log-likelihood function is by 
Equation 15:
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According to this criterion, the best model considered for problem 
construction is the one with the lowest Akaike’s information criterion 
(AICc) value. This criterion penalizes the addition of parameters, that 
is, the selection of an extremely complex model with many parameters 
(Ramos and Moala, 2014).

Results and Discussion
Table 1 contains the summary of descriptive statistics of the 

series of annual maximums. In the 224 series studied, series size 
ranged from 12 to 90 years, with 25% of the series containing up to 
29 years and 25% of the series containing more than 50 years of data. 
Series means ranged from 55.7 to 134.8 mm, although 50% of the 
series averaged in the 79.8–96.6 mm range. The variation coeffi-
cient ranged from 27.5 to 47.2%, with 50% of series between 27.2 
and 31.9%. Regarding extremes, we found that the highest values in 
each series range from 95.5 to 367 mm, although 50% of the series 
had maximum values within the 138.3–196.2 mm range. The asym-
metry coefficient ranged from -0.277 to 3.917, with only eight sta-
tions (3.6%) having negative asymmetry and 25% of the series with 
asymmetry below 0.50. In addition, 25% of series showed asymme-
try above 1.22 and only 6.7% showed asymmetry above 2.0. Alam 
et al. (2018) stated that series with asymmetry coefficient above 1.0 
can be considered highly asymmetric, while asymmetry from 0.5 
to 1 is considered moderately asymmetric. Series with asymmetry 
from -0.5 to 0.5 can be considered approximately symmetric.
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Table 2 shows rejection frequencies for the adhesion tests of dis-
tributions fitted to the series of annual maximums. The KS test only 
rejected four distributions (0.25%), one for the Gumbel–MM distribu-
tion, two for the Gumbel–Chow distribution, and one for GEV–LM. 
These series rejected by the KS test contained asymmetry coefficient 
above 2.8 with extreme values above 300 mm, which can be an outlier 
in the series. As the KS test is based only on the greatest difference 
between observed and estimated frequencies, an outlier can imply the 
rejection of the adhesion hypothesis. We obtained 142 rejections for 
the 1568 tested (224 series × 7 candidate distributions) with the An-
derson–Darling test, equivalent to 9.06% rejection. The Rf test rejected 
the Gumbel distribution for 19 series analyzed (8.5%). The Gumbel 
distribution adjustment for the eight series with asymmetry coefficient 
above 2 was rejected by the Rf test. Among GEV distributions, the Rf 
test rejected 62 series, the majority being of GEV–MV distribution. 
Considering the total series, the Rf test rejected 8.8% of series.

Thus, we observed that the KS test is little rigorous in rejecting 
adhesion hypotheses to the series of annual maximums. Abreu et al. 
(2018) obtained similar results. One of the criticisms of KS test is that 
its application assumes that the distribution to be tested is previously 
known. However, in applications, we usually adjusted distribution pa-
rameters based on the series to be tested. Even with these limitations, 
the KS test is widely used often as the only adhesion test (Al-Suhili and 
Khanbilvardi, 2014; Pereira et al., 2017; Silva Neto et al., 2017; Ottero 
et al., 2018) and also commonly used as criterion for selecting the best 
distribution (Caldeira et al., 2015; Back and Cadorin, 2020). AD and Rf 
tests proved to be more rigorous and should be favored. Gumbel distri-
bution was the most rejected as some series show negative asymmetry, 
and other series show asymmetries above 2.0. Gumbel distribution has 
a theoretical asymmetry coefficient of 1.1396. Thus, it is normal that 
series with asymmetry far from this value are considered inadequate. 
On the contrary, GEV distribution has the k parameter that allows bet-
ter adjustment to the format of data distribution. 

Beskow et  al. (2015) obtained similar results, who analyzed data 
from 342 rainfall stations in the state of Rio Grande do Sul and found 
that the KS test did not reject any GEV distribution and rejected only 
0.29% of Gumbel distributions. For the AD test, rejections were of 2.92% 

and 13.45% for GEV and Gumbel distribution, respectively. These rejec-
tions were of 2.05% and 8.19% by the Rf test, respectively. The authors 
concluded that the AD adhesion test was the most appropriate to evalu-
ate the adequacy of probability models to the historical series analyzed, 
as being more restrictive than Rf and KS tests.

Marques et al. (2014) analyzed series of maximum rainfall in the 
state of Minas Gerais and analyzed the performance of GEV, Gumbel, 
and Gama probability distributions with two parameters, concluding 
that the Gumbel probability distribution performed better, adjusting 
to 87.5% of cases. Among probability distributions evaluated, GEV ad-
justed by ML method showed adhesion for all rainfall stations, being 
indicated for use. Mello and Silva (2005) also compared the adjustment 
of parameters by MM and ML using the chi-square adhesion test and 
concluded that the ML method performed better. Abreu et al. (2018) 
observed that adhesion tests can indicate different results regarding ad-
equacy of probability distributions and concluded that the KS test was 
the least rigorous, admitting adhesion in all situations tested.

Table 3 shows frequencies in which different distributions were 
identified as the best according to different criteria. Using the criterion 
of lowest value of the KS statistic, Gumbel distribution was identified 
as the best in 83 series analyzed (11 MM, 23 ML, 13 LM, and 36 using 
the Gumbel–Chow method), and 141 series indicate GEV distribution 
as the best (37 MM, 43 ML, and 61 LM). By the Anderson–Darling 

Table 1 – Summary of descriptive statistics of the series of annual maximums.

Statistics Nr. of data Mean (mm)
Coefficient of

Highest (mm) Lowest (mm)
Variation (%) Asymmetry

Maximum 90 134.8 47.2 3.917 367.0 85.2

Minimum 12 55.7 27.5 -0.277 95.5 15.3

Mean 40.3 89.4 30.8 0.910 169.7 47.9

1st Quartile 29 79.8 27.2 0.504 138.3 41.0

2nd Quartile 38 88.0 29.1 0.789 160.8 47.3

3rd Quartile 50 96.6 31.9 1.219 196.2 54.2

Quartile Range 21 16.8 54.5 0.715 57.9 13.2

Table 2 – Frequency of rejection of the adhesion hypothesis.

Distribution tested
Adhesion test

Kolmogorov–
Smirnov

Anderson–
Darling Filliben

Gumbel–MM 1 42 19

Gumbel–MV 0 25 19

Gumbel–LM 0 27 19

Gumbel–Chow 2 13 19

GEV–MM 0 21 7

GEV–MV 0 7 47

GEV–LM 1 7 8

Total 4 142 138
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test, Gumbel distribution was selected in 75 series, 57 of which use 
the Gumbel–Chow method. GEV distribution was selected in 149 se-
ries, 88 of which use the LM method. Similar results were obtained by 
Lima et al. (2021), who reported that the GEV distribution had the best 
performance in Anderson–Darling test and it was suitable to represent 
series with positive skewness with high values. Also Back and Cadorin 
(2020), comparing the Gumbel and GEV distribution in 11 pluviomet-
ric stations in the state of Acre, concluded that the GEV distribution 
with parameters estimated by the LM method was considered the best 
in 73% of the stations. Rf criterion indicated Gumbel distribution as 
the best in 24 series, indicating GEV distribution for the remaining 
200 series. The Rf criterion does not distinguish between adjustment 
methods of Gumbel distribution. In the Akaike’s criterion, Gumbel–
ML distribution, with 172 series, and GEV–ML distribution, with 40 
series, stood out. In Akaike’s criterion, adjustment methods using max-
imum likelihood stand out for considering the Log-likelihood function 
in the calculation, which is minimized in the parameter adjustment 
process. Moretti and Mendes (2003) showed that small samples cause 
quality loss and less precision in parameter estimates using the method 
of maximum likelihood. Molina-Aguilar et al. (2019) highlighted that 
multiple methods for estimating the parameters of the Gumbel distri-
bution function are reported in the literature, with the moments and 
ML methods being the best known and most used of them all.

In the criterion standard error of estimation, GEV distribution also 
prevailed with 192 series, of which GEV–MM is the most frequent. 
Adopting the ranking, GEV distribution is indicated in 164 series and 
Gumbel distribution is indicated in 60 series. González-Álvarez et  al. 
(2019) reported similar results when investigating whether the Gumbel 
was most suitable, based on 318 rain gauges from the Caribbean region. 
They concluded that GEV was most suitable in 47.2% of the rain gaug-
es, while Gumbel, in spite of being widely used in Colombia, was only 
suitable in 34.3% of the cases. Coronado-Hernández et al. (2020), with 
records from 362 stations distributed throughout Colombia, concluded 
that GEV distribution presents the best fit with an overall value of 52%.

We observed that distribution selection varies according to the cri-
terion used, and the lack of agreement between most of these criteria 
is evident. Table 4 shows the agreement matrix in the selection of dis-
tribution between criteria. The KS criterion showed 32.6% agreement 
with the AD criterion, that is, in 32.6% of series, the best distribution 
was selected equally by KS and AD criteria. Agreement of KS crite-
ria with Rf and Akaike’s criteria and standard error of estimate were 
16.5, 13.8, and 13.8%, respectively. Regarding ranking criteria, agree-
ment was 29.5%. We note that, even for completely random events, 
we expected 14% agreement. Thus, we state that there is no agreement 
between KS, Rf, and Se criteria. For the AD criterion, agreement with 
Rf, Akaike’s, and Se criteria was 19.2, 12.1, and 17.9%, respectively, and 
agreement with the ranking was 36.2%. The Rf criterion had 73.7% 
agreement with the standard error of estimate. These were the indexes 
with the greatest agreement observed, reflecting increased compliance 
with the ranking. Abreu et al. (2018), who evaluated criteria for choos-
ing probability distributions, also concluded that the Filliben test was 
the one with greatest convergence when considering the three best per-
formances. Akaike’s criterion showed the least agreement with other 
criteria, being only 5.4% with standard error and 17.4% with the sum 
of the ranking. These results show that different criteria used in the se-
lection of distribution may indicate different probability distributions 
to be used. Akaike’s criterion did not show significant agreement with 
any other criteria for privileging distributions estimated by the method 
of maximum likelihood. The greatest agreement, observed between Rf 
and Se methods (73.4%), can be explained as both consider differences 
between all precipitation values observed and estimated and distribu-
tion, while the KS criterion considers only the greatest difference. 

As different criteria indicate different distributions, several authors 
(Mandal and Choudhury, 2015; Alam et al., 2018) have been making a 
ranking considering all indexes. In this case, agreement for KS criteri-
on is 29.5 and 36.25% for AD, 47.8% for Rf, and 48.2% for Se. Akaike’s 
criterion has only 17.4% agreement, practically not differentiating 
from the completely random value. This fact reinforces that although 
the Akaike criterion is an index used to select models in general, its ap-
plication in the selection of probability distribution is not in line with 
the other criteria and contributes less to the general score. Table 3 – Indication of the best probability distribution according to the 

selection criteria.

Probability 
distribution

Selection criteria

KS AD Rf AK Se Ranking

Gumbel–MM 11 1 24* 0 2 10

Gumbel–ML 23 8 24* 172 1 20

Gumbel–LM 13 9 24* 6 25 23

Gumbel–Chow 36 57 24* 6 4 7

GEV–MM 37 17 73 0 93 49

GEV–ML 43 44 53 40 22 53

GEV–LM 61 88 74 0 77 62

*Non-differentiated between Gumbel distributions.

Table 4 – Agreement matrix between adhesion criteria.

Criterion
Classification criteria 

KS AD Rf AK Se Ranking

KS 1.000 0.326 0.165 0.138 0.138 0.295

AD 0.326 1.000 0.192 0.121 0.179 0.362

Rf 0.165 0.192 1.000 0.129 0.737 0.478

AK 0.138 0.121 0.129 1.000 0.054 0.174

Se 0.138 0.179 0.737 0.054 1.000 0.482

Ranking 0.295 0.362 0.478 0.174 0.482 1.000
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Figure 2 – Differences (%) between maximum rainfall estimated with 
the best-ranked Gumbel and GEV distributions and maximum rainfall 
estimated with the distribution selected using ranking criteria.

Some authors, besides using quantitative criteria, also adopted 
qualitative criteria, mainly with the evaluation of Q–Q plot or distri-
bution curve graphs with confidence interval (Aiyelokun et al., 2017). 
Qualitative evaluation is feasible when evaluating some distributions 
for a data series. However, for studies evaluating hundreds of series and 
various distributions, graphical analysis is unfeasible.

Figure 2 shows percentage differences between distribution esti-
mated by Gumbel and GEV best ranked with the distribution select-
ed by the ranking criteria. We observe that quartiles of differences are 
within the range of -7.8 and +1.8% with Gumbel distribution for a 
return period of up to 50 years. This means that differences between 
rainfall estimated by these distributions are lower than 10% for more 
than 50% of the series studied. Differences are even lower for GEV dis-
tribution. This finding explains reduced agreement in the distribution 
selection criteria, as in most cases differences are insignificant, and 
more than one of distributions tested can be used to estimate maxi-
mum rainfall. Thus, distribution classified in the second or third place 
in the ranking can estimate rainfall with nonsignificant differences 
from the distribution in the first place.

On the contrary, we observe that some series show differences of more 
than 20% with Gumbel distribution estimates for a return period of above 
20 years, reaching 84% with a return period of 1,000 years. For GEV dis-
tribution, differences above 20% were only observed with a return peri-
od of more than 100 years. These results are in consonance with Coelho 
et al. (2017), who reported differences greater than 18% in the maximum 
rainfall calculated with the GEV and Gumbel distributions with parame-
ters estimated by the methods of moments and L-moments method. Back 
(2018), who analyzed maximum flow estimates with different probability 
distributions, observed that for the 10-year return period, differences were 

below 10%, while differences could be above 20% for the 100-year return 
period. Therefore, we highlight the importance of careful analysis of the 
probability distribution to be used in the estimation of extreme events with 
a return period of 100 years or more. In dam projects, the recommenda-
tion is to use a return period of up to 10,000 years. In these cases, we can 
obtain very different estimates for maximum rainfall according to the dis-
tribution selected, even if we perform adhesion test.

Esteves (2013) showed that extreme rainfall estimates for long 
return periods can differ by more than 40% depending on the distri-
bution model used and question whether the level of protection they 
offer are appropriate in locations where data demonstrate clearly that 
alternative probability distributions may have a better fit to the local 
rainfall data. Adequate selection of the probability distribution is one 
of the more important issues in flood frequency analysis.

Fischer et al. (2012) claimed that extreme weather events regular-
ly cause damages to ecosystems and affect the socioeconomic sphere. 
The population that is living in areas vulnerable to weather extremes 
such as floods, rain, storms, and droughts is increasing. Statistically, 
weather index insurance covers the extreme tail of the probability dis-
tribution of weather events for a specified region. The determination of 
the index depends on the probabilities associated with the given risk. 
An accurate estimation of return levels at given return periods is rel-
evant for the determination of indices for weather index-based crop 
insurance and other adaptation measure.

Conclusions
The use of 224 series of maximum annual rainfall data ranging from 

12 to 90 years, with asymmetry coefficient ranging from -0.277 to 3.917, 
allows important conclusions on parameter adjustment and selection of 
probability distributions to estimate maximum extreme rainfall. 

The Kolmogorov–Smirnov test is little rigorous as adhesion test 
criterion to adjust probability distributions to maximum annual rain-
fall data. In addition, its use to indicate the best probability distribution 
does not demonstrate confidence. Anderson–Darling and Filliben tests 
were more rigorous, rejecting 9.06 and 8.5% of the distributions tested, 
respectively. Filliben test also showed that it can be used as a criterion 
to select the best distribution, showing 73.7% agreement with the crite-
rion with the lowest standard error of estimate.

Akaike’s criterion showed less agreement with the other criteria 
tested, and for considering the likelihood function in calculation, only 
indicated Gumbel and GEV distributions with parameters estimated 
by the method of maximum likelihood. The ranking consisting of sev-
eral criteria can be an alternative to select the best probability distribu-
tion, although not superior to the use of standard error of estimate or 
Filliben test.

The GEV distribution was selected as the best distribution for most 
of the series used in all selection criteria. However, all distributions 
adjusted with the different parameter estimation methods showed re-
jections by Anderson–Darling and Filliben tests. This finding reinforc-
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es the need to look for the best distribution to fit the data observed, 
especially when the series is asymmetric or has the presence of extreme 
values. A single distribution cannot be indicated for all cases.

The selection of the probability distribution can affect the estimates 
of extreme events and thus impact the determination of maximum flows 
with consequences in the dimensioning of hydraulic works and definition 
of risk areas, and influence the cost of insurance against extreme events.

As the return periods gets longer, the differences between the rainfall 
estimates obtained with the different probability distributions are more ac-
centuated. Therefore, we recommend careful analysis of adjustment to se-
lect the most adequate probability distribution to estimate extreme events 
with return periods of 100 years or more. Detailed analysis of the fit of 
probability distributions to the observed data series is a better alternative 
than assuming a priori that a given probability distribution is adequate.

Contribution of authors:
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