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Abstract: The most biological multiplicity on this planet is almost certainly concealed in soils. Many valuable bacteria had 
been extensively dispersed in soils worldwide, with soils from terrestrial, desserts and Antarctic. Hence, soils become an 
intensively utilized ecological niche for the inhabitants to generate various useful biologically active natural products such as 
antibiotics, antifungal, antiviral, antioxidant, neuroprotection, anticancer and other important compounds. Bacteria including 
Actinobacteria have been exceptionally valuable for the pharmaceutical industry due to their limitless capability to generate 
secondary metabolites with various biological activities and chemical structure. Therefore, this article aims to provide critical 
insight of bioprospecting of microbes for valuable compounds to mankind.
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INTRODUCTION

Biotechnology is an illustration of biodiversity as new 
products via the utilization of living organisms and 
bioprocesses in medicine, engineering, technology, and 
other fields that required bioproducts. The greater the 
biodiversity offered, the greater probabilities of discoveries 
that could be transformed into vital technologies[1]. The 
estimation of the environmental and economic gains that 
are a direct or indirect result of microbial diversity were 
approximate to be in the range of 16-54 trillion US dollars 
per year, with an average of 33 trillion US dollars per 
year[2].

The primary and secondary metabolism of prokaryotes 

has been utilized by industrial for the creation of 
diverse products such as antibiotics[3–6], amino acids[7,8], 
nucleotides[7], organic acids[9] and vitamins[10]. Bacteria 
like Actinobacteria are a particularly rich source of 
compounds with activities such as antimicrobial[6,11–22], 
anticancer[23–29], antioxidants[30–35], neuroprotective[36,37], 
enzymes[38–41] and immunosuppressive[29] as 
illustrated by Figure 1. Bérdy (2005)[42] reported that 
in 2002, over 10,000 bioactive compounds (45% 
of all microbial metabolites) were obtained from 
filamentous Actinobacteria, out of which 7600 (75%) 
were obtained from Streptomyces and 2500 (25%) 
from rare Actinomycetes for instance Actinomadura,
Streptoverticillium and Micromonospora.

Despite the tremendous success of the past in obtaining 
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useful secondary metabolite, the probabilities of 
discovery novel biologically active molecules from 
bacteria such as Actinobacteria was reduced and appears 
to be reaching a saturation curve. Recently, isolating 
well known Actinobacteria such as Streptomyces
from diverse environments were reported to obtain 
similar compound, potentially due to regular genetic 
exchange between species[43]. These challenges had 
led to intensely amplified in serious demand for new 
structures in pharmacology, hence propelled the 
investigation of new habitats with poorly explored areas 
and uncommon environments to become vital for the 
discovery of novel bacteria (e.g. Actinobacteria) and 

useful metabolites[44–55]. Reports from poorly explored 
areas from these regions (e.g. Antarctic, Australia, China, 
Malaysia and Jordan) suggested that the investigation of 
new habitats remain to be valuable in discovering novel 
microorganisms and useful metabolites[47,56–61]. Moreover, 
the progression of new selective methods allows the 
screening and isolation of ‘rare’ Actinobacteria that 
can lead to finding useful bioactive compounds[62–64]. 
The finding of “rare” Actinobacteria has increased the 
array and diversity of genetic resources available for 
biotechnological utilization[62–66]. It is apparent that the 
findings of novel bacteria such as Actinobacteria could 
increase the discovery novel bioactive metabolites[62,66–68].

Bioprospecting of Microbes...       

The genome sequencing of Streptomyces coelicolor 
A(3)2T[69] and Streptomyces avermitilis MA-4689T[70,71]

discovered that these bacteria comprise more than 20 
natural product gene clusters. This number of gene 
clusters is much more as compared to genomes of bacteria 
from another phylum[72,73]. For instance, Bacillus subtilis 
strain 168T with three, Ralstonia solanacearum strain 
GMI 1000T with two[74], and Pseudomonas aeruginosa 
strain PA01T with four[75] Pseudomonas aeruginosa strain. 
While most other bacteria genomes lacking any detected 
natural product gene clusters[69]. These reports indicated
the capability to produce secondary metabolites are not 
evenly distributed among microbes. Moreover, multiple 
gene clusters encoding for alike classes of secondary 
metabolites have been discovered in the genomes of other 
Actinobacteria[76,77]. Thus, explaining Actinobacteria are 
highly prolific sources of bioactive metabolites[78] with 
high capacity to utilize a extensive range of compounds 
and create secondary metabolites with diverse chemical 
structures and biological activities[79,80].

Unexplored environment — The Antarctic

The Antarctic is the area at the Earth’s South Pole, contrary 
the Arctic region at the North Pole. The Antarctic includes 

the continent of Antarctica and the ice shelves, waters and 
island territories in the Southern Ocean situated south of 
the Antarctic Convergence. The area covers approximately 
20% of the Southern Hemisphere, of which 5.5% (14 
million km2) is the surface area of the continent itself. 
The Antarctic is the coldest and windiest continent, it is a 
hostile, remote, and uninhabited area with its surrounding 
marine sites, provides an appropriate chance to investigate 
a still unexplored microbial biodiversity[81–87]. The uneven 
mixture of selection pressures has led to the evolution 
of novel biochemical adaptations and the likelihood of 
native species[88,89]. The production of metabolites such as 
antibiotics and toxins could confer a competitive survival 
benefit in this environment. Therefore, the investigation 
of poorly explored areas such as the Antarctic seemed as 
important region for discovering of potential novel bacteria 
and useful biological active metabolites[59,82,85,90,91].

Bacteria from Antarctic territories

The information of prokaryotic biodiversity remains very 
sparse across Antarctica[82,92,93]. Nevertheless, in recent 
decades, the improvement in both culture dependent and 
culture-independent methodologies allow some studies 
focused on Signy Island were done[94,95,96,97,98,99]. This area 

Figure 1. Actinobacteria are prolific producers for metabolites with diverse activities.
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act as a benchmark site within the maritime Antarctic, 
whose terrestrial ecosystems are demonstrative of the 
region[100]. Furthermore, more studies are also emerging 
from other sites along the Antarctic Peninsula, such as 
the study of the prokaryotic communities of a series 
of Antarctic terrestrial habitats along a latitudinal 
gradient as part of a larger regional microbial diversity 
study covering between the Falkland Islands (~500S) 
and Mars Oasis, Alexander Island (~720S)[101–103]. 
Based on the restricted habitats studied, a fairly large 
bacterial diversity has been reported[96–99,104,105].

There is an agreement that spatial distinction between 
soil organisms is not random but displays expectable 
patterns over dissimilar spatial scales. The small-scale 
difference is found to exhibit superior diversity than 
large scale difference[106–108]. Small-scale difference 
might be more vulnerable to local environmental 
effects such as areas of increased substrate 
availability[109]. Scientists indicated that water content, 
organic content (loss on ignition) and total N showed 
substantial direct correlations with microbial counts 
from soil at 6 different sites on Signy Island, whereas 
pH exhibited an inverse association[94]. Some recent 
culture-independent reports have demonstrated that 
soil prokaryote biodiversity on Signy Island have 
high association with elements such as conductivity, 
pH, lead and copper content. Moreover, significant 
overlap was reported across sites evidently affected 
by penguins, seals, and the existence of vegetation[99]. 
The direct effect of soil properties for instance soil 
pH, nutrients and moisture on bacterial diversity were 
demonstrated[110–113], and remarkably these parameters 
also exhibited close connection to specific functional 
genes for instance glutamate dehydrogenase and 
nitrate reductase[102]. 

Studies of the bacterial ecology of Antarctic soils by 
means of culturing dependent methods demonstrated 
that bacterial abundance and diversity can differ 
with soil factors for instance moisture, pH, available 
nutrients, salinity, elevation, slope, solar radiation, 
and drainage[114]. Suzuki et al. (1997)[115] isolated an 
obligate psychrophilic Actinobacteria, Cryobacterium 
psychrophilum from the Antarctica soil. This 
bacterium grew best at 9–12oC and did not grow at 
temperatures higher than 18oC. While psychrophilic 
strains of Modestobacter multiseptatus with optimum 
growth temperatures of 11-13oC have also been 
isolated from transantarctic mountain soils[116].

Normally, the early studies on the bacterial diversity 
of Antarctic soils were disadvantaged by the readiness 
of appropriate approaches. With the accessibility of 
DNA-based culture-independent assays, analysis of 
mineral soils of the Antarctic area has discovered 
that the soil bacterial communities have low diversity 
compared with temperate soils and may be dominated 
by a few bacterial phylotypes. Bacteria reported from 
the soils typically group with the phyla Actinobacteria, 
Acidobacteria, Bacteroidetes, Deinococcus-Thermus, 
Firmicutes, Cyanobacteria and Proteobacteria[117-119]. 
Apart from Deinococcus and Cyanobacteria, they are 

among the phyla normally described from non-Antarctic 
soils[120]. The phyla Actinobacteria and Bacteroidetes appear 
to be prevalent in Antarctica while other phyla less broadly 
spread (e.g. Acidobacteria). Remarkably some bacteria have 
no close relatives demonstrating soils of the Antarctic (e.g. 
Ross Sea Region) are extremely potential as a natural reserve 
of novel and cold-adapted bacteria[118]. The closest relatives 
include members of the genera Arthrobacter, Brevundimonas, 
Leptolyngbya, Hymenobacter, Nocardioides, Sphingomonas 
and Sporosarcina[117–119] all of which have been isolated from 
Antarctic soil.

The Barrientos Island of Antarctic is situated at 62˚24’S, 
59˚47’W, north entrance to English Strait between Robert 
and Greenwich Islands. The north coast of the 1.5km island 
is dominated by steep cliffs, reaching a height of nearly 70 
metres, with a gentle slope down to the south coast. The 
eastern and western ends of the island are black sand and 
cobbled beaches. The western end has columnar basalt 
outcrops as a notable feature. The whole center of the island is 
covered by widespread moss carpet. Lichens Xanthoria spp., 
Caloplaca spp. and other crustose lichen species are present. 
Moreover, the green alga Prasiola crispa is prevalent. Soil 
samples were collected from this island and molecular 
identification, which was based on 16S rDNA sequences 
analysis, discovered eight genera of Actinobacteria namely 
Actinomyces, Actinobacterium, an uncultured Actinomycete, 
Streptomyces, Leifsonia, Frankinea, Rhodococcus and 
Mycobacterium. The uncultured Actinomyces sp. and 
Rhodococcus sp. appear to be the prominent genera of 
Actinobacteria in Barrientos Island soil[121]. Molecular 
methods were applied to investigate correlations between 
actinobacteria abundance and environmental features, 
for instance vegetation and type of rookery. There was a 
substantial positive association between type of rookery 
and the abundance of actinobacteria; soil samples collected 
from active chinstrap penguin rookeries had the highest 
actinobacteria abundance. Vegetation type, for instance 
moss, which could provide a microhabitat for bacteria did 
not associate significantly with actinobacteria abundance[121]. 

In Barrientos Island, the selective isolation of culturable 
bacteria using 12 different isolation media were performed 
and total 96 bacteria isolates were isolated with 39 and 
57 isolates belonged to phylum Actinobacteria and 
Proteobacteria, respectively. Through 16S rRNA gene 
analysis, 13 (Arthrobacter, Brevibacterium, Demetria, 
Gordonia, Rhodococcus, Janibacter, Leifsonia, 
Dermacoccus, Kocuria, Lapillicoccus, Micromonospora, 
Microbacterium, Nocardioides) and 8 (Bradyrhizobium, 
Caulobacter, Sphingomonas, Methylobacterium, 
Paracoccus, Ralstonia, Rhizobium, Staphylococcus) 
different genera of Actinobacteria and Proteobacteria, 
respectively were discovered[122,123]. Comparatively 
Actinobacteria (13 genera) had substantial higher diversity 
than Proteobacteria (8 genera)[122,123], hence showed that 
Actinobacteria are proficient to prosper in an extensive 
range of diverse soil environments, and they could resist 
the pressure of harsh environment as they could persist in 
the viable but inactive state for a extended time with form 
of spore[124]. Their extensive disseminations in Antarctic 
suggest that their dispersals are extremely endemic, 
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predominantly in soil and sediment[112,125]. Therefore, 
allowing the bio-prospecting of bacteria from sampling 
soil from widespread array of geographic sites, such as 
the Antarctic areas to be benefitted. Results showed that 
Streptomyces agar (SA) was the most suitable medium 
for isolating actinobacteria from soil of Barrientos Island 
with 54% isolation rate, while starch casein agar (SCA) 
was the most suitable medium to isolate proteobacteria 
with 19% isolation rate[122,123]. 

Furthermore, researchers studied actinobacteria and 
proteobacteria isolates from Barrientos Island for ability 
of producing antibacterial and antifungal secondary 
metabolites[122,123]. By means of high-throughput 
screening models, about 23%, 9%, 6% and 1% of isolates 
inhibited growth of Candida albicans ATCC 10231T, 
Staphyloccoccus aurues ATCC 51650T, methicillin-
resistant S. aurues (MRSA) ATCC BAA-44T and 
Pseudomonas aeruginosa ATCC 10145T, respectively. A 
total 34 bioactive isolates were isolated and categorized 
into 13 genera, particularly 9 genera were actinobacteria. 
The high bioactivities of actinobacteria isolates (38%) 
as compared to proteobacteria isolates (25%) in this 
study[122,123] showed that Actinobacteria still remain as 
the better source for bioprospecting of novel bioactive 
metabolites owing to their tremendous capability to 
produce secondary metabolites with varied chemical 
structure and biological activities[79,80,126]. These findings 
provided vital baseline data that Barrientos Island is a 
good source of isolation for bioactive actinobacteria and 
proteobacteria with good antibacterial and antifungal 
metabolites[122,123].

In Barrientos Island, the application of the polyphasic 
taxonomic such as on the basis of phylogenetic, 
chemotaxonomic, phenotypic and signature nucleotide 
pattern of the 16S rRNA gene, these results indicated 
that strain 39T is unlike all the genera in the family 
Dermacoccaceae. Hence, it is recommended that strain 
39T to be categorized in a novel genus in the family 
Dermacoccaceae, as Barrientosiimonas gen. nov., the 
type species of which is Barrientosiimonas humi gen. 
nov., sp. nov. The strain was named after Barrientos 
Island, the origin of the sampling site[127].

Bacteria as source of new natural products

The natural products have been demonstrated to be 
the richest source for discovery of novel bioactive 
compounds[128]. Previously, the majority bioactive 
products of microbial origin obtained from few taxonomic 
groups and mainly terrestrial environments[42,48]. In these 
decades, microbial natural products research inspired the 
progress of integrated methods merging specific isolation 
methods and the access to geographically diverse 
sources and to different ecological niches[128]. Lately the 
advancement of technologies enables other initiatives 
like targeting the exploitation of the metabolic potential 
of environmental gene libraries without undertaking the 
need of culturing microbes[129–131].

The microbial secondary metabolites comprise of 

antitumor agents, antibiotics, pesticides, enzyme inhibitors, 
toxins, and pigments. The biosynthesis of these metabolites 
is usually coded by genes clusters on chromosomal DNA 
and irregularly on plasmid DNA[132]. The discovery of 
new classes of antibiotics are vital to fight the increased 
occurrence of multiple resistances among pathogens to the 
available drugs presently in clinical use[133]. The utmost 
producers of natural product antibiotics are Actinobacteria 
as nearly two thirds of natural products have been derived 
from Actinobacteria[20], with streptomycetes accountable 
for more than 80% of them.

The phylum Actinobacteria signify a significant 
constituent of the microbial population in most soils[134–138];  
such as the Antarctic region[117-119,139]. Also, Actinobacteria 
present in rhizosphere soil were reported for discovery of 
antimicrobial agents and other useful metabolites[140–151]. 
The genus Streptomyces exhibited potential as bio-control 
agent of commercial crops against fungal pathogens[17,152]. 
Moreover, Streptomyces spp. derived from grapes exhibited 
antifungal activity that is pathogenic to fungi and yeast 
from the same habitat[153]. While the genus Arthrobacter, 
a pervasive genus repeatedly discovered in Antarctic 
and Arctic areas is recognized for secondary bioactive 
metabolite production and for bioconversions[154,155]. Rojas 
et al. (2009)[128] examined Antarctic bacteria for creation of 
novel metabolites discovered a novel molecules associated 
to cyclic thiazolyl peptides active on gram positive 
pathogens produced by Arthrobacter agilis derived from 
Lake Hoare and Lake Fryxell from the McMurdo Dry 
Valley area in Antartic[128].

The Antarctic γ- and β-Proteobacteria strains R-12535 
and R-7687 derived from Lake Reid in the Larsemann 
Hills and Lake Hoare in the McMurdo Dry Valleys 
produced bioactive metabolites that inhibited the growth 
of gram positive and negative pathogens such as E. coli 
and S. aureus[128]. Moreover, the MS spectra of bioactive 
metabolites obtained from the γ- and β-Proteobacteria 
strains R-12535 and R-7687 indicated no relatedness with 
any known compounds, suggesting a chemical novelty 
related to the bioactivity of these Antarctic bacteria. 
These studies demonstrated the high occurrences of 
antimicrobial activities discovered from Antarctic bacteria, 
which exhibited them as a prolific source of antimicrobial 
agents[42,62,156]. These findings support the notion that 
bacteria from Antarctic habitats comprise a rich metabolic 
diversity and the production of antimicrobial agents could 
provide a competitive benefit in this situation[157].

Other than antimicrobial agents, bacteria such as 
Actinobacteria produced enzymes that are vital and 
extensively used in medical therapy, bio-organic chemistry, 
molecular biology, detergent manufacturing, food 
processing, the textile and pharmaceutical industries[158]. 
For instance, Thermophilic ThermoActinomyces candidus 
could yield extracellular enzyme keratinase that could 
degrade wool[159]. The antimicrobial agents and keratin-
degrading producing Actinobacteria (Streptomyces, 
Nocardioides, Saccharomonospora, Nonomuraea and 
Nocardiopsis) have been utilized to transformed poultry 
farm feather waste by composting into pathogen-free 
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and odourless bio-fertilizer with complete biological 
degradation[160]. 

Crawford (1978)[161] reported that streptomycetes 
can decay lignin by producing the enzyme lignin 
peroxidase. The extracellular lignin peroxidase 
derived from Streptomyces viridosporus has been 
studied[162] and it was the first report of a lignin 
peroxidase from a bacterium. In nature, lignin 
physically covers cellulose to form lignocellulose 
(65% cellulose, 25% lignin, and small quantities of 
hemicellulose glucans), and is resilient to degradation 
by most microorganisms. Streptomyces viridosporus 
T7A could depolymerizes lignin while degrading 
cellulose[161] and generates a modified water-soluble, 
acid-precipitable polymeric lignin (APPL) as a key 
lignin degradation product[163]. Pasti et al. (1990)[164]

revealed novel Streptomyces strains, the S. rochei and 
S. chromofuscus that were discovered to be superior 
or equivalent in lignocellulose-degrading capability to 
Streptomyces viridosporus T7A.

The enzyme chitinase were discovered from the 
culture filtrate of Streptomyces cinereorube[165]. 
The enzyme was inhibited by Ag+, Hg+, Hg2+ and 
r-chloromercuribenzoate. This enzyme is stable 
in pH range 4.0-10.0 and the optimum pH and 
temperature for chitinase activity were 4.5 and 50oC, 
respectively. Gomes et al. (2000)[166] reported that 
Streptomyces spp. obtained from a Brazilian forest 
soil exhibited exceptional endochitinase activity 
and very active against three phytopathogenic fungi, 
namely Fusarium solani, Magnaphorte grisea and 
Aspergillus parasiticus.

Streptomyces ipomoea CECT3341 and S. scabies 
CECT3340 in liquid culture produces great levels of 
enzyme mannanase[167]. The potential of mannanase 
enzyme in refining the bleachability of pine kraft pulp 
was demonstrated. With bio-bleaching examinations 
by means of treatment of the enzyme to result in the 
release of chromophoric and color material from 
the pine kraft pulp, together with an increase in 
pulp brightness and an absence of differences in the 
viscosity values. 

Berens et al. (1996)[168] effectively obtained the enzyme
endoxylanases from the thermophilic actinobacteria 
Microtetraspora flexuosa SIIX. These thermostable 
enzymes reported to have optimal activities at pH 6.0 
and 80oC. The hydrolysis of hemicellulose generated 
mostly xylobiose and xylotriose, the latter will be 
hydrolysed to xylobiose and xylose. Researchers 
demonstrated the production of endoxylanase from 
Streptomyces noboritoensis[169]. Moreover, a cellulase-
free and endoxylanase-producing streptomycete, 
Streptomyces thermocoprophilus sp. nov. was 
discovered by Kim et al. (2000)[170].

Busch and Stutzenberger (1997)[171] discovered 
the Thermomonospora fusca, a facultative 
thermoalkalophilic Actinobacteria that produces an 
extracellular α-amylase which generates maltotriose 

as the key product. The optimum pH and temperature for 
the amylase activity were 6.0 and 65oC, respectively. The 
enzyme activity was not blocked by the addition of glucose 
due to the preference of the Actinobacteria for maltotriose.

Pasti and Belli (1985)[172] reported isolation of Streptomyces 
sp. and Micromonospora sp. from termite gut whereby these 
strains produce enzyme cellulose that contributed to their 
cellulolytic activity. A total of 4 different termites were 
reported for the isolation of cellulolytic Actinobacteria, 
namely Armitermes, Macrotermes, Odontotermes and 
Microcerotermes spp. All Actinobacteria strains effectively 
degraded both soluble and insoluble cellulose with some 
shown persistent activity up to a week. Waldron et al. 
(1986)[173] reported the isolation of Microbispora bispora 
from soil samples of hot springs, geysers and composts was 
found to grow at 55oC and create thermo-stable extracellular 
endoglucanase in good concentration with broad pH range 
of 5.5–7.2. 

All these reports indicated the practicality of various enzymes 
produced by various bacteria such as Actinobacteria. The 
value of bacteria in the production of enzymes is heightened 
by their comparatively high produces, cost efficiency and 
susceptibility to genetic manipulation. These enzymes 
enabled bacteria to have a key role in numerous areas 
for instance the biodegradation of plant litter especially 
the recalcitrant lignocellulose component [174] and the 
decomposition of soil organic matter[175].

CONCLUSION

As a conclusion, the research of microbial diversity and the 
isolation of novel microorganisms signify a key chance for 
developments in biology[67,176–181]. The search and discovery 
of novel microbes that produce new useful secondary 
metabolites remains important in the fight against antibiotic 
resistant pathogens[182], and new emerging diseases[183–185].
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