
Vol. 1, No. 2, pp 18 - 41, 2020
DOI: 10.55969/paradigmplus.v1n2a2
. .

Automated Fine Grained Traceability Links Recovery
between High Level Requirements and Source Code

Implementations

Alejandro Velasco ID 1,� and Jairo Aponte ID 1

1Universidad Nacional de Colombia, Bogotá, Colombia
{savelascod, jhapontem}@unal.edu.co

Abstract

Software Traceability has been a matter of discussion in the Software Engineering community
for a long time. The process of keeping and recovering traces among software artifacts in any sys-
tem represents a fundamental aspect to properly perform software maintenance tasks and require-
ments compliance verification. Furthermore, there exist application contexts where this becomes
a mandatory process, for instance, banking and healthcare. Software traceability researchers have
been proposing alternatives to recover lost traceability links in coarse-grained and middle-grained
levels of detail; however, proposed techniques are not enough to meet the desired levels of gran-
ularity in specific critical contexts. In this work we propose a fine-grained traceability algorithm
designed to recover traces between high level requirements written in natural language and source
code statements where they are implemented. We tested our approach in four open-source health-
care systems to trace constraints requirements specified by theHIPAA law, and evaluated the results
as presented in this paper.

Keywords: Software Traceability ⋅ Information Retrieval ⋅ Static Code Analysis ⋅ Program Slicing ⋅
Software Maintenance ⋅ Natural Language Processing ⋅ Healthcare

Received: 18 July 2020 ⋅ Accepted: 13 August 2020 ⋅ Published: 19 August 2020.

1 Introduction
Traceability in software engineering is a research field whosemain purpose is to recover lost informa-
tion of traces and links between high-level artifacts (e.g., documentation, use case diagrams, require-
ments specifications) and source code artifacts (e.g., classes and methods) [1, 2]. Throughout the
evolution of any software system, the information of existing relations between requirements, source
code artifacts, and underlying infrastructures may be lost, leading to a progressive increase in the
complexity of software maintenance tasks. Recovering those links among software artifacts consti-
tutes a crucial requirement to ease code comprehension and help to perform a wide variety of tasks
such as bug tracking, feature location, code restructuring, and change impact analysis. Moreover,
maintaining traceability links makes easier the validation of stakeholder’s needs and the verification
of the correct implementation of requirements in any software system [3].

Keeping the links among software artifacts is a task that software teams should do it from the very
beginning of any software project [4]. However, in practice, in most cases, developers are focused on

This article is distributed under the terms of the Creative Commons License Attribution 4.0 International (CC BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, providing appropriate credit to the original authors
and source.

https://doi.org/10.55969/paradigmplus.v1n2a2
https://orcid.org/0000-0002-4829-1017
https://orcid.org/0000-0002-5339-896X

Automated Fine Grained Traceability Links Recovery between High Level Requirements and Source Code Implementations 19
. .

programming tasks and forget their responsibility of creating and maintaining documentation links
between the various software artifacts. Hence, when time permits, the system documentation, and
some percentage of links recovery, is left for the final stage of the project [4]. These bad practices lead
to significant drawbacks when assessing the quality of the constructed software products as well as
the verification of their compliance with the mandatory constraints and stakeholders’ needs.

In the case of critical systems, it is essential to comply with explicit privacy and security rules, as
is the case of HIPAA for healthcare information systems. Software firms and regulatory entities, such
as the HHS (U.S. Department of Health and Human Services) Office for Civil Rights, are in charge of
verifying and ensuring the regulatory compliance of software systems [5]. Usually, regulators have
no alternative but to perform manual checks of the source code to verify compliance with existing
regulations [6, 7, 8]. Such a way of working is a time-consuming and error-prone traceability task,
and clearly, its main cause is the absence of traceability links. To aid people in mandatory constraints
verification, researchers have proposed automated approaches to traceability links recovery. Existing
techniques focusmainly on linking classes andmethodswith high-level constraints and requirements.
Nevertheless, in some cases, the verification of compliance with mandatory rules requires analysis at
a finer level of granularity to confirm and assure that source code implements them.

Fine-grained traceability link recovery aims at supporting the verification process of requirements
compliance of software, by connecting mandatory constraints to concrete programming statements,
including conditionals, assignments, loops, and basic code snippets. Themain contribution of this pa-
per is to present an extension of our previouswork [9], proposing a fine-grained traceability technique
that combines heuristics, information retrieval (IR) techniques, and static software code analysis, to
identify traces between software mandatory constraints and source code structures.

To address all the work presented in this paper, the following research questions were defined:

1○ What are the code structures commonly used to implement different types of mandatory con-
straints?

2○ How natural language processing, information retrieval, and static source code analysis tech-
niques can support fine-grained traceability for mandatory constraints compliance?

3○ How can we assess the accuracy of a technique for fine-grained traceability link recovery?

This paper is organized as follows: Section 2 - RelatedWork, briefly describes the studies relevant
to our problem. Section 3 - Dataset Description, provides information about the artifacts used to
conduct this study. Section 4 - Heuristics, explains the observations and remarks we take as basis
for the proposed technique. Section 5 - Fine-grained traceability algorithm, presents the traceability
technique designed and developed in this study. Section 6 - Results, reports the evaluation data of the
proposed technique. Section 7 - Discussion, presents relevant remarks regarding the main strengths
and weaknesses of the proposed approach. Lastly, the paper ends with conclusions and future work,
in sections 8 and 9, respectively.

2 Related work
Requirements mapping is a time-consuming and error-prone task that is indispensable for ensuring
that a software system complies with restrictions imposed by official regulations and constraints ex-
pected by stakeholders [7]. In the case of HIPAA [10], several classifications by typology have been
made to facilitate the validation process and make it more complete and comprehensive. HIPAA law
has threemain sets of regulatory constraints; for healthcare software systems, HIPAAestablishes stan-
dards and rules aimed at ensuring security and confidentiality, and enforcing correct management of
all patient data. [5]. In that sense, Breaux. et al. [6, 11], propose a semantic model by identifying
language patterns to extract rights and obligations from HIPAA statutes; they considered the pri-
vacy rules on HIPAA regulations for performing the requirements classification. The Breaux model

ParadigmPlus (2020) 1:2

20 Alejandro Velasco and Jairo Aponte
. .

was the basis for the construction of other frameworks [12, 13, 14]. Because the legal regulations are
written in a complex and dense format, Alshugran et al. proposed a process to extract the privacy
requirements from HIPAA; specifically, the defined process has a set of methods to analyze, extract
and model privacy rules [15]. Some studies have proposed mechanisms to encourage developers
to verify legal compliance with HIPAA requirements during the construction of healthcare software
systems. For instance, Maxwell et al. propose a production rule model to encourage requirements
engineers to keep trace between law and high level artifacts across every development process [16];
they validated their approach using iTrust, a HIPAA compliant healthcare system.

2.1 Traceability links recovery
Coarse-grained andmiddle-grained levels of granularity have been themost common in proposed ap-
proaches for traceability link recovery between high-level software artifacts and source code snippets
[17, 18, 19, 20, 21, 22, 23, 24, 25]. Fasano [18] built ADAMS, a tool for automatic traceability manage-
ment based on Latent Semantic Indexing (LSI), that improvesVector SpaceModel techniques [26, 27],
under the assumption that most software systems have high-level software artifacts with a well de-
fined hierarchical structure. ADAMS is able to recover traceability links between software high-level
documentation and source code classes.

Marcus and Maletic [19] use Latent Semantic Indexing (LSI) for recovering traceability links be-
tween methods and documentation. Based on the comments and identifier names present in the
source code, they manage to extract semantic information useful for recovering links.

Paloma et al. [23] created CRYSTAL (Crowdsourcing RevIews to SupporT App evoLution), an
IR-based tool for recovering traceability links among commits, issues, and user reviews. The tool can
remove useless words, calculate the textual similarity of the artifacts, and select the candidate links
according to predefined criteria and threshold values.

De Lucia et al. [24] reduce the effects of noise in software artifacts by using smoothing filters.
They empirically evaluated their approach and report a significant improvement of the IR techniques
Vector Space Model and Latent Semantic Indexing.

Diaz et al. [25] propose TYRION, a tool for traceabilitY link recovery using information retrieval
and code ownership. They use code ownership to improve the candidate links generation. Theirmain
assumption is that if a developer authored code that is linked to a particular high-level artifact, then
another code snippet created by the same author is likely to be associated with the same artifact.

2.2 Fine-grained traceability link recovery techniques
Some techniques have been proposed that perform the recovery of traceability links at a fine-grained
granularity level. This means that such techniques recover links between high-level artifacts and
specific lines of code [28]. The execution traces of specified features of a software system, heuristics,
and source code static analysis techniques have been used for this purpose [29, 30, 31, 8, 32]. Wong
et al. [32] come up with a technique based on execution slices, that receives two sets of test cases,
one that exercises the feature of interest and another that does not. By using dynamic information
obtained from the instrumented software system (i.e., list of statements executed), the technique can
discriminate between code that is unique to a feature, and code that is common to several features.

Dagenais and Robillard [30] propose a model to recover traceability links between the software
learning resources and the Application Programming Interface (API) documentation. They use a
meta-model representation of the involved artifacts (i.e., documentation, source code, and support
channels) to understand the context in which a code-like term is used.

Sharif and Maletic [31] address the problem of evolving traceability links. For this purpose, they
update and evolve traceability links based on the differentiation among versions of the involved arti-
facts in a traceability link.

ParadigmPlus (2020) 1:2

Automated Fine Grained Traceability Links Recovery between High Level Requirements and Source Code Implementations 21
. .

2.3 Limitations of adopted strategies
As already mentioned, current IR-based techniques for recovering traceability links are designed to
relate software requirements to files and classes. They have focused mostly on coarse-grained gran-
ularity, so that they usually trace high-level software artifacts to files, classes, and, in best cases, to
methods. The main problem with fine-granularity source code structures, such as conditionals or
exception handling statements, is that they usually do not contain enough textual information that
matches the vocabulary of high-level artifacts [27]. This circumstance translates into a low accuracy
of the IR-based techniques. Therefore, new techniques or improvements of the existing ones should
be able to generate traceability links between high-level documents, such as software mandatory con-
straints written in formal regulations, and low-level code structures such as conditionals, assignment
statements, and method calls.

3 Dataset description
HIPAA statutes are written in a complex language. Thus, to trace source code artifacts back to high-
level constraints, we defined a taxonomy of HIPAA statutes according to their likelihood of being
related to software implementation of standards and regulations. Moreover, we found that not all
sections of theHIPAA rules are related to healthcaremanagement systems. Thus, we decided to focus
on the HIPAA statutes most related to those systems and user data security regulations (as stated in
the privacy rule). Therefore, we extracted a set of law statutes that apply for our particular problem.
Table 1 summarizes the HIPAA administrative simplification. In this study we analyze the Security
and Privacy rule of HIPAA since it includes most of the regulations related to the implementation of
healthcare management systems.

We consider those statutes derived from HIPAA security and privacy rules, defined in the ad-
ministrative simplification; then, we identify those that are suitable to associate with source code
implementations and configurations in healthcare systems. As a result, we classified the law con-
straints using a taxonomy with three categories. The first category (A) has the rules that could be
easily traced into code. These are regulations that mainly refer to functional requirements that must
be implemented in every HIPAA compliant healthcare system. The second category (B) includes
statutes that define constraints related to software implementation and non-functional requirements,
still suitable to be traced to code. The last category (C) lumps together statutes and standards that
describe how organizations and health care providers implement practices and methods to audit in-
teractions with healthcare systems so that the private information of patients is protected; those are
unsuitable to be traced to code.

Table 1: HIPAA Statutes Taxonomy

ID Category Subpart Statutes Samples
A Potentially suitable

to trace into code.
Security Standards: General
Rules. Administrative safeguards.
Technical safeguards.

164.306(a)(1), 164.306(a)(2),
164.306(a)(3), 164.308(a)(1)
(ii)(D), 164.308(a)(5)(ii)(C),
164.308(a)(5)(ii)(D).

B Moderately suitable
to trace into code.

Administrative safeguards. 164.308(a)(1)(i), 164.308(a)
(1)(ii), 164.308(a)(4)(ii)(A),
164.308(a)(4)(ii)(B).

C Indirectly related to
health care software
systems

Security Standards: General
Rules. Administrative safeguards.
Physical safeguards.

164.306(a)(1), 164.306(a)(2),
164.306(a)(3), 164.306(c), 164.
306(d), 164.306(d)(1),164.306
(d)(2), 164.306(d)(3).

ParadigmPlus (2020) 1:2

22 Alejandro Velasco and Jairo Aponte
. .

3.1 Healthcare systems
As a first step of the design of a fine-grained traceability algorithm, we look for Java open-source
healthcare software systemswith available documentation (e.g. use cases anduser stories). We found
four candidate systems: iTrust [33, 34], OpenMRS [35], OSCAR [36] and TAPAS [37]. The available
documentation has suitable descriptions of the features offered by each system. Moreover, these four
health care systems are explicitly defined as HIPAA compliant in their official pages. Table 2 shows
the repository and system version analysed in this study.

Table 2: Summary of open source health care systems chosen to analyze in this study.

Name Repository Version
TAPAS https://sourceforge.net/projects/ap-apps/ v. 0.1
iTrust https://sourceforge.net/projects/itrust/ v. 21
OSCAR https://sourceforge.net/projects/oscarmcmaster/ v. 14.0.0
OpenMRS https://github.com/openmrs v. 1.12.x

Each health care system offers features that implement standards defined in HIPAA law. The fea-
tures that we identified in all systems, by observing the deployed applications, include user authenti-
cation, patient historical data management, appointment definitions, disease reports, audit controls,
and data encryption.

For each system, we identified the file extensions associated with source code artifacts, as showed
in Table 3. For source code analysis we consider .java .js and .jsp extensions. Such files have Java and
JavaScript statements, and alsoHtml and custom tags; The .xml and .properties extensions correspond
to files with relevant information about constants and variables used within the source code, and
therefore, are also pertinent for our purpose. Lastly, files with .sql extension has SQL sentences with
significant information about data and entities of the application domain that are referenced in the
source code.

Table 3: Summary of source code files containing source code artifacts that were taken as the corpus
of the traceability algorithm.

iTrust OpenMRS OSCAR TAPAS
JAVA 936 1545 3810 221
JSP 266 447 1655 0
JS 3636 416 875 0
XML 14 820 193 14
SQL 192 2 711 0
PROPS 7 39 39 2
TOTAL SC ARTIFACTS 5051 3269 7283 237

3.2 Extracting requirements from high level artifacts
One of the data items that we require for this study is explicit high-level requirements. To this end,
we had to extract specific requirements from the available documentation on each health care system.

We set apart several text fragments from requirements explicitly declared in the software high-
level artifacts (query of our algorithm). Then, we extracted software requirements embedded in
sentences from the documentation of all four systems, according to the following template 1:

[Article] + [Subject] + [ObligationV erb] + [Complement] (1)

ParadigmPlus (2020) 1:2

Automated Fine Grained Traceability Links Recovery between High Level Requirements and Source Code Implementations 23
. .

Table 4: Some specific requirements extracted from the available documentation of selected
healthcare systems

ID Requirement System Documentation
ITRUST-1 "AnHCP is able to create a patient [S1] or dis-

able a selected patient [S2]. The create/dis-
able patients and HCP transaction is logged
(UC5)."

iTrust http://agile.csc.ncsu.edu/
iTrust/wiki/doku.php?
id=requirement

OSCAR-1 "Your password is stored in an encrypted for-
mat such that even the system administrator
cannot find out what it is. If you have forgot-
ten your user name and/or password, your
administrator can reset the password for you
but he/she cannot tell you what the original
password was"

OSCAR http://oscarmanual.org/
oscar_emr_12/General
%20Operation/access-
preferences-and-
security/accessing-oscar

TAPAS-1 "The system must have the ability to man-
age users in the system. Like clinical data,
users should not be able to be deleted from
the system as they will be tied to activities in
a record."

TAPAS http://tap-apps.source
forge.net/docs/use-
cases.html#UC-
SYSADM-01

Thus, the extracted requirements were textually taken from documentation without any modifi-
cation. Furthermore, the extraction process was conducted only from available Use Cases and User
Stories. Those artifacts convey information about requirements and user needs that is essential for
subsequent implementation tasks. A User Story describes functionality that will be valuable to any
actor, ranging from software developers to final users [38]; therefore, it is likely probable to find im-
plementations in source code based on textual information fromUser Stories. By the same token, Use
Cases typically describe interactions between the system and its users that allow them to achieve their
goals. Thus, they also represent a mechanism to define software requirements that somehow will be
represented in source code.

In some cases, following the precise definition of the format leads to the extraction of phrases with
no sense or context. For that reason, in such particular cases, we included in the extraction additional
information from the surrounding text of such phrases to complete them, i.e., terms thatwere not con-
sidered when the filter was applied. Table 4 shows some examples of specific requirements extracted
from artifacts of each system.

Finally, we selected all the extracted requirements that were more suitable to trace into code ac-
cording to the proposed taxonomy of HIPAA Security and Privacy regulations. In other words, we
associated each extracted requirement with a HIPAA statute and focused on those in the categories
(A) and (B) of the classification in Table 1.

3.3 Source Code extraction
Before proposing a traceability algorithm to link up requirements and source code structures, we
study in detail how different software healthcare systems are built. The intent of this process was to
identify patterns in the source code and come up with a solution based on empirical observations. In
this section we describe the examination process conducted through the source code of the selected
healthcare systems presented in Table 2.

For each of the requirements selected from all the systems (those that were related to any HIPAA
statute), we identified files and source code lines that played a dominant role in their implementation.
This process required a joint effort that involved several people with knowledge of the programming

ParadigmPlus (2020) 1:2

24 Alejandro Velasco and Jairo Aponte
. .

Figure 1: Overview of source package organization for each of the healthcare systems selected in the
this study. On left top, iTrust source packages, right-top TAPAS source packages, bottom-left

OPENMRS source packages, bottom-right OSCAR source packages.

languages used in the implementation of the healthcare systems.
Once deployed and configured the development environments for the four healthcare systems

according to the specifications given in user manuals and deployment instructions, we performed
the analysis of the source code. In general terms, given a requirement, we conducted a process of
exploration starting from the layer of views, followed by the layer of services until the layer of entities
at the database level. Figure 1 shows an overview of the source code organization from the used IDEs
for each of the projects.

For all the selected requirements extracted fromdocumentation, we collected detailed information
about the source code files used in the implementation, the methods that were defined in those files
and also the strictly related code lines within each method. For each trace of source code, we register
the information to be processed later, when evaluating the effectiveness of the proposed traceability
algorithm.

4 Heuristics
Over time, the solutions to complex problems in software engineering have often been based on
premises that greatly simplify the search for an answer. These premises can be derived from the di-

ParadigmPlus (2020) 1:2

Automated Fine Grained Traceability Links Recovery between High Level Requirements and Source Code Implementations 25
. .

rect observation of a problem in such a way that through an empirical process, the limits and starting
points of a possible solution can be defined. Heuristics are often used in multiple contexts to propose
possible solutions to problems of diverse characteristics, such as design patterns [39], computational
problems[40], optimization algorithms [41] and fault location in software [42].

In this context, we denote the term heuristic as a problem-solving approach used to improve the
accuracy of our solution. Due to the nature of the problem that we tackle, we propose some heuristics
to reach an approximate solution to find traceability links between artifacts whose domains are quite
dissimilar, i.e., source code and natural language documents.

Based on observations derived from the manual process of traceability links recovering between
the source code and the high level requirements described in natural language, we defined a set of
heuristics that determined the basis for the design of an automated fine-grained traceability algo-
rithm.

4.1 (H1) Heuristic 1: Developers tend to use terms present in high-level re-
quirements when writing source code

Before giving a solution to a specific domainproblem, any software development process goes through
a phase of abstraction in the first place. Abstracting a problem requires an understanding of all the
business rules, entities and interactions between the different components. The abstraction process
requires identifying the entities that interact within a problem domain. To avoid losing the context
of the problem when creating a solution, software architects and developers often naturally use de-
scriptive terms to generate the software artifacts needed for the construction of a system. For instance,
some programming paradigms such as Object Oriented Programming [43] and Aspects Oriented
Programmings [44] are based on abstraction processes to identify actors and key entities in a deter-
mined context; once such key entities have been identified, as well as the business rules present in the
domain, it is feasible to implement a suitable solution that models the real situation.

4.2 (H2) Heuristic 2: Comments in source code are a valuable source of infor-
mation that can be exploited to increase the accuracy of any traceability
algorithm

In addition to the information encoded in the source code identifiers, developers working on open
source projects often write comments to explain functionalities that are implemented at the source
code level [45, 46]. Making comments in the code is a practice that could be reduced as long as good
coding techniques are followed. In high-level programming languages, the source code itself should
be sufficiently explanatory so that no additional comments or explanations are required. [47]. In spite
of that, in the health care management systems selected for conducting this study, the frequency of
comments and explanatory texts within the code is very high; comments range from explanations
about the implemented code to rudeness or bad words.

While it is true that the presence of comments in the source code can improve the accuracy of a
traceability algorithm based on textual similarity, it must be kept in mind that not all the comments
in the source code provide a significant input. In some cases, stated information is not related at all
with the requirements that are being implemented.

4.3 (H3) Heuristic 3: Subjects in texts that describe a high-level software re-
quirement regularly represent entities in the source code

Given a software requirementwritten in natural language, there is often a subject, a verb, and an object
of determined action. For that reason and as a consequence ofH1, when developers are implementing

ParadigmPlus (2020) 1:2

26 Alejandro Velasco and Jairo Aponte
. .

a requirement at the source code level, entities, methods, and variables names usually include terms
directly associated with the subjects and objects described in a high-level requirement.

As our problem domain is health care, there is a great variety of terminology that if not adopted
when a requirement is implemented, it would be hard and tedious to understand the code. In the
particular context of healthcare management systems, terms like “patient”, "appointment", "disease"
and "health care provider" are usually present in a large number of artifacts.

4.4 (H4) Heuristic 4: Conventions used by developers to name source code
entities can be used to define patterns to improve accuracy in IR algorithms

Conventions in the source code are a mechanism accepted by the vast majority of developers to con-
duct an specific development process [48, 49]. Nowadays, there are many frameworks that prioritize
convention over configuration allowing developers to focus on the comprehension of the problem
domain and business rules that must be implemented, instead of tedious and repetitive technical de-
tails. For instance, frameworks such as Ruby on Rails and Groovy on Grails provide a big set of code
artefacts tested by the community; there is a well-known collection of tools that allow developers to
assume conventions and reuse tested artefacts in the development process leaving aside technical de-
tails, In other words, developers trust the functional code tested by the community and focus their
efforts on the problem domain.

Although the health care systems that we analyzed in this study were not built over the set of
tools offered by a framework such as Ruby on Rails, the adopted conventions that we managed to
observe after a detailed analysis of the source code include ways to name the different code artifacts
(e.g. camelCase, UpperCamelCase), design patterns, folder structures, and code assets organization.

Well defined conventions are present in projects where a large number of people work together
(e.g. Health care systems selected); in that way it is more addressable to articulate teamwork and
facilitate readability of the source code. In open source projects, the community usually defines its
own conventions.

4.5 (H5) Heuristic 5: Delegation is ubiquitous in object-oriented systems and
can be used to determine the artifacts that are involved in the implemen-
tation of a high-level requirement

Delegation is a concept that can be extrapolated in any context since every single part of any system
can assign responsibilities to another one perform a particular task. Delegation in source code is a
design pattern where different objects that make up a system, expose behaviors in such a way that
the responsibility to perform a certain operation does not fall on a single member but is assigned to
different instances and in this way, the work is distributed [47]. The software delegation facilitates
the structuring of the source code and facilitates software maintenance tasks. Delegation in general
is always present when the architecture of a system is defined.

This principle is important and should not be overlooked to propose a solution to the traceability
problem. Since different members in the source code delegate responsibilities, it would be wrong to
assume that the implementation of a high level requirement will be condensed in a single member or
component within the system.

As a consequence of this premise, in the context of our problem, it is necessary to support any
Information Retrieval (IR) process based on textual similaritywith techniques of Static CodeAnalysis
to determine delegation interactions between members that may be involved in the implementation
of a high-level requirement.

ParadigmPlus (2020) 1:2

Automated Fine Grained Traceability Links Recovery between High Level Requirements and Source Code Implementations 27
. .

5 Fine-grained traceability algorithm
A great variety of techniques have been formulated to perform traceability recovery processes in soft-
ware artefacts. In order to verify compliance of regulatory constraints in a fine granular level, we
proposed an algorithm that take advantage of information retrieval (IR) techniques, static code anal-
ysis and heuristics derived from observations after a process of manual analysis over source code
implementations. Figure 1, shows a summary of our technique.

Figure 2: Flow diagram of proposed Fine-Grained traceability algorithm.

5.1 A1: Call graph construction from source code files
The source code files and artifacts and relevant structures that are part of the implementation of a
system are all of a quite different nature. Java classes are constituted by attributes and methods;
JavaScript code files are batch processing files that are stored in plain text; JSP files are a combination
of Java code, JavaScript code, Tomahawk and Html tags. The process of A1 as depicted in Figure 2,
can be summarized as the generation of a plain text file with the information of methods headers (i.e.
access modifier [optional], return type, name, parameter list, exception throws [optional]) and their
paths in the different source code artifacts. Figure 3, shows more detailed view of this file.

5.2 A2: Indexing phase
Before going through the algorithm of information retrieval, several processing tasks are performed
on the text for both the corpus and the query. The query is a list of requirements writing in natural
language to be traced into the corpus, which is the source code of a selected system.

When dealing with two entries of a different nature, the treatment of the terms that make up the
corpus and the query is essentially different in both cases. Concerning the treatment performed on the

ParadigmPlus (2020) 1:2

28 Alejandro Velasco and Jairo Aponte
. .

Figure 3: First 15 lines of the method mapping file for iTrust

query, tokenization, stemming, stopword removal, part of speech (a.k.a. POS) tagging, punctuation
removal, number spell out and word embedding [50] tasks are all performed. On the other hand,
the tasks carried out with the terms that make up the corpus include stop word removal, splitting
by camel case, punctuation removal and tokenization. Figures 4 and 5 show examples of corpus and
query files after the indexing phase.

5.3 B: Information retrieval process
Once the corpus and the query are indexed, they are treated as entries for the information retrieval
algorithm to obtain a ranked list of the possible corpus files that are most likely related to the text of
the query requirements.

Figure 4: Fragment of query file for iTrust

ParadigmPlus (2020) 1:2

Automated Fine Grained Traceability Links Recovery between High Level Requirements and Source Code Implementations 29
. .

Figure 5: Fragment of corpus file for iTrust

After executing the information retrieval algorithm, k files are obtained in order of relevance for
each requirement; that is, if the query file contains a set of n requirements in total, the list of ranked
links will contain a total of kn files most related to each entry in the query file.

The number of links taken into account (k) for each requirement was determined empirically. In
other words, after 20 executions of FGTHunter over the selected systems (i.e. 5 evaluations for each
selected system) we determined that the optimal value for k fluctuates between 25 and 30 files per
requirement. This number is enough to obtain the most strictly relevant files, ignoring those that are
less related to requirements. An example of the ranked list of links given by the traceability algorithm
are shown in Figure 6.

Figure 6: First 7 results in the ranked list of artifacts generated for iTrust after applying LSI
algorithm.

5.4 C: Parsing phase
Once the list of files, most related to a given requirement based on textual similarity is obtained, the
next phase of the algorithm consists of analyzing source code implementations and perform abstrac-
tions through program slicing, to find structures at source code level that are related to the implemen-
tation of a particular requirement. To correctly extract different structures within the code, we use

ParadigmPlus (2020) 1:2

30 Alejandro Velasco and Jairo Aponte
. .

parsers for each type of file included in the corpus file. The parsers statically analyze code elements
present in .java, .js, .jsp, .xml, .sql, .properties and plain text files. Parsers receive as input a source
code fragment and give us an Abstract Syntax Tree (AST) representation of it in a way that makes it
easier to process.

5.5 D: Program slicing process

Some mechanisms at source code level have been proposed to support traditional optimization tech-
niques. One of thosemechanisms is program slicing; this abstraction technique hasmultiple applica-
tions in software engineering such as testing [51], refactoring of the source code, reverse engineering,
software comprehension and software maintenance [52].

Formally, we can define program slicing as an abstraction process [53] that takes place at the code
level, with the purpose of looking for fragments (slices) of code that directly or indirectly affect the
state of a variable (slicing criteria); in thisway it is possible to simplify the source code of the programs
focusing on previously selected semantic or syntactic aspects. The slicing process eliminates all those
parts of the code that are not related or that have no effect on the criterion of interest [54].

After executing the parsers for each type of source code file, it is possible to extract code fragments
of interest since we are able to perform an exhaustive static analysis of source code. For each of the
files that were identified by the information retrieval algorithm (LSI), slicing criteria were defined
considering the subjects present in the description of each requirement. Within the source code, there
are terms (e.g. subjects, adjectives, verbs) of the problem context and therefore it is possible to define
slicing criteria from the names of variables, objects, classes, andmethods. To illustrate this point, let’s
assume that a requirement r1 contains 4 subject names; so it is possible to define 4 slicing criteria to
conduct a program slicing process in each file given by the retrieval information algorithm for r1 after
executing the process defined in B (Figure 2). For each source code file, a slicing process is performed
to get the code lines within each file that affect or are affected by a particular criterion. The result of
this operation is a set of slices for each file ranked in B.

5.6 E: Full trace construction phase

The information given by the process of abstraction of the source code through program slicing is not
enough to build entirely the trace of a requirement. To put it another way, consider a slice of source
code given by the process defined in D; it is highly likely that such a code snippet contains calls to
other methods within the system that do not necessarily contain terms in common with a high-level
requirement but that fulfill a very important role in the implementation. This problem can also be
seen as a consequence of delegation.

In this phase of the algorithm, the code snippets obtained in the slices are analyzed and, for each
call to an externalmethod that is not defined in the parent file, a search process is carried out according
to the definition header of themethod that is invokedwith the support of themapping file obtained in
A1. Each of the referenced methods is also included in the trace of the requirement, and recursively,
a slicing process D is performed.

As a final result of the execution of the traceability algorithm for a particular project, a list of files
and source code structures that are most related to each of the requirements specified in the query
file are obtained. Figures 7 and 8 show an example of the expected output after the full traceability
algorithm execution.

To evaluate and test our approach, we developed a Java program that implements the proposed
traceability technique. It was named FineGrainedTraceabilityHunter (FGTHunter). We also imple-
mented tools designed for static analysis of source code, as well as information retrieval algorithms.

ParadigmPlus (2020) 1:2

Automated Fine Grained Traceability Links Recovery between High Level Requirements and Source Code Implementations 31
. .

Figure 7: Folder structure of results obtained after the execution of the traceability algorithm for
iTrust. Parent folder contains stats about the algorithm execution, corpus and query files, method
mapping file and result summary file. Results folder contains subfolders for each requirement
specified in the query file, containing the most related artefacts and source code lines for a given

requirement.

Figure 8: Example of the content for a particular result file. The source code slices and method calls
are all included in the trace.

6 Results
We executed the traceability algorithm implemented in the FGTHunter tool for each of the four open
source systems. We collected the results and evaluated the precision of our technique to find trace-
ability links between high level artifacts and source code lines. The algorithmwas able to successfully
find a large number of the high-level requirements filtered for this study, along with new traceability
links that were not originally found by the manual construction of traces.

The results were grouped for each of the analyzed systems. Table 5 summarises the findings for
Trust system; Table 6 shows the collected results forOPENMRS, Table 7 presents the results for TAPAS
and Table 8 collects the results for OSCAR.

To evaluate the performance of our technique, we calculated the F1 score for each extracted re-
quirement that was associated with a HIPAA statute; then, we calculated the average of F1 scores
obtained in each statute. Results were grouped for each of the analyzed systems. Table 9 summarizes
our findings. Provided that, it is important to denote that for a given HIPAA statute, not always every

ParadigmPlus (2020) 1:2

32 Alejandro Velasco and Jairo Aponte
. .

Table 5: FGTHunter results for iTrust requirements.

R-ID Total
Links

True
Positives

True
Positives

Not
Found

GOLD
SET Precision Recall F1

1 706 265 441 0 4 0,38 1 0,55
3 341 149 192 0 24 0,44 1 0,61
4 411 50 361 17 22 0,12 0,75 0,21
5 382 18 364 1 1 0,05 0,95 0,09
21 306 62 244 6 48 0,2 0,63 0,31
24 25 12 13 4 8 0,48 0,71 0,57
25 97 26 71 9 33 0,27 0,76 0,4
37 121 35 86 0 1 0,29 1 0,45
38 120 31 89 0 1 0,26 1 0,41
40 297 116 181 0 6 0,39 0,98 0,56
45 514 161 353 0 28 0,31 0,98 0,47
47 411 165 246 1 12 0,4 1,01 0,57
110 165 79 86 3 9 0,48 0,99 0,64
111 164 79 85 3 8 0,48 1 0,65
143 906 14 892 22 22 0,02 0,39 0,03
144 498 170 328 3 30 0,34 0,87 0,49
145 166 43 123 0 7 0,26 1 0,41
163 222 41 181 0 9 0,18 1 0,31
164 456 12 444 9 10 0,03 0,57 0,05
187 120 97 23 0 1 0,81 1 0,89
189 130 67 63 0 5 0,52 0,93 0,66
191 229 3 226 0 1 0,01 0,75 0,03
180 74 36 38 0 1 0,49 1,13 0,68

selected system had at least one related high level requirement; that explain why the value of column
"Average F1 score" was not calculated in all the four system in each HIPAA statute.

The audit management is a fundamental part of any software system that aims to keep track of
all the operations performed by every actor that use the system. Table 9 shows the average of the
harmonic mean (average of F1 score) for the requirements in each healthcare system that are related
to HIPAA statute 164.312 (b). The precision of FGTHunter for iTrust and OSCAR systems had an
approximate value of 0.4 whereas in TAPAS the precision was much lower. When performing the
manual code inspection, we noticed that very few code lines in TAPAS handled the audit control; this
fact may explain the low precision in this case.

The access control to the informationwithin a system ensures the correctmanipulation of the data.
In the four systems that we analyzed, the access to the information was restricted by the definition of
roles and user permissions to view, read, modify, or remove data. Table 9 shows the F1 score means
of FGTHunter obtained when using it for finding the lines of code most related to the requirements

Table 6: FGTHunter results for OPENMRS requirements.

R-ID Links
Retrieved

True
Positives

True
Positives

Not
Found

GOLD
SET Precision Recall F1

53 1338 1041 297 0 11 0,78 1 0,88
80 428 226 202 10 33 0,53 0,89 0,66

ParadigmPlus (2020) 1:2

Automated Fine Grained Traceability Links Recovery between High Level Requirements and Source Code Implementations 33
. .

Table 7: FGTHunter results for TAPAS requirements.

R-ID Links
Retrieved

True
Positives

True
Positives

Not
Found

GOLD
SET Precision Recall F1

1 939 179 760 11 11 0,19 0,94 0,32
3 248 77 171 12 19 0,31 0,87 0,46
21 872 393 479 8 14 0,45 0,98 0,62
22 479 179 300 10 14 0,37 0,95 0,54
42 16 1 15 10 10 0,06 0,1 0,08
43 647 17 630 10 10 0,03 0,63 0,05
44 139 30 109 4 4 0,22 0,88 0,35
51 20 3 17 10 10 0,15 0,3 0,2
54 4610 2893 1717 0 12 0,63 1 0,77
56 16 1 15 10 10 0,06 0,1 0,08
57 1231 452 779 0 13 0,37 1 0,54
59 16 1 15 10 10 0,06 0,1 0,08
60 3608 1465 2143 0 20 0,41 1 0,58
62 16 1 15 10 10 0,06 0,1 0,08
70 3236 1337 1899 0 10 0,41 1 0,58
72 343 8 335 7 12 0,02 0,53 0,04
73 16 1 15 10 10 0,06 0,1 0,08
75 288 134 154 0 10 0,47 1 0,64
77 336 89 247 8 12 0,26 0,92 0,41
81 336 89 247 8 12 0,26 0,92 0,41

associated with the statute 164.312 (a) (1) of HIPAA in each system. The average harmonic mean has
an acceptable level, greater than 0.4 points, in OPENMRS, OSCAR and TAPAS. On the other hand,
for iTrust the algorithm had the lowest performance. What happens is that the access control by roles
in iTrust was handled by access restrictions defined in the configuration .xml files for the TOMCAT
server.

Table 8: FGTHunter results for OSCAR requirements.

R-ID Links
Retrieved

True
Positives

True
Positives

Not
Found

GOLD
SET Precision Recall F1

1 8440 605 239 12 34 0,72 0,98 0,83
2 691 531 160 2 12 0,77 1 0,87
3 876 775 101 3 28 0,88 1 0,94
5 380 136 244 12 22 0,36 0,92 0,52
40 1777 853 924 8 102 0,48 0,99 0,65
44 1110 636 474 22 92 0,57 0,97 0,72
45 1216 1065 151 10 203 0,88 0,99 0,93
46 1273 317 956 31 43 0,25 0,91 0,39
47 262 236 26 0 34 0,9 1 0,95
49 6575 6012 563 0 106 0,91 1 0,96
56 3969 949 3020 52 52 0,24 0,95 0,38
63 142 28 114 7 9 0,2 0,8 0,32
70 1668 462 1206 2 2 0,28 1 0,43

ParadigmPlus (2020) 1:2

34 Alejandro Velasco and Jairo Aponte
. .

Table 9: Summary of results for all healthcare systems analyzed in this study.

HIPAA
statute Description Average

F1 score
164.312(b) “Implement hardware, software, and/or procedural mech-

anisms that record and examine activity in information
systems that contain or use electronic protected health in-
formation.”

iTrust:0,39
OSCAR:0,39
TAPAS:0,15

164.312(a)(1) “Implement technical policies and procedures for elec-
tronic information systems that maintain electronic pro-
tected health information to allow access only to those per-
sons or software programs that have been granted access
rights as specified in §164.308(a)(4).”

iTrust:0,25
OSCAR:0,39
OPENMRS:0,66
TAPAS:0,39

164.312(a)(2)
(i)

“Assign a unique name and/or number for identifying and
tracking user identity.”

iTrust:0,43
OSCAR:0,65
OPENMRS:0,77

164.312(d) “Implement procedures to verify that a person or entity
seeking access to electronic protected health information
is the one claimed.”

iTrust:0,60
OSCAR:0,87
TAPAS:0,46

164.312(a)(2)
(iii)

“Implement electronic procedures that terminate an elec-
tronic session after a predetermined time of inactivity.”

iTrust:0,30
OSCAR:0,32
TAPAS:0,46

164.308(a)(5)
(ii)(C)

“Procedures for monitoring log-in at tempts and reporting
discrepancies.”

iTrust:0,48
OSCAR:0,73
OPENMRS:0,66

164.308(a)(1)
(ii)(D)

“Implement procedures to regularly review records of in-
formation system activity, such as audit logs, access re-
ports,and security incident tracking reports.”

iTrust:0,40
OSCAR:0,39

164.312(e)(2)
(i)

“Implement securitymeasures to ensure that electronically
transmitted el ctronic protected health information is not
improperly modified without detection until disposed of.”

iTrust:0,41

164.308(a)(5)
(ii)(D)

“Procedures for creating, changing, and safeguarding
passwords.”

iTrust:0,53
OSCAR:0,69

164.312(a)(2)
(iv)

“Implement a mechanism to encrypt and decrypt elec-
tronic protected health information.”

OSCAR:0,83

164.308(a)(7)
(ii)(A)

“Establish and implement procedures to create and main-
tain retrievable exact copies of electronic protected health
information.”

OSCAR:0,96
TAPAS:0,58

164.308(a)(4)
(i)

“Establish and implement procedures to create and main-
tain retrievable exact copies of electronic protected health
information.”

TAPAS:0,32

164.312(c)(2) “Implement electronic mechanisms to corroborate that
electronic protected health information has not been al-
tered or destroyed in an unauthorized manner.”

TAPAS:0,63

164.312(c)(1) “Implement policies and procedures to protect electronic
protected health information from improper alteration or
destruction.”

TAPAS:0,51

Assigning a unique identifier to each entity of a system ensures the correct manipulation of the
data and facilitates the control of the information integrity. According to our observations, the re-

ParadigmPlus (2020) 1:2

Automated Fine Grained Traceability Links Recovery between High Level Requirements and Source Code Implementations 35
. .

strictions of non-repetition were always defined at the database level, that is, the traceability of the
requirements associated with the Statute 164.312 (a)(2) (i) of HIPAA was carried out analyzing .sql
files with thousands of code lines impacting negatively on the precision of our technique. However,
according to the results, for OSCAR and OPENMRS systems the algorithm reaches its highest per-
formance, probably because at the application level, the uniqueness of the identifiers for each entity
was also validated.

Ensuring the correct implementation of access control mechanisms is a fundamental aspect in
any system that manipulates critical information. Such control strategies range from verification of
passwords and access codes to role management within the system. Considering the wide spectrum
of artifacts in each system that may be related to HIPAA Statute 164.312 (d), it is natural that the
accuracy tend to be very high; however in TAPAS that value is low, maybe because the access control
in this application is not clearly defined at the application level, i.e., there are no login forms or access
restrictions, and externally they must control the access to the information by applying restrictions
policies.

Closing the session after a period of inactivity is a measure of additional protection that usually
exists to avoid improper manipulation of the data. The session time limit for a given user is often
specified in a particular line of code within the application, either through a property file, a database
record or a global variable. Considering the quantity of artifacts analyzed and the reduced number of
code lines inwhich the requirements related to statute 164.312 (a)(2)(iii) of HIPAA are implemented,
for iTrust andOSCAR the level of precisionwas very low. According to Table 9, TAPAS is the exception
probably because inmany parts of the code themechanisms for closing inactive sessions are repeated,
once a particular operation has started.

As a security measure, many information systems keep a record of unsuccessful attempts prior
to login for a particular service. Depending on the number of failed attempts, an account is blocked
for a period of time or indefinitely until an administrator decides to unblock it. Table 9 summarizes
the traceability results for the requirements related to HIPAA Statute 164.308 (a)(5)(ii)(C). The case
with less precision was iTrust, probably because there are very few code lines where the control of
failed attempts is made.

When a user of the system views or edits the information of a particular patient, the audit informa-
tion should be enough to know the detail of the modifications made to critical data, as is established
by the statute 164.308 (a)(1)(ii)(D) of HIPAA. Table 9 shows the average of the harmonic mean for
the systems that implemented control mechanisms of visualization for audited data. In general, the
performance of the traceability algorithm was acceptable, above 0.4.

As a measure of securing information in the event of a disaster, data security should be periodi-
cally generated from the information contained in the database in order to be effectively restored. The
HIPAA statute 164.308 (a)(7)(ii)(A) refers to this topic, as shown in Table 9. OSCAR was the system
in which our algorithm reached a higher precision, while TAPAS was the opposite case. This partic-
ular behavior can be proved when we compare the source code artifacts from both systems that were
involved in the implementation of such a statute. From our findings in the preliminary analysis, we
observe that OSCAR has more lines of code associated with data backups and database restoration
than TAPAS.

7 Discussion
This paper presents a novel approach to a fine-grained traceability problem that is common in the
healthcare systems context. Our findings indicate that the precision of FGTHunter is, in general,
more than 0,4 for each HIPAA requirement (Average F1 score).

The regulations related to audit control standards and session expiration in the implementation of
healthcare systems were the hardest to trace to source code statements. In those cases, our approach
achieved the lowest precision (about 0,35 F1 score mean, for each system). Very few lines and source

ParadigmPlus (2020) 1:2

36 Alejandro Velasco and Jairo Aponte
. .

code structures related to these requirements were successfully mapped by our algorithm for each
system. This can be explained by the few places within the source code where these requirements
were implemented, increasing in that way the recall of our technique and decreasing the precision.
With respect to the other statutes defined in the privacy and security rule of HIPAA, the performance
of our algorithm was acceptable (over 0,4 F1 score mean) and in some cases excellent (over 0,8 F1
score mean).

The precision of the proposed technique is highly dependent on good design practices and the
adherence to conventions for naming entities according to the problem domain (i.e., quality of source
code); this is a key factor that should be considered in future research to increase the accuracy of any
text-based technique.

High level requirement extraction from available resources following a linguistic pattern, may
compromise the correctness and completeness of query artifacts in our algorithm, since not always
documentation written in natural language is good enough to describe what actually is implemented
in source code. To reduce the impact of this issue, a meta-language could be proposed to denote high
level requirements prior the definition of query artifacts. Although it is not a mandatory task in the
execution of our technique, when starting from requirements that are defined from a specific context
(i.e. system domain) the precision of the technique would improve.

8 Conclusions
In specific contexts, as is the case of medical health systems, strict rules are required to comply with
the secure processing of personal data. For the effective verification of compliance with these rules,
it is essential to establish links between the formal text of the regulations and the lines of code in
which they are implemented. In this paper we describe an algorithm, based on heuristics, static code
analysis and information retrieval techniques, that supports the recovering such traceability links.

One of the biggest difficulties encountered is that the regulations expressed in legal documents
are usually written in fairly technical language and detached from a particular context. To overcome
this problem, wemanually identified and extracted the documentation of requirements that is related
to some HIPAA statute, within the taxonomy that we previously defined.

Even though the static code analysis techniques have played a determining role in the creation
of automatic techniques for the recovery of traceability links, our approach properly combines those
techniques with heuristics and information retrieval methods. We believe that these combined meth-
ods can improve the results of the individually used techniques, and could reach an adequate level
of precision to automatically retrieve the links between formal regulations and source code.

Although it is quite difficult to reach a suitable degree of precision in a traceability technique based
on an information retrieval algorithms, without the assistance of a person that helps to delimit the list
of ranked candidate links, our approach would undoubtedly ease the work of those people involved
in the process of certifying that specified system complies with rules and standards at a source code
level. In any case, further empirical validations are required to assess the effectiveness of our approach
in real contexts.

9 Future Work
Our work can be expanded in many directions. First, as the technique is designed for software sys-
tems written in Java EE, future work could focus on expanding the current traceability algorithm
to cover other languages and systems development environments. For this purpose, one alternative
would be to keep the original approach of our technique and build syntactic analyzers for each new
programming language in such a way that the source code slicer and code analysis algorithms can be
applied as they are.

ParadigmPlus (2020) 1:2

Automated Fine Grained Traceability Links Recovery between High Level Requirements and Source Code Implementations 37
. .

Second, another evaluation of our technique can bemadewith other regulations other thanHIPAA.
To do this it would be essential to analyze the structure of such regulations and identify appropriate
software systemswhose documentation and code are available to carry out the entire process outlined
in this paper.

Lastly andmost importantly, empirical evaluations of our approach aremore than desirable. They
are required to assess the impact of our technique on the work of real users and regulation reviewers
as well as its performance, usability, and compliance with real needs.

Authors’ Information
– Alejandro Velasco is a software engineering practitioner currently working in Scotiabank Col-
patria. He received his Engineering and Master’s degree in Systems and Computing Engineer-
ing fromUniversidadNacional de Colombia (Bogotá, Colombia). His research interest includes
Software Engineering, Chaos Engineering and Machine Learning.

– Jairo Aponte is an associate professor in the Department of Computing Systems and Industrial
Engineering at Universidad Nacional de Colombia. He received his Engineering and aMaster’s
degree in Computing Systems Engineering fromUniversidad de losAndes (Bogotá, Colombia),
and a Ph.D. in Engineering from Universidad Nacional de Colombia (Bogotá). His research
interests include agile software processes, program comprehension, and software evolution.

Authors’ Contributions
– Alejandro Velasco Conducted the analysis of HIPAA statutes and proposed the derived taxon-

omy, built the dataset and goldset from open source heatlh care systems as presented in section
3, proposed the set of heuristics based on observations as described in section 4, designed the
fine grained traceability algorithm presented in section 5, implemented the proposed technique
by creating FGTHunter, tested the proposed approach and described the results as stated in
section 6; and finally, conducted the analysis of results and discussions presented in sections 7,
8, and 9.

– Jairo Aponte Validated the constructed dataset presented in section 3, validated and improved
the proposed heuristics presented in section 4, participated in the design and improved the
performance of the proposed algorithm by suggesting changes based on previous research, im-
proved the analysis of results described in section 6; and finally, participated in the writing of
all sections.

Competing Interests
The authors declare that they have no competing interests.

Funding
No funding was received for this project.

Availability of Data and Material
1○ Datasets and Goldsets for each of the systems described in this work, as well as HIPAA artifacts

can be found in the next repository for public access: https://bitbucket.org/savelascod/
fgt-attachments

2○ Source code files of FGTHunter can be found in the next repository: https://bitbucket.org/
savelascod/fgthunter

ParadigmPlus (2020) 1:2

https://bitbucket.org/savelascod/fgt-attachments
https://bitbucket.org/savelascod/fgt-attachments
https://bitbucket.org/savelascod/fgthunter
https://bitbucket.org/savelascod/fgthunter

38 Alejandro Velasco and Jairo Aponte
. .

References

[1] O. C. Z. Gotel and C. W. Finkelstein, “An analysis of the requirements traceability problem,” in
Proceedings of IEEE International Conference on Requirements Engineering, pp. 94–101, 1994.

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo, “Recovering traceability links
between code and documentation,” IEEE Transactions on Software Engineering, vol. 28, no. 10,
pp. 970–983, 2002.

[3] B. Ramesh and M. Jarke, “Toward reference models for requirements traceability,” IEEE Trans-
actions on Software Engineering, vol. 27, no. 1, pp. 58–93, 2001.

[4] V. Yadav, R. K. Joshi, and S. Ling, “Evolution traceability roadmap for business processes,” in
Proceedings of the 12th Innovations on Software Engineering Conference (Formerly Known as India
Software Engineering Conference), ISEC’19, (New York, NY, USA), Association for Computing
Machinery, 2019.

[5] O. f. C. Rights (OCR), “HIPAA Compliance and Enforcement,” May 2008. Library Catalog:
www.hhs.gov.

[6] T. D. Breaux, M. W. Vail, and A. I. Anton, “Towards regulatory compliance: Extracting rights
and obligations to align requirements with regulations,” in 14th IEEE International Requirements
Engineering Conference (RE’06), pp. 49–58, 2006.

[7] S. Avancha, A. Baxi, and D. Kotz, “Privacy in mobile technology for personal healthcare,” ACM
Comput. Surv., vol. 45, Dec. 2012.

[8] W. Shen, C. Lin, and A. Marcus, “Using traceability links to identifying potentially erroneous
artifacts during regulatory reviews,” in 2013 7th International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE), pp. 19–22, 2013.

[9] A. Velasco and J. H. Aponte Melo, “Recovering Fine Grained Traceability Links Between Soft-
ware Mandatory Constraints and Source Code,” in Applied Informatics (H. Florez, M. Leon, J. M.
Diaz-Nafria, and S. Belli, eds.), (Cham), pp. 517–532, Springer International Publishing, 2019.

[10] “Health Insurance Portability and Accountability Act of 1996 (HIPAA) | CDC,” Feb. 2019. Li-
brary Catalog: www.cdc.gov.

[11] T. Breaux and A. Antón, “Analyzing regulatory rules for privacy and security requirements,”
IEEE Transactions on Software Engineering, vol. 34, no. 1, pp. 5–20, 2008.

[12] N. Kiyavitskaya, N. Zeni, T. D. Breaux, A. I. Antón, J. R. Cordy, L. Mich, and J. Mylopoulos,
“Automating the Extraction of Rights and Obligations for Regulatory Compliance,” in Concep-
tual Modeling - ER 2008 (Q. Li, S. Spaccapietra, E. Yu, and A. Olivé, eds.), (Berlin, Heidelberg),
pp. 154–168, Springer Berlin Heidelberg, 2008.

[13] T. D. Breaux and A. I. Antón, “A systematic method for acquiring regulatory requirements : A
frame-based approach,” 2007.

[14] N. Zeni, L. Mich, J. Mylopoulos, and J. R. Cordy, “Applying gaiust for extracting requirements
from legal documents,” in 2013 6th International Workshop on Requirements Engineering and Law
(RELAW), pp. 65–68, 2013.

[15] T. Alshugran and J. Dichter, “Extracting and modeling the privacy requirements from hipaa
for healthcare applications,” in IEEE Long Island Systems, Applications and Technology (LISAT)
Conference 2014, pp. 1–5, 2014.

ParadigmPlus (2020) 1:2

Automated Fine Grained Traceability Links Recovery between High Level Requirements and Source Code Implementations 39
. .

[16] J. C. Maxwell and A. I. Antón, “Checking existing requirements for compliance with law using
a production rule model,” in 2009 Second International Workshop on Requirements Engineering and
Law, pp. 1–6, 2009.

[17] J. Huang, O. Gotel, and A. Zisman, eds., Software and Systems Traceability. London: Springer-
Verlag, 2012.

[18] F. Fasano, “Fine-grainedmanagement of software artefacts,” in 2007 IEEE International Conference
on Software Maintenance, (Los Alamitos, CA, USA), IEEE Computer Society, oct 2007.

[19] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code traceability links using
latent semantic indexing,” in Proceedings of the 25th International Conference on Software Engineer-
ing, ICSE ’03, (USA), p. 125–135, IEEE Computer Society, 2003.

[20] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo, “Tracing object-oriented code
into functional requirements,” in Proceedings IWPC 2000. 8th International Workshop on Program
Comprehension, pp. 79–86, 2000.

[21] G. Antoniol, G. Canfora, A. De Lucia, and E. Merlo, “Recovering code to documentation links in
oo systems,” in Sixth Working Conference on Reverse Engineering (Cat. No.PR00303), pp. 136–144,
1999.

[22] Antoniol, Canfora, Casazza, and De Lucia, “Information retrieval models for recovering trace-
ability links between code and documentation,” in Proceedings 2000 International Conference on
Software Maintenance, pp. 40–49, 2000.

[23] F. Palomba, M. Linares-Vásquez, G. Bavota, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De
Lucia, “User reviews matter! tracking crowdsourced reviews to support evolution of success-
ful apps,” in 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME),
pp. 291–300, 2015.

[24] A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella, and S. Panichella, “Improving ir-based trace-
ability recovery using smoothing filters,” in 2011 IEEE 19th International Conference on Program
Comprehension, pp. 21–30, 2011.

[25] D. Diaz, G. Bavota, A.Marcus, R. Oliveto, S. Takahashi, andA. De Lucia, “Using code ownership
to improve ir-based traceability link recovery,” in 2013 21st International Conference on Program
Comprehension (ICPC), pp. 123–132, 2013.

[26] S. Deerwester, S. T. Dumais, G.W. Furnas, T. K. Landauer, and R. Harshman, “Indexing by latent
semantic analysis,” JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE,
vol. 41, no. 6, pp. 391–407, 1990.

[27] S. T. Dumais, “Improving the retrieval of information from external sources,” Behavior Research
Methods, Instruments, & Computers, vol. 23, pp. 229–236, June 1991.

[28] B. Dit, M. Revelle, M. Gethers, andD. Poshyvanyk, “Feature location in source code: a taxonomy
and survey,” J. Softw. Evol. Process., vol. 25, pp. 53–95, 2013.

[29] A. Qusef, G. Bavota, R. Oliveto, A. D. Lucia, and D. Binkley, “Recovering test-to-code traceability
using slicing and textual analysis,” Journal of Systems and Software, vol. 88, pp. 147 – 168, 2014.

[30] B. Dagenais and M. P. Robillard, “Recovering traceability links between an api and its learning
resources,” in 2012 34th International Conference on Software Engineering (ICSE), pp. 47–57, 2012.

[31] B. Sharif and J. I. Maletic, “Using fine-grained differencing to evolve traceability links,” in In
GCT’07, pp. 76–81, ACM, 2007.

ParadigmPlus (2020) 1:2

40 Alejandro Velasco and Jairo Aponte
. .

[32] W. E. Wong, S. S. Gokhale, J. R. Horgan, and K. S. Trivedi, “Locating program features using
execution slices,” in Proceedings 1999 IEEE Symposium on Application-Specific Systems and Software
Engineering and Technology. ASSET’99 (Cat. No.PR00122), pp. 194–203, 1999.

[33] “iTrust | Medical Free/Libre and Open Source Software.”

[34] “start [iTrust].”

[35] “Home - Documentation - OpenMRS Wiki.”

[36] “OSCAR EMR User’s Manual — Site.”

[37] “TAPAS Home.”

[38] M. Cohn, User Stories Applied: For Agile Software Development. Boston: Addison-Wesley Profes-
sional, edición: 1 ed., Mar. 2004.

[39] J. Garzas, Object-Oriented Design Knowledge: Principles, Heuristics and Best Practices. Hershey, PA:
Idea Group Publishing, July 2006.

[40] P. Azimi and P. Daneshvar, “An Efficient Heuristic Algorithm for the Traveling Salesman Prob-
lem,” inAdvancedManufacturing and Sustainable Logistics (W. Dangelmaier, A. Blecken, R. Delius,
and S. Klöpfer, eds.), (Berlin, Heidelberg), pp. 384–395, Springer Berlin Heidelberg, 2010.

[41] Z. W. Geem, J. H. Kim, and G. Loganathan, “A New Heuristic Optimization Algorithm: Har-
mony Search,” SIMULATION, vol. 76, pp. 60–68, Feb. 2001. Publisher: SAGE Publications Ltd
STM.

[42] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong, “Fault localization using execution slices
and dataflow tests,” in Proceedings of Sixth International Symposium on Software Reliability Engi-
neering. ISSRE’95, pp. 143–151, 1995.

[43] “Amazon.com: Head First Object-Oriented Analysis and Design (0636920008675): Brett D.
McLaughlin, Gary Pollice, Dave West: Books.”

[44] S. M. Sutton, “Aspect-Oriented Software Development and Software Process,” in Unifying the
Software Process Spectrum (M. Li, B. Boehm, and L. J. Osterweil, eds.), (Berlin, Heidelberg),
pp. 177–191, Springer Berlin Heidelberg, 2006.

[45] B. Fluri, M.Wursch, andH. C. Gall, “Do code and comments co-evolve? on the relation between
source code and comment changes,” in 14th Working Conference on Reverse Engineering (WCRE
2007), pp. 70–79, 2007.

[46] B. Fluri, M. Würsch, E. Giger, and H. C. Gall, “Analyzing the co-evolution of comments and
source code,” Software Quality Journal, vol. 17, pp. 367–394, Dec. 2009.

[47] R. C. Martin, Agile Software Development, Principles, Patterns, and Practices. Upper Saddle River,
N.J: Pearson, edición: 1st ed., Oct. 2002.

[48] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and B. Sharif, “The impact of identifier
style on effort and comprehension,” Empirical Software Engineering, vol. 18, pp. 219–276, Apr.
2013.

[49] M. Ohba andK. Gondow, “Towardmining "concept keywords" from identifiers in large software
projects,” in Proceedings of the 2005 international workshop on Mining software repositories, MSR ’05,
(St. Louis, Missouri), pp. 1–5, Association for Computing Machinery, May 2005.

ParadigmPlus (2020) 1:2

Automated Fine Grained Traceability Links Recovery between High Level Requirements and Source Code Implementations 41
. .

[50] Y. Goldberg and O. Levy, “word2vec explained: deriving mikolov et al.’s negative-sampling
word-embedding method,” 2014.

[51] S. Arlt, A. Podelski, andM.Wehrle, “Reducing gui test suites via program slicing,” in Proceedings
of the 2014 International Symposium on Software Testing and Analysis, ISSTA 2014, (New York, NY,
USA), p. 270–281, Association for Computing Machinery, 2014.

[52] K. B. Gallagher and J. R. Lyle, “Using program slicing in software maintenance,” IEEE Transac-
tions on Software Engineering, vol. 17, no. 8, pp. 751–761, 1991.

[53] I. Mastroeni and D. Zanardini, “Abstract program slicing: An abstract interpretation-based ap-
proach to program slicing,” ACM Trans. Comput. Logic, vol. 18, Feb. 2017.

[54] M. Weiser, “Program slicing,” in Proceedings of the 5th International Conference on Software Engi-
neering, ICSE ’81, p. 439–449, IEEE Press, 1981.

ParadigmPlus (2020) 1:2

	Introduction
	Related work
	Traceability links recovery
	Fine-grained traceability link recovery techniques
	Limitations of adopted strategies

	Dataset description
	Healthcare systems
	Extracting requirements from high level artifacts
	Source Code extraction

	Heuristics
	(H1) Heuristic 1: Developers tend to use terms present in high-level requirements when writing source code
	(H2) Heuristic 2: Comments in source code are a valuable source of information that can be exploited to increase the accuracy of any traceability algorithm
	(H3) Heuristic 3: Subjects in texts that describe a high-level software requirement regularly represent entities in the source code
	(H4) Heuristic 4: Conventions used by developers to name source code entities can be used to define patterns to improve accuracy in IR algorithms
	(H5) Heuristic 5: Delegation is ubiquitous in object-oriented systems and can be used to determine the artifacts that are involved in the implementation of a high-level requirement

	Fine-grained traceability algorithm
	A1: Call graph construction from source code files
	A2: Indexing phase
	B: Information retrieval process
	C: Parsing phase
	D: Program slicing process
	E: Full trace construction phase

	Results
	Discussion
	Conclusions
	Future Work

