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Abstract

The presented research responds to increasedmental illness conditions worldwide and the need
for efficient mental health care (MHC) through machine learning (ML) implementations. The
datasets employed in this investigation belong to a Kaggle repository named "Mental Health Tech
Survey." The surveys for the years 2014 and 2016 were downloaded and aggregated. The prediction
results for bagging, stacking, LR, KNN, tree class, NN, RF, and AdaBoost yielded 75.93%, 75.93%,
79.89%, 90.42%, 80.69%, 89.95%, 81.22%, and 81.75% respectively. The AdaBoost ML model per-
formed data cleaning and prediction on the datasets, reaching an accuracy of 81.75%, which is good
enough for decision-making. The results were further used with other MLmodels such as Random
Forest (RF), K-Nearest Neighbor (KNN), bagging, and a few others, with reported accuracy rang-
ing from 81.22% to 75.93% which is good enough for decision making. Out of all the models used
for predicting mental health treatment outcomes, AdaBoost has the highest accuracy.
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1 Introduction
Mental Health Disorder (MHD) is also known as a mental illness disorder with diverse symptoms
ranging from feeling down and sad, excessive worries or fears, sleeping issues, low energy, and sig-
nificant tiredness. There are diverse kinds of mental health, which include bipolar disorder, anxiety
disorder, suicidal ideation, and many more. According to Rehm et al., [1], millions of people are suf-
fering from mental disorders and if care is not taken early enough, it can lead to the progression of
all kinds of disease and discomfort, which will then lead to severe treatments. And it is being treated
and evaluated using subjective, self-reported, or questionnaire-based methods, which takes time and
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can be difficult at times. MH issues have gotten to the systematic research stage. The World Health
Organization (WHO) listed many mental conditions that cause depression, psychological problems,
and schizophrenia [2]. The United Nations stated that, according to their statistics, almost 20 million
deaths are recorded every year from mental health disorders. In response to this, WHO stated that
MH is now given an upper priority and therefore leads to more study and research on MH. Univer-
sities and most citizens’ understanding and warning remain at the traditional level of psychological
warning, which is limited and theoretical. In this new age of Information Technology (IT), data min-
ing, and big data, it has started to play a vital role in the MH field, most especially in the aspect of
rising alarm of the early warning sigma or symptoms, and most institutions have realized the use of
Informa ionization of student management, which only entails the collection stage, storage means,
student information management, and combining such with the literature [3, 4].

The vast increase in the usage of the Internet has led to fast growth in data generation, which has
led to the utilization of datamining technology formining values frombig data. Such operations com-
mence with classification, which apparently saves a lot of time and economic cost as in data analysis,
tuning & fitting, predicting & forecasting processes, followed by regression operations. The methods
that are most ideal for classification and regression operations are known as ensemble methods. This
combines several models to form one good model via reducing variance and bias in order to enhance
the prediction accuracy percentage [5]. Common methods used for these are boosting [6] and bag-
ging, of which boosting produces better results than bagging [7]. A boosting algorithm is generally
a learning algorithm in the field of machine learning, which makes use of a "probably approximately
correct" model designed by Valiant. The algorithm was further improved by [8] and the improved
version was named the AdaBoost algorithm. This algorithm has now been improved to a more vital
feature classification algorithm in ML and is widely used for diverse areas like intrusion detection
[9], feature extraction [10], image retrieval, object recognition [11], and other applications. The error
rate increases during training as weights assigned to samples via AdaBoost rise and likewise fall as
new weights fall [12].

ML tools have become useful tools for psychiatry in order to disentangle parameters associated
with patient outcomes. The majority of ML research in psychiatry has focused on classification and
diagnosis, and as a result, is prone to poor performance due to a lack of understanding of the applica-
tion of data science and ML techniques, as well as corresponding diagnostic processes or psychiatric
disorders. But advancement has beenmade in some areas via decision tree (DT)models in predicting
suicide in U.S. military personnel and adolescents, and DT has been able to show how variables can
be used to give insight into the models being used. This research looks into the ML algorithms in an-
alyzing and predicting MH conditions and treatments via the use of the Mental Health Tech Survey
dataset gotten from the Kaggle repository.

The remaining sections of this work are organized as follows. Section 2 and 3 present related work
and methodology respectively. Section 4 contains the results and discussion, while sections 5 and 6
conclude the study and highlight future scopes.

2 Related Work
In transforming mental healthcare, Graham et al., [13] opined that AI technology holds amazing and
promising roles in achieving solutions to many problems. The researchers reviewed 28 papers on AI
and mental health that made use of brain imaging data, electronic health records (ERs), novel smart
monitoring systems, mood rating scales, and platforms on social media in classifying and predicting
schizophrenia, health illness (depression), suicide attempts, and ideation. The outcome of the studies
showed high accuracy and provided good examples of the potential of AI in healthcare for mental
illness.

According toMadan et al., [14], there are vast real-world databases of health care records available
worldwide that can be used to improve personalized medicine and predictive analysis. Of these, the
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major source of information collection in mental health has been text-based records. Therefore, the
main approach to detecting psychiatric disease is via text mining, according to the researchers. In
this paper, 150 text files were manually used for psychiatric symptoms and attributes, and they were
divided into two (training and test set). A systemwas designed to automatically detect the attributes,
and the workflow made use of a neural network model. The overall result shows 86% of the F1 score
with 91% of the independent test set.

Zhang et al., [15] were concerned about depression, which is one of the mental disorders that
keeps increasing in its effect on a person’s physical health. The technology approach of AI has cur-
rently been implemented to aid mental health practitioners, most especially clinicians and psychi-
atrists, in decision-making via their patients’ medical records. The researchers explored children’s
mental health and how to use AI to cope with MH issues in children. In order for it to be treated at
an early stage, deep learning tools were proposed to be implemented in diagnosing and forecasting
children’s mental health. A convolutional neural network (CNN) was first used to examine the deep
parts of children’s behavior data features, followed by insights into the disruption, classification, and
then finally, forecasting. The results showed that this current model had a 97.9% sensitivity ratio,
96.7% of the rate specified, 95.6% of ratio recall with 90.1% of precision ratio, and 95.6% of F rate
measured with a 9.2% error rate, which is better than the existing system.

One of the complex illnesses associated with varieties of clinical associations and socioeconomic
status is mental illness and it’s being associated with diverse textual clinical data, coupled with those
from social media and interviews [16]. Natural language processing (NLP) is one of the methods
used by researchers as one means to aid in early diagnosis and empower the medical healthcare sys-
tem. Overall, 399 papers from about 10,467 records were reviewed and the review results showed
that there was an upward trend detected via NLP of mental illness. Therefore, for further studies, a
recommendation on the use of deep learning was made.

Sharma et al., [17] studied diagnosis of mental illnesses based on direct interviews designed with
some set of questions, which mostly consume more time and human energy, because men’s health is
beginning to gain more ground and the need for the use of Machine Learning (ML) is also beginning
to arise, with the healthcare system not left behind. The researchers here then made use of ML in
developing a model that can enhance the diagnosis of mental depression, and such amodel was eval-
uated. A sample of about 11,081 records of Dutch citizens was used and Extreme Gradient Boosting
(XGBoost), which is one of the types of ML algorithm, was applied to each sample, and classification
was carried out with an accurate result of 0.90.

This research looks into mental health conditions by analyzing the survey of mental health tech
to extract meaningful information, and this was achieved via the means of aggregation. The survey
years 2014 and 2016 were merged together in order to extract more meaningful information, which
they then used to predict the number of people responding to treatment.

3 Methodology
This section entails the method used in collating the information used for this research work and the
flow of how the data collected will be utilized properly. The datasets used were downloaded from
the Kaggle repository and were titled Mental Health in Tech Survey for the years 2014 and 2016. The
2014 dataset has 1259 instances with 27 parameters. The 2016 dataset has 1433 instances with 62
parameters. Both were used to carry out the analysis and prediction processes.

The structure in Figure 1 denotes the architecture of the mental health predictive analysis in this
study hence, it shows how the whole system was implemented, commencing from when the dataset
is able to be cleaned of such data in order to avoid missing values that may affect the accuracy of any
models implemented, to the real analysis of all the parameters used in the survey, to the covariance
matrix, correlation matrices, and probability of mental health occurrence, to how people respond to
treatment, and predicting the respondents’ treatment with ROC curve visualized results.
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Figure 1: Architecture of Mental health Predictive analysis

3.1 Algorithm of MHD with AdaBoost
1○ Input: Trainingdataset= {(MH1, TR1), (MH2, TR2), . . . (MHn, TRn)}; WeakLearn algorithm;

Ensemble size T.

2○ Initialization: Starting training set using distribution weight (see Equation 1).

w1
c ∶ w1

c =
1
n

, c = 1, 2, . . ., n (1)

3○ Do for e = 1, 2, . . . , T

– Compute a weak classifier based on the classifier algorithm with present weight we

– Compute weighted error during training (see Equation 2).

ϵe ∶ ϵe =
n

∑
c=1

we
c ; TRc≠he (MH c) (2)

– Update weight of training instances (see Equation 3).

we+1
c = we

c . exp(−∝e.TRc.he(MH c)
MH

Ze
, whereZe =

n

∑
c=1

.we
c . exp (−∝e.TRc.he (MH c)) (3)
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4○ Output: ensemble classifier (see Equation 4).

f (MH ) = sign (
T

∑
e=1

.∝e.ht (MH )) (4)

3.2 Models used for Mental Health Conditions
3.2.1 AdaBoost

Adaptive boosting is a classification algorithm that forms a committee of weak classifiers and en-
hances ML [18] performance algorithms by combining them together into a strong classifier. The
main goal of this classifier is to enhance the weight of uncategorized points and decrease the weight
of categorized points. Some of the advantages of AdaBoost are its ease of use and the accuracy of
the weak classifier, and some of the disadvantages are the need for quality data and optimization of
hyperparameters. Another name for the tree generated is called Decision Stump [19], and the model
will keep training till a lower error is achieved [20].

3.2.2 Random Forest (RF) Classifier

This classifiermade use of training data tomodelmany tree structures, and each tree suggested a class
as an output, with vast numbers of results selected as the overall outcome [21]. The building structure
requires specific numbers of trees and, as such can be used as a means of bagging and aggregating
bootstrap data. This can be used to reduce variance in the final result.

3.2.3 Neural Network (NN)

An artificial neural network (ANN) refers to a biologically inspired sub-field of artificial intelligence
modeled after the brain. Artificial neural networks (ANNs) are computer networks that are based on
biological principles. Multilayer perceptrons (MLPs) with back propagation learning algorithms are
the focus of this chapter among the numerous forms of ANNs [22]. MLPs are supervised ANNswith
three layers: input, hidden, and output. They are the most commonly used ANNs for a wide range
of tasks. We go over the structure, method, data pretreatment, overfitting, and sensitivity analysis
of MLPs, among other things. advantages: the ability to work with insufficient knowledge and good
fault tolerance. Disadvantages: the difficulty of showing the problem to the network and hardware
dependence [23].

3.2.4 Decision Tree (DT)

This is a supporting tool that has a tree-shaped structure and models the cost of resources, possible
outcomes, consequences, and utilities. It also provides a means of presenting the algorithm via a
control statement. DT involves the use of a flowchart, which has nodes that denote each stage, and
each branch denotes the attribute result, while the rule of classification is the path from the leaf to root.
The tree structure denotes classification and If-then rules, which are quite easy to understand. The
computation methods involved are quite short and efficient. It can be used in computing symptoms
related to mental health. Mining can be achieved with the use of knowledge and law via algorithms
and the provision of student mental health for efficient decision-making for student education [24].

3.2.5 K-Nearest Neighbor (KNN)

One of the simpler machine learningmethods is this algorithm. Many in the industry favor it because
of how simple it is to use and how quickly calculations can be completed. Using the points that are
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most similar to it, the KNN model categorizes data points. It "informed guesses" what an unclassi-
fied point should be classed as using test data. Simple recommendation systems, image recognition
software, and decision-making models frequently use KNN [25, 26].

4 Result and Discussion
This section analyzed, visualized, and predicted mental health using ML models, and the AdaBoost
model ultimately performed better than other ML models in this study. The result was further vali-
dated with other models and the Ada result had an accuracy of 81.75% while others were lower than
that. Figure 2 is the correlationmatrix ofMHparameters and Figure 3 is the respondents by countries
with tech flag and company size orange.

Most respondents in the survey are in Tech. Most of them are from the US and work in medium
or large companies. Even though the description of the research appeared to be global, which would
have been a greatway to amplify the problem in various communities, the research ended up focusing
on the USA and a few European countries. As expected, most of the respondents are male, this
happened because the tech industry is occupied by a big majority of men. The proportion of females

Figure 2: Correlation matrix of MH parameters
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Figure 3: Respondents by countries with tech flag and company size orange

Figure 4: Gender by countries with overall proportional (only techs)

Figure 5: Mental Health Disorder in Tech companies with overall percentage proportion (currently)

in tech in this survey in theUnited States (US) is the biggest one out of all countries. Figure 4 shows the
gender of the participants per country, and Figure 5 is the mental health disorder in Tech. companies
with overall percentage proportion. The results in Figure 6 show that there are tech workers with
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Figure 6: Mental Health Disorder in Tech with past overall percentage proportion

MHD more in the US followed by (the United Kingdom), from the experiment, the result from the
tech dataset also reveals that the UK has more MHD than any other countries that participated in the
survey with over 41.8% acknowledged having MHD. The response was either ’Yes’, ’No’, or ’Maybe’.
There were tech workers with MHD more in the US followed by (the United Kingdom) UK in the
past than any other countries that participated in the survey with over 53.7% acknowledged having
MHD. So, the rate dropped from 53.7% to 41.8% from the present analysis.

Figure 7 shows the result of the extraction of important features from the tech dataset. These in-
clude age, gender, family history, benefits, care options, anonymity, leave, andwork interference. This
highlighted the importance of features extracted for further analysis of the mental health disordered,

Figure 7: Importance features extraction
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Figure 8: MH considerations by Companies

which ranges from age down to work interface to arrive at a reasonable conclusion. The result in Fig-
ure 8 shows the results of MH considerations by Companies. that about 55.7% companies have MH
coverage provided for their employees, 21.7% provided resources, 21.4% provided anonymity, 35.2%

Figure 9: Consequences of MHD on career observed
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Figure 10: Being open about Mental Health with friends and family

Figure 11: Treatment correlation matrix parameters

requested for medical leave, with 24.3 having both mental and physical health of equal importance
and only 6% had negative consequences of MHD over their work and 94% were able to manage it
effectively. In the main time, there are ripple effects of these considerations on the overall output of
these companies.

Figure 9 shows that only 38.8% think MHD may hurt their careers while 42.2% were not so sure.
2.3% has not actually experienced MHD, 10.1% think no, 6.6% yes it has. Therefore, MHD will con-
tinue to affect the career of work since consciousness is not there to address it.

When considering openness about MH with friends and family, Figure 10 shows that only 18.3%
were very open to their friends and family, 45.1% are sometimes open 9.1% neutral, 14.8% sometimes
not open, while 5.1% were not opened at all and 7.6% NA to me. Therefore, MHD will continue
to affect the career of workers since open to addressing the issue. Figure 11 shows the relationship
between the MHD parameters used for the analysis and prediction while using ML models

Figure 12 visualized the histogram chart showing those withMHD and are undergoing treatment
and those that have not appeared, those that are on treatment are more than those that have not.
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Figure 12: Separate by treatment or not

Figure 13: Probability of age-range of mental health condition with care option based on gender

Figure 13 results shows 100% (1.0) probability of female between the age-range of 66-100 having
MHD 31-65 age-range shows about 0.72 probability of female having MHD, 21-30 age range with 0.7
probability of MHD and 07. Probability of females having MHD of 0-20 age-range.

The actual result of MHDwith treatment is presented as follows, while Figure 14 shows AdaBoost
Predicted result of MHD with treatment.

########### AdaBoosting ###############
Accuracy: 0.81746031746
Null accuracy:
0 191

1 187
Name: treatment, dtype: int64
Percentage of ones: 0.4947089947089947
Percentage of zeros: 0.5052910052910053
True: [0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0]
Pred: [1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0]
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Figure 14: AdaBoost Predicted result

The performance of eight ML models used in this study is presented in Table 1, and it shows how
AdaBoosting outperformed other ML models in this study.

Table 1: Table Style

S/N ML models Accuracy (%)
1 Bagging 75.93
2 Stacking 75.93
3 LR 79.89
4 KNN 80.42
5 Tree class 80.69
6 NN 80.95
7 RF 81.22
8 AdaBoost 81.75

5 Conclusion
The study presents an ML implementation that impacts how mental disorders are being diagnosed.
To this end, the Kaggle repository has been used as a training/testing dataset. We attempted to clas-
sify the patients with different supervised algorithms and concluded that AdaBoost was the most
successful tool for the task. In other words, this research work has been able to explore the mental
health (MH) tech survey dataset, and diverse insights have been extracted and visualized from the
dataset. It shows the application of ML will aid in the faster collection, sorting, and understanding
of the data, as well as prediction. This visualization includes the gender, age, where the survey took
place, the reaction of people and workers to their employees having MH issues, how their work has
been affected, treatment or not issues down to prediction using ML models. The accuracy of predic-
tion results was compared among the eight ML models used, the results of the prediction for bag-
ging, stacking, LR, KNN, tree class, NN, RF, and AdaBoost yielded 75.93%, 75.93%, 79.89%, 90.42%,
80.69%, 89.95%, 81.22%, and 81.75% respectively. The results also show that more males responded
than females and from all the countries that the survey was done, respondents from the United States
responded well. Work and family history were also reflected in the analysis, with the majority of the
respondents having a history in their family, and most of them were under one care or the other, es-
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pecially the female respondents. The results further show that MH often interfaces with their work
performance. And the predictions made with ML show the probability of respondents responding
to treatments keeps increasing.

6 Future Work
Kaggle is a bonafide source of data. However, the data set seems very limited when it comes to
MH dataset as it contains MH datasets of a few of the developed countries. Hence, there is a need
to populate MH dataset for an informed decision-making process. This research can also be further
improveduponbymakinguse of themental health tech survey 2020 dataset if one exists or conducting
another survey for 2020 and then applying another model using an ensemble model with Natural
Language Processing (NLP) and all the missing values can be further removed for more accurate
results. The survey in 2014 and 2016 was great. Replica of such survey is suggested, now that during
the COVID-19 restrictions and social distancing is prevailing and compare the results
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