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Abstract: The contribution of streptomycetes to human health is undeniably important and 

significant, given that these filamentous microbes can produce interesting compounds that 

can be used to cure deadly infections and even cancer. Isolated from the east coast of 

Peninsular Malaysia, Streptomyces sp. MUSC 14 has shown significant antioxidant capacity. 

The current study explores the genomic potential of MUSC 14 via a genome mining 

approach. The genome size of MUSC 14 is 10,274,825 bp with G + C content of 71.3 %. 

AntiSMASH analysis revealed a total of nine biosynthetic gene clusters (with more than 80 

% similarities to known gene clusters). This information serves as an important foundation 

for subsequent studies, particularly the purification and isolation of bioactive compounds by 

genetic manipulation techniques. 
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1. Short Introduction  

Gifted with the ability to form spores, streptomycetes are ubiquitous in nature and 

produce a diverse array of secondary metabolites that can be exploited for the benefit of 

humanity[1-16]. One of the significant breakthroughs in streptomycetes research is the 

discovery of streptomycin (from the soil bacterium, Streptomyces griseus) by Professor 
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Waksman and his team – which subsequently led him to the Nobel Award in Medicine later 

in 1960[13, 17-21]. As a matter of fact, the continuous search for pharmaceutically important 

compounds led to another (one half jointly) Nobel Prize in Physiology or Medicine in 2015 

awarded to Professor William C. Campbell and Professor Satoshi Ōmura for the discovery 

of avermectin, which was isolated from a soil streptomycete, Streptomyces avermitilis[22-27]. 

The search for bioactive compounds from this prolific genus seems like a never-ending 

journey, with researchers now hunt for them in unique environments such as hot springs, 

volcanic soils, deserts, deep-sea, and the mangrove forest[28-42]. The hypothesis behind 

searching these special habitats is that microbes may come up with adaptation strategies to 

ensure their survival in the harsh condition like drastic temperature changes, salinity, and 

oxygen availability, which in turn may lead to the production of interesting compounds and 

drive the emergence of a novel bacterium [43-50]. Streptomyces sp. MUSC 14 was isolated 

from the mangrove forest on the west coast of Peninsular Malaysia during a screening 

program for bioactive actinobacteria[4, 51, 52]. A thorough investigation conducted on the strain 

has reflected the antioxidant potential of MUSC 14, attributed to its production of bioactive 

secondary metabolites, including pyrrolopyrazines and fatty acid esters[51, 53-55]. The current 

study aims to obtain the genome sequence of Streptomyces sp. MUSC 14 before exploring 

the genomic potential of this strain.  

2. Data description 

The whole genomic DNA extraction of MUSC 14 was carried out using Masterpure™ 

DNA purification kit (Epicentre, Illumina Inc., Madison, WI, USA), preceding RNase 

treatment (Qiagen, USA)[56-58]. Subsequently, the DNA library was constructed with 

Nextera™ DNA Sample Preparation kit (Nextera, USA). The library quality was evaluated 

by Bioanalyzer 2100 high sensitivity DNA kit (Agilent Technologies, Palo Alto, CA)[59, 60]. 

Paired-end sequencing was performed on the Illumina MiSeq platform with MiSeq Reagent 

Kit 2 (2 × 250 bp; Illumina Inc., Madison, WI, USA)[16, 61, 62]. Post-trimming step, de 

novo assembly of the paired-end reads on CLC Genomics Workbench version 7 (CLC bio, 

Denmark) resulted in 174 contigs and an N50 contig size of 162,032 bp. The genome size of 

MUSC 14 is 10,274,825 bp, with an average coverage of 211.0-fold and G + C content of 

71.3% (Table 1). The genome sequence of MUSC 14 has been deposited at 

DDBJ/EMBL/GenBank under accession of MLYN00000000. The version described in this 

paper is the first version.  

Following genome assembly, MUSC 14 genome was annotated on Rapid Annotation 

using Subsystem Technology (RAST) and NCBI Prokaryotic Genome Annotation Pipeline 

(PGAP)[63-66]. Gene prediction was performed using Prodigal (version 2.6)[67], while 

ribosomal RNA (rRNA) and transfer RNA (tRNA) were predicted using RNAmmer[68] and 

tRNAscan SE version 1.21[69], respectively. The whole genome of MUSC 14 consists of 

8,799 protein-coding genes and 81 RNA genes (tRNA: 74, rRNA:4).  

Table 1. General genomic features of Streptomyces sp. MUSC 14. 

Properties Streptomyces sp. MUSC 14 

Genome size (bp) 10,274,825 

Contigs 174 

Contigs N50 (bp) 162,032 

G + C content % 71.3 
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Genome coverage 211.0 

Protein coding genes 8,799 

tRNA 74 

rRNA (5S, 16S, 23S) 4 (2, 1, 1) 

 

Figure 1. Annotation of MUSC 14T genome using Rapid Annotation using Subsystem Technology (RAST). 

The annotation on RAST showed that most of the protein-coding genes were involved 

in metabolic processes, with the highest number of genes involved in carbohydrates 

metabolism (7.60%) (Figure 1). Subsequent analysis to investigate the genomic potential of 

MUSC 14 on antibiotics & Secondary Metabolite Analysis SHell (antiSMASH)[70-74] 

revealed a total of nine biosynthetic gene clusters displaying more than 80% similarities to 

known biosynthetic gene clusters. Besides detecting the gene cluster responsible for the 

production of the earthy odorant geosmin (100% gene similarities), there is one biosynthetic 

gene cluster related to nonribosomal peptides production and reflects 100% gene similarities 

with thioholgamide A/thioholgamide B biosynthesis. Thioholgamide A and B were initially 

isolated from a mangrove-derived streptomycete, Streptomyces malaysiense MUSC 136T, 

and possess cytotoxic activities against cancer cell lines[75, 76]. Recently, a research group in 

Germany has published an article studying the mechanisms involved behind the cytotoxic 

and anti-proliferative activities of thioholgamide A[75, 77]. The team showed that 

thioholgamide A induces apoptosis via caspase 3 and PARP cleavage (at concentrations 

comparable to staurosporine)[77]. Furthermore, it appears that thioholgamide A inhibits 

oxidative phosphorylation in tumor cells without displaying much toxicity towards non-

tumorigenic cells and zebrafish embryos, thus making the compound an appealing candidate 

that to be developed as anti-cancer therapeutics. Harnessing the genomic potential of 

microbes, including Streptomyces sp. is indeed one way forward in drug discovery[78-80]. 

Combined with the conventional methods, including optimization of fermentation media and 

improvement in extraction processes, the activation of biosynthetic gene clusters via 

heterologous expression or introduction of promoters in the native host can potentially yield 

bioactive compound(s) of interest in high purity and quantity, allowing its large-scale 

production for pharmaceutical use[81-85].  
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