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Abstract: As the world recovers from the COVID-19 pandemic, concern remains for future 

potential outbreaks because of the persisting effects of climate change, including the 

proliferation of infectious diseases. The frequent isolation of Vibrio parahaemolyticus in the 

surrounding environment is of concern as it can cause infections in marine animals and 

transmitted to humans. V. parahaemolyticus is the leading cause of foodborne gastroenteritis 

worldwide. Malaysia is one of the top seafood consumers and this places us at a higher risk 

of exposure to V. parahaemolyticus infections. Over the years, this foodborne pathogen has 

been isolated from various sources in Malaysia, mainly from seafood such as shellfish, 

shrimps, and fish. To make matters worse, there has been an emergence of antibiotic-resistant 

V. parahaemolyticus worldwide, which is attributed to the uncontrolled use of antibiotics in 

aquaculture to prevent and treat vibriosis. Therefore, it is vital to utilize alternatives such as 

probiotics to control V. parahaemolyticus to prevent further propagation of antibiotic-

resistant strains of the bacteria. A potential candidate for probiotics is Streptomyces sp., a 

class of filamentous, Gram-positive bacteria that produce a variety of bioactive compounds 

during their life cycle, which can be useful in drug discovery. The bioactive compounds 

produced by Streptomyces sp. have been proven to have microbiota-modulating and 

stimulatory effects on the host, enhancing immunity and providing protective effects against 

V. parahaemolyticus infections. With the application of Streptomyces sp. as probiotics in 

aquaculture, the efficacy of the available antibiotics can be preserved, and the further spread 

of antibiotic resistance in the environment can be reduced.  

Keywords: Vibrio parahaemolyticus; anti-Vibrio; Streptomyces; prevalence; probiotics 

 

1. Introduction 

The fear of an endemic or pandemic will always linger since we are slowly recovering 

from the COVID-19 pandemic. This zoonotic-transmitted disease was discovered in China 

and moved rapidly from person to person [1, 2]. As we scrambled to find the treatment for this 

pneumonia-like infection, the virus continued to travel to other countries worldwide [3, 4]. 

COVID-19 infected millions, causing a rise in death cases and paralysis of the healthcare 

system [3, 5-7]. Although vaccination programs were initiated, infection cases are still being 

reported due to emerging new variants of concern (VOC) [8-14]. We have yet to be entirely 

freed from the COVID-19 pandemic and have already started addressing another primary 

public concern; climate change.  

Climate change is a pressing global challenge impacting the environment, 

ecosystems, and human health [15, 16]. Among the many consequences of climate change, the 

proliferation of infectious diseases is a growing concern [17]. Recently, the rise of Vibrio 

parahaemolyticus infections in animals and humans has gained attention [18-20]. The situation 

is further worsened by the spillover of antibiotic-resistant V. parahaemolyticus to animals 

and humans.  
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Vibrio parahaemolyticus is a halophilic, Gram-negative bacteria that naturally reside 

in bodies of water such as estuaries, rivers, and oceans [21-23]. As they share a natural habitat 

with aquatic animals, V. parahaemolyticus can infect these animals and cause a disease 

known as vibriosis. Symptoms of vibriosis in marine animals can manifest as skin 

ulcerations, exophthalmia, necrosis of the appendages, and death in severe cases [24]. 

Vibriosis has significantly impacted the aquaculture industry as it causes high mortality rates 

in farmed marine life, thus reducing the production of farmed marine fish and shrimp, leading 

to severe economic losses [24-26]. Most notably, V. parahaemolyticus is responsible for acute 

hepatopancreatic necrosis disease (AHPND) in shrimps, which causes death in the early 

stages of the life of shrimps [27, 28]. Outbreaks of AHPND have significantly reduced the 

production of shrimps worldwide; for example, in Thailand, there was a decrease in 

approximately 30% of shrimp production in 2013 compared to 2012 [29]. It is estimated that 

AHPND costs the shrimp aquaculture industry about USD 1 billion annually [30]. 

Moreover, these pathogenic bacteria can be transmitted to humans via consumption 

or exposure to contaminated seafood, resulting in gastroenteritis in humans which manifests 

as fevers, nausea, stomach cramps, diarrhea, and vomiting [31-34]. Mild cases of gastroenteritis 

caused by V. parahaemolyticus is generally self-limiting, with rehydration being the focus 

for recovery. With severe cases of gastroenteritis due to the foodborne pathogen, 

antimicrobial therapy is guided by comparable clinical syndromes caused by other Vibrio 

species, such as Vibrio cholerae. Thus, the antibiotic of choice is doxycycline, 

fluoroquinolones, and macrolides [35]. However, due to the uncontrolled use of antimicrobials 

for prophylaxis and management of diseases in aquaculture farms [36, 37], the environmental 

pressure from antimicrobial residues enables the emergence of antibiotic-resistant strains of 

V. parahaemolyticus. The pathogen has since developed antimicrobial resistance against a 

myriad of antibiotics such as penicillin, cephalosporins, aminoglycosides, tetracyclines, 

macrolides, quinolones, fluoroquinolones, sulfonamides, and carbapenems [38-45]. The rapid 

emergence of antimicrobial resistance in V. parahaemolyticus decreases the efficacy of 

antibiotics in treating its infections. Thus, to better manage V. parahaemolyticus infections, 

alternatives to antibiotics need to be explored to prevent the further spread of antibiotic 

resistance genes within the environment. 

Recently, probiotics have gained popularity in their application in managing V. 

parahaemolyticus infections [46-49]. Probiotics are live microorganisms that can benefit the 

host when administered adequately [50, 51]. They modulate the host microbiota to promote 

growth and increase disease resistance [48, 52]. Studies have also reported that probiotics can 

have many functionalities in aquaculture. For instance, they can act as growth promoters, 

stimulate the production of inhibitory compounds, improve nutrient digestion in the host, 

strengthen immune response, and improve water quality [53, 54]. The microorganisms which 

are commonly known to be probiotics are Lactobacillus acidophilus, Lactobacillus casei, 

Bacillus sp., Bifidobacterium bifidum, Lactococcus lactis, and Saccharomyces cerevisiae [47, 

49]. However, recent studies point to Streptomyces sp. as a potential probiotic to be used in 

aquaculture due to its ability to produce many secondary metabolites, which can elicit 
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beneficial effects in the host [55-57]. They are potential probiotics for the prophylaxis and 

treatment of vibriosis in aquatic animals.  

Continuous monitoring and surveillance on the prevalence of V. parahaemolyticus 

remain crucial to ensure the microbial load in the seafood supplied to consumers is safe for 

consumption. In addition, consistent efforts to monitor the prevalence of V. parahaemolyticus 

in our surrounding environment can prevent gastroenteritis outbreaks and maintain public 

health. The exploration of alternatives to antibiotics is also essential to preserve the efficacy 

of the currently available antibiotics and prevent the spread of antibiotic-resistance genes. 

Probiotics, such as Streptomyces sp., help to prevent and manage V. parahaemolyticus 

infections in farmed marine animals, reducing the probability of disease transmission from 

seafood to humans. In addition, probiotics can promote the growth of farmed marine animals 

and produce safe-to-consume seafood products for the general public. This review aims to 

provide insight into the prevalence of V. parahaemolyticus in Malaysia and the anti-Vibrio 

properties of Streptomyces sp., which make them potential agents in managing V. 

parahaemolyticus infections. 

2. Incidence of Vibrio parahaemolyticus in Malaysia  

Seafood is a nutrient-rich source of food that is vital in maintaining a healthy, 

balanced diet as they provide protein, unsaturated fatty acids, minerals, and vitamins [58]. The 

consumption of seafood has also been associated with reduced cholesterol levels and the 

prevention of cardiovascular diseases due to omega-3 fatty acids in seafood [59]. In Malaysia, 

seafood consumption has been consistently on an upwards trend. For instance, seafood 

consumption increased from 42.7kg per capita in 2020 to 43.38kg per capita in 2021 [60]. The 

high seafood consumption in Malaysia puts Malaysians at risk of foodborne diseases from 

seafood, given there is an increased risk of transmission and/or exposure to V. 

parahaemolyticus. Moreover, the foodborne pathogen has been frequently isolated from 

various sources such as seafood and the water environments in Malaysia [39, 43, 44, 61-63] (Table 

1).  

V. parahaemolyticus are halophiles Gram-negative bacterium that favor warm, 

brackish waters as their natural habitat [64, 65]. It has been reported that V. parahaemolyticus 

thrive in warmer seawater temperatures where the expression of virulence factors is 

upregulated, thus promoting the propagation of pathogenic bacteria [66, 67]. The tropical 

climate in Malaysia makes it hot and humid year-round, thus resulting in higher temperatures 

in bodies of water around the country. This creates a favorable environment for V. 

parahaemolyticus to grow and increases the risk of transmission to marine animals and 

humans. Therefore, studies have been done to determine the prevalence of these foodborne 

pathogens in Malaysia. A quick search was performed across three databases, Embase, 

Medline, Scopus, and Google Scholar, using the keywords: “prevalence OR incidence OR 

occurrence AND Vibrio parahaemolyticus AND Malaysia” to determine relevant original 

articles published between 2005 and 2023. Results from the search found that V. 

parahaemolyticus are most commonly isolated from seafood such as shellfish [39, 41, 43, 62, 68-
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76], shrimps [42, 63, 68-70, 77-81], squids [68, 69, 72], fishes [40, 44, 61, 69, 72, 75, 82-90], and sea cucumber 
[91]. The pathogen has also been isolated from vegetables [92, 93] and environmental sources 

such as seawater [44, 94], coastal waters [73, 74, 95], and water from shrimp farms [63, 77].  

In a study done to determine the prevalence of V. parahaemolyticus in shellfish in 

Selangor, Malaysia, 450 shellfish samples were screened, and based on colony morphology, 

all these samples were positive for Vibrio sp. Upon further confirmation via the toxR gene 

polymerase chain reaction assay [96], 44.4% (200/450) of the samples were confirmed to have 

V. parahaemolyticus [39]. Tan et al. also reported 61/75 shellfish samples were positive for V. 

parahaemolyticus [68], indicating a high prevalence of the foodborne pathogen in shellfish. 

Moreover, a study done in Kuala Terengganu, Malaysia, where 80 shellfish samples, 

including mussels, carpet clams, cockles, and scallops, were obtained, found that more than 

half (57.5%, 46/80) of the samples were contaminated with V. parahaemolyticus [71]. The 

high prevalence of V. parahaemolyticus in shellfish can be attributed to their natural habitat 

and filter feeding. Shellfish typically reside on the sea floors, and due to their filter feeding, 

they can garner a higher concentration of V. parahaemolyticus up to 100-fold higher than 

their surrounding waters [97].  

In shrimps, Letchumanan et al. reported a prevalence of 57.8% (185/320) for V. 

parahaemolyticus isolates found in samples obtained from retail supermarkets [42]. In 

comparison, Tan et al. reported 88.57% (31/35) of shrimp samples were positive for the 

marine pathogen [68]. A prevalence study on cultured shrimps reported that over half (55%) 

of the 225 samples tested positive for V. parahaemolyticus, with the rest testing positive for 

other species in the Vibrio family [41]. The high prevalence of V. parahaemolyticus is of 

concern as these bacteria can cause AHPND in the shrimps, which primarily targets the 

hepatopancreas of the shrimp in the early stages of life, resulting in early mortality [98]. 

Outbreaks of AHPND in Malaysia have caused a reduced production of shrimp and cost the 

industry a loss of approximately USD 0.49 billion from 2011 to 2014 [99]. V. 

parahaemolyticus has also been isolated from fish; for example, the pathogen has been 

isolated from 116 of 130 short mackerel samples, indicating that 89.2% of the fish samples 

were contaminated with bacteria [61]. Meanwhile, Noorlis et al. reported that 49 isolates of V. 

parahaemolyticus were found in 300 freshwater fish purchased from retail levels [82]. In a 

separate study, 120 finfish samples were tested, and the results show that V. 

parahaemolyticus was present in 48.33% of the samples [84]. Researchers also studied the 

occurrence of V. parahaemolyticus in cultured groupers in Peninsular Malaysia, whereby 

they found that 25% of the 270 grouper samples were contaminated with V. 

parahaemolyticus. The foodborne pathogen can also be isolated from environmental sources 

such as seawater; for instance, 50 water samples, including river water, seawater, and water 

from a waterfall in Kelantan were tested and 25 of the samples were positive for V. 

parahaemolyticus [100]. Besides, 21 V. parahaemolyticus isolates were also detected from 21 

coastal seawater samples from three beaches in peninsular Malaysia [94].  The incidence of V. 

parahaemolyticus is unavoidable in aquatic environments, hence marine life such as fishes 

and shrimps can accumulate V. parahaemolyticus before being harvested. The high 
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prevalence of V. parahaemolyticus detected in Malaysia shows the need for constant 

surveillance of the microbial load of this foodborne pathogen in seafood and the environment. 

This is to ensure the seafood supplied to consumers is safe for consumption, and 

gastroenteritis outbreaks can be avoided. Moreover, by monitoring the microbial load of V. 

parahaemolyticus in the aquaculture system, vibriosis outbreaks can be detected earlier to 

prevent high mortality, reduce economic losses and increase seafood production to meet 

supply demands.  

Table 1. Sources of V. parahaemolyticus in Malaysia. 

Source References 

Aquatic animals  

Blood clams [68, 69] 

Fish [40, 44, 69, 72, 75, 82-90] 

Oyster [69] 

Prawn [69] 

Sea cucumber [91] 

Shellfish [39, 41, 43, 62, 70-76] 

Short mackerels [61] 

Shrimps [42, 63, 68-70, 77-81] 

Squids [68, 69, 72] 

Surf clams [68] 

Vegetables  

Cabbage [92, 93] 

Carrot [92, 93] 

Cucumber [92, 93] 

Four-winged bean [92] 

Indian pennywort [92] 

Japanese parsley [92] 

Lettuce [92, 93] 

Long bean [92] 

Sweet potato [92] 

Tomato [92, 93] 

Wild cosmos [92] 

Environmental  

River water [100] 

Sea water [44, 73, 74, 94, 95, 100] 

Shrimp farm water [63, 77] 
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3. Harnessing the Anti-Vibrio properties of Streptomyces sp. 

There is a dire need for antibiotic alternatives because of the rapid emergence of 

antibiotic-resistant genes and antibiotic-resistant V. parahaemolyticus in the environment [38, 

101, 102]. In aquaculture, the uncontrolled use of antibiotics has further accelerated the 

development of antibiotic resistance within these bacteria, thus rendering the effects of 

antimicrobial agents in these systems useless [36]. Henceforth, researchers are looking for 

alternatives to antibiotics to be used in the aquaculture industry to better combat diseases 

caused by V. parahaemolyticus. By finding alternatives to antibiotics, the efficacy of the 

currently available antibiotics can be preserved, and they can remain effective in treating 

infections caused by the pathogen. In recent years, Streptomyces sp. has been the 

microorganism of interest for aquaculture use as a probiotic [48, 49, 54, 103].  

In 1943,  Streptomyces sp. was first discovered as the source of the antibiotic 

streptomycin by Waksman et al. [104], and to date, over 700 known species have been isolated 

from the environment [105, 106]. Streptomyces, belonging to the Actinobacteria class [107, 108], is 

a group of complex filamentous, sporulating, Gram-positive bacteria which resemble fungi 

in their morphology [109-112]. They are highly abundant in soils and are also found in the 

sediments of marine environments, as they play a vital role in the ecosystem due to their 

broad range of metabolic processes [113-115]. Their ability to produce a variety of secondary 

metabolites and bioactive compounds makes them essential microorganisms in drug 

discovery [116-123]. The metabolites are typically produced during the life cycle of 

Streptomyces sp. driven by environmental factors [124], and over 10,000 bioactive compounds 

have been retrieved from these species [125]. The bioactive compounds produce possess a 

multitude of functionalities, including antibacterial [126-128], anticancer [129-131], antioxidant 
[132-134], and antifungal properties [135-137]. 

Moreover, the potential of cultured Streptomyces in producing bioactive secondary 

metabolites is yet to be fully realized, as environmental factors such as pH, temperature, and 

incubation times can affect metabolite production [138, 139]. Studies have shown that co-

cultivation with other bacterium produces secondary metabolites that would otherwise not be 

found when culturing Streptomyces under standard lab conditions [140-142]. Furthermore, 

genome mining studies on Streptomyces have shown that they possess biosynthetic gene 

clusters that are not known to produce any secondary metabolites, and they are also 

commonly called cryptic clusters. Nonetheless, these cryptic biosynthetic clusters may not 

be cryptic in a second species of Streptomyces [143]. Therefore, it is suggested that a good 

fraction of undiscovered secondary metabolites may potentially become therapeutic agents 
[144]. This makes Streptomyces sp. and its bioactive compounds good candidates in drug 

discovery, as its potential has yet to be fully exploited. 

From the plethora of bioactive compounds produced by Streptomyces, several have 

been identified as a source of antibacterial agents, specifically against Vibrio species [145]. 

This group of bacteria has been identified as potential candidates for probiotics to be used in 

aquaculture [48]. Marine Streptomyces sp. isolated by Yang et al. demonstrated strong 
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antagonistic activity towards pathogenic V. parahaemolyticus. By using the agar diffusion 

method, they reported clear inhibition zones of 33 mm and 15 mm in diameter after 96 hours 

of incubation in both solid and liquid cultures of the selected Streptomyces sp. strain, S073, 

against pathogenic V. parahaemolyticus [56]. The antagonistic activity of the chosen 

Streptomyces sp. could be attributed to its production of carboxylate-type siderophore to 

create a lethal iron-limiting condition for V. parahaemolyticus isolates [56]. In a follow-up 

study with the same strain of Streptomyces sp., the researchers identified dibutyl phthalate 

(DBP) as another compound that elicits inhibitory effects against V. parahaemolyticus. It was 

concluded that the antagonistic effects of S073 were dependent on the synergistic effects of 

DBP-mediated antagonism and siderophore-governed iron competition with V. 

parahaemolyticus [146]. The vibriocidal activity of Streptomyces sp. was also discovered when 

an inhibition zone of 20mm was observed during the agar well diffusion method when tested 

against pathogenic V. parahaemolyticus isolated from fish [147].  

In India, Streptomyces rubrolavendulae M56 isolated from the sediments of the Bay 

of Bengal also showed antagonistic effects towards V. parahaemolyticus. Co-culture 

experiments with medium-sized biogranules produced by M56 and V. harveyi, V. 

parahaemolyticus, V. alginolyticus, and V. fluvialis showed a gradual decline in viable vibrio 

count. Upon day three of the co-culture experiment, no viable Vibrios were detected in the 

water tanks. In addition, M56 was reported to be non-pathogenic to post larvae shrimp under 

experimental setup, making them a safe option for use in aquaculture [55]. It is suggested that 

the enzymes produced by M56, including protease, amylase, lipase, DNase, and phosphatase 

could inhibit the growth of Vibrio sp. In addition, competition for colonization between M56 

and Vibrio sp. in the natural system also reduces the Vibrios available to invade the post-

larvae [55]. A separate study reported that supplementation of Streptomyces sp., RL8, as a 

probiotic stimulated the growth of Bacteriovorax, a group of predator bacteria [57]. They can 

invade the periplasmic space of Gram-negative bacteria such as V. parahaemolyticus, and 

alter the Vibrio cell wall to consume their cytoplasmic content, resulting in cell lysis [148]. 

RL8 also stimulated the antimicrobial producers, which protected the white shrimps by 

preventing them from V. parahaemolyticus infections [57]. When RL8 was used with other 

probiotics, such as Bacillus sp., higher bacterial diversity and significant stimulation of 

Bacterivorax population were also reported [57]. This indicates that RL8 is a potential 

candidate to be used in synergy with other commonly known probiotics to produce beneficial 

effects on the host.  

Given the current evidence of the anti-Vibrio properties of Streptomyces sp. in animal 

model studies, Streptomyces sp. possesses the excellent potential to become probiotics that 

can be utilized in aquaculture to prevent and control Vibrio infections. In addition, 

Streptomyces sp. can stimulate diversity in the gut microbiome of aquatic animals such as 

shrimp, leading to increased antimicrobial producers within the gut, thereby providing a 

protective effect against infections [57]. Furthermore, Streptoymces sp. has also been shown 

to enhance the growth of red swordtail fish via the production of indoleacetic acid, a growth-

promoting hormone [149]. Supplementation of Streptomyces sp. in oral shrimp feed also 

promoted the growth rates of post-larval shrimp [150]. Moreover, in aquaculture systems, the 
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accumulation of organic waste, such as ammonia and nitrite can cause water quality 

problems, making the farmed animals susceptible to diseases and infections [151]. Studies have 

shown that the administration of Streptomyces sp. within these culture systems increased the 

population of heterotrophic bacteria, thereby increasing the decomposition rate of organic 

waste, and the ammonia levels were reduced, ultimately improving the water quality [150, 152, 

153]. The multi-faceted beneficial qualities of Streptomyces sp., including its capabilities in 

Vibrio inhibition, gut modulation, water quality improvement, and growth promotion, can be 

harnessed to develop probiotics that can be used in aquaculture systems. The synergistic 

effects of Streptomyces sp.  can protect populations of farmed animals within culture systems 

from infections, thereby preserving the stability and sustainability of the aquaculture 

industry. 

4. Conclusion 

In conclusion, the prevalence of V. parahaemolyticus in Malaysia's seafood and the 

environment remains of concern as the pathogen is frequently isolated from these sources. 

However, to cause disease in humans, the V. parahaemolyticus isolates would have to express 

the virulence genes such as the thermostable direct hemolysin (tdh) gene and the TDH-related 

hemolysin (trh) gene to cause symptoms of gastroenteritis [154]. The isolates must express the 

Photorhabdus insect-related (Pir) toxin genes, PirA and PirB genes to cause AHPND in 

shrimps [63, 155]. Nevertheless, these foodborne pathogens are still frequently detected in our 

surroundings, thus increasing the probability of disease transmission, which could have 

detrimental effects on the aquaculture industry and the country’s public health. In addition, 

the rapid emergence of antibiotic resistance among V. parahaemolyticus isolates has reduced 

the efficacy of the available antibiotics. The process of developing a new antimicrobial agent 

is lengthy and time-consuming. Thus, alternatives such as probiotics are being explored to 

replace antibiotics to prevent vibriosis in aquatic animals. Streptomyces sp. has been a focal 

point of drug discovery in aquaculture, as it produces many bioactive compounds during its 

life cycle that could be useful in modulating the microbiota of farmed marine life. The various 

bioactive compounds produced can have antagonistic or vibriocidal effects on V. 

parahaemolyticus, which can be useful in deploying them in aquaculture. Streptomyces sp. 

has been found to stimulate growth and provide protective effects in shrimps. However, 

further studies and trials need to be done to determine the most effective dosage for 

administration to other species of aquatic animals. Currently, animal models of the effects of 

Streptomyces sp. as a probiotic have been producing promising results. Thus researchers are 

optimistic that these beneficial effects can be proven in clinical trials so that V. 

parahaemolyticus infections in humans can also be prevented with the application of 

Streptomyces sp.   
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