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Abstract: Nervous system is the network of nerve cells that transmits nerve impulses throughout the body. It is rich in both 
unsaturated fats and irons, making it predominantly susceptible to oxidative stress and damage. Oxidative stress reflects the 
disruption of the redox balance between the formation and clearance of highly free radicals, for instance reactive oxygen 
species (ROS) and reactive nitrogen species (RNS). Oxidative stress will further damage the cell lipid, protein and DNA. 
Oxidative stress has a role in the modulation of critical cellular functions, such as apoptosis program activation, ion transport 
and calcium mobilization which lead to cell death. Many studies were conducted to prevent neuronal cell death caused by 
oxidative stress through administration of free radical scavenging antioxidant, such as vitamin E. Vitamin E is known as a 
chain-breaking antioxidant that showed the capability to increase the viability of neuronal cells that had undergone glutamate 
injury by inhibiting glutamate-induced pp60 (c-Src) kinase activation. Vitamin E occurs in 8 forms, namely α-, β-, γ- and 
δ-tocopherols and α-, β-, γ-and δ-tocotrienols. Tocotrienols differ from tocopherols by possessing an unsaturated isoprenoid 
side chain instead of a saturated phytyl tail. Tocotrienols, compared to tocopherols, are lightly studied due to the abundance 
of α-tocopherol in the human body and its antioxidant properties. Nevertheless, recent studies showed that α-tocotrienol is 
more effective in preventing lipid peroxidation compared to α-tocopherol. Furthermore, tocotrienol was discovered to protect 
neuronal cell through antioxidant-independent activities. The tocotrienol-rich fraction (TRF) is an extract that consists of 
75% tocotrienol and 25% α-tocopherol. TRF was reported to possess potent antioxidant, anti-inflammation, anticancer 
and cholesterol-lowering properties. Thus, this writing highlights the significant neuroprotective effects of tocotrienol and 
tocopherol. 
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INTRODUCTION 

Antioxidant

It known that aerobic organisms have developed a series 
of defense mechanisms, which involve antioxidants, in 
response to free radical production in order to maintain 
free radicals’ level compatible with cellular functions and 
metabolic processes[1]. Antioxidant defense mechanism 
can be classified into enzymatic and non-enzymatic. 
The enzymatic defense mechanism includes superoxide 
dismutase (SOD), GSH peroxidase (GPx) and catalase 
(CAT), whereas non-enzymatic antioxidant defenses 
include vitamin E, ascorbic acid (vitamin C), glutathione 
(GSH) and other antioxidants[2].

GLUTATHIONE (GSH)

Glutathione (GSH) is the main thiol antioxidant and 

redox buffer of the cell[3,4]. It is a tripeptide comprised 
of glutamate, glycine and cysteine. It is synthesized 
in the cytosol by 2 enzymes that utilize ATP, that 
is GSH synthetase and gamma-glutamylcysteine 
(γ-GluCys) synthetase[5]. The gamma-glutamylcystein 
synthetase forms dipeptide gamma-glutamylcysteine 
by utilizing cysteine and glutamate as substrates. 
Gamma-glutamylcysteine is then merged with glycine 
in a reaction catalyzed by GSH synthetase thus forming 
GSH. GSH production is controlled by feedback 
inhibition of the γ-GluCys synthetase reaction by the 
end product GSH[6]. Total GSH in the cells can be free 
or bound to protein. The free GSH is present in reduced 
form, which will be converted to the oxidized form 
(GSSG) during oxidative stress and can be restored to 
the reduced form by the action of glutathione reductase 
(GR)[7]. The oxidation-reduction pathway of GSH is 
shown in Figure 1.
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Figure 1. Oxidation-reduction pathway of reduced glutathione (GSH) and oxi-
dized glutathione (GSSG).

GSH exerts its protection against oxidative stress by 
several approaches. Firstly, GSH directly scavenges 
reactive hydroxyl free radicals, ROS and radical 
centers on DNA and other biomolecules. Also, GSH 
functions as the cofactor for several detoxifying 
enzymes, for instance glutathione-S-transferases (GSTs) 
and glutathione peroxidase (GPx), which are vital in 
protection against oxidative stress. GPx is an enzymatic 
antioxidant which is predominantly responsible for the 
intracellular reduction of hydrogen peroxide (H2O2) 
to water with the support of GSH as electron donor[8]. 
Thus, GSH is oxidized to glutathione disulfide (GSSG) 
through GPx activity and quickly restored to GSH by 
the reaction catalyzed by glutathione reductase (GR). 
Whereas, glutathione-S-transferases conjugate GSH 
to free radicals, for instance hydrogen peroxides, thus 
reducing the deleterious interactions between free radical 
and essential cellular components[9,10]. Furthermore, 
GSH provides reducing capacity for the formation 
of deoxynucleotides by ribonucleotide reductase, 
the reduction of dehydroascorbate to ascorbate and 
restoration of vitamin E from radical form[2,11].

Also GSH has been suggested to function as neuro-
hormone based on the presence of extracellular GSH 
in brain, the release of GSH from brain slices upon 
stimulation, the specific binding of GSH to extracellular 
receptors and the induction of sodium currents in 
neocortex, and the stimulation of a signal cascade in 
astrocytes[12,13]. Furthermore, some studies suggested that 
astrocytes support neuronal cells by means of providing 
GSH and cysteinylglycine (CysGly), which is the GSH 
precursor to neuronal cells[6].

VITAMIN E

Vitamin E is a lipid-soluble vitamin vital for human 
nutrition and health. The term ‘vitamin E’ was first 
introduced by Evans and Bishop (1922)[14] in describing 
a dietary factor in rat reproduction. The vitamin E 
family includes 8 different isomers, namely α-, β-, γ-, 
and δ-tocopherols and α-, β-, γ-, and δ-tocotrienols. 
Tocopherols and tocotrienols, as a group known as 
tocochromanols comprise of a chromanol ring system 
and a polyprenyl side chain. The 8 isomers of vitamin E 
vary in the degree of antioxidant and biological activities. 
All tocochromanols are amphipathic molecules, with 
the lipophilic isoprenoic side chain of tocochromanol 
is anchoring the membrane lipids, whereas the polar 
chromanol ring is exposed to the membrane surface[15]. 

Vitamin E is the major component that present amongst 
the lipid elements of cell membranes and lipoproteins[16]. 
Vitamin E is exclusively synthesized by photosynthetic 
eukaryotes and other oxygenic photosynthetic organisms 
for instance cyanobacteria. Therefore, vitamin E is ingested 
along with fat-containing food, like nut oil seeds, egg yolk, 
vegetable oils, margarine, soya bean, wheat, avocados and 
germ[15].

Vitamin E has numerous biological functions. The 
pharmacologic use of vitamin E, in doses 10 to 50 times 
the daily requirement, was recommended in 1947 for 
the treatment of an array of cardiovascular disorders[17]. 
The chain-breaking antioxidant properties of vitamin E 
was detected in the 1950s and consequently proved to 
be useful in preventing lipid peroxidation by scavenging 
chain-carrying peroxyl radicals and generates an induction 
period[18,19,20]. Furthermore, studies reported that severe 
vitamin E deficiency in human will leads to neuromuscular 
abnormalities because of free radical damage to the nerve 
cells[21,22]. Vitamin E deficiency seldom occurs in human 
as a result of dietary deficiencies but occurs as a result of 
genetic abnormalities in the α-tocopherol transfer protein 
(α-TTP)[23]. Vitamin E also possesses non-antioxidant 
functions, with vital role in cellular signaling by regulating 
protein kinase C[24]. Moreover, vitamin E in combination 
with selenium were exhibiting ability to prevent loss of 
spermatogenesis in males[25]. Some studies also indicated 
that vitamin E prevents most of the glutamate-induced 
neuronal cell death[26]. Furthermore, dietary of vitamin 
E can enhance immune responses in numerous animal 
models[27].

Metabolism of vitamin E

The hydrophobic nature of vitamin E make it preferentially 
located in oil storage organs, fat deposits and in cell 
membranes. It is transported around the body as an element 
of plasma lipoproteins. After ingestion of dietary vitamin 
E, it will be absorbed into the enterocyte, followed by 
packaging into chylomicrons. These nascent chylomicrons 
are then secreted into the lymphatic circulation. During the 
chylomicron catabolism in the circulation, the absorbed 
vitamin E is transferred to circulating lipoproteins and 
drained into the bloodstream. The high-density lipoprotein 
(HDL) in the bloodstream donates apolipoprotein C-II 
(APOCII) and apolipoprotein E (APOE) to the nascent 
chylomicron and thus converts it to a mature chylomicron. 
Lipoprotein lipase (LPL) is bound to the endothelial lining 
of capillary walls. During the lipolysis by LPL, various 
form of vitamin E could be transferred to tissues. Also, 
vitamin E could be exchanged between HDLs and other 
circulating lipoproteins, which could deliver vitamin E to 
the peripheral tissues. The resultant chylomicron remnant 
from lipolysis are primarily taken up by the liver through 
the chylomicron remnant receptors[28]. In liver, remnant 
chylomicron-associated vitamin E is incorporated into 
nascent very-low density lipoproteins (VLDL) via the action 
of α-TTP[29]. One of the vital determinants of vitamin E 
biological activity is the affinity of its analogues for α-TTP. 
The α-TTP has higher preference to α-tocopherol compared 
to other vitamin E isomers[30]. When the VLDL are secreted 
into the plasma circulation, VLDL are converted into 
intermediate density lipoprotein (IDL) and low density 

An Insight of Vitamin E...       



3

                                                                                                                                                                                                      Yap et al.

lipoprotein (LDL) via the action of LPL[31,32]. Vitamin E 
is then transferred from plasma to cells through uptake 
facilitated by receptor-mediated lipoprotein endocytosis, 
lipid transfer proteins and lipases, and selective lipid 
uptake[33]. Studies demonstrated that LDL receptor were 
facilitating the tissue incorporation of plasma vitamin E as 
part of LDL, while LPL and phospholipid transfer protein 
enable the tissue incorporation of plasma vitamin E as 
part of triglyceride-rich lipoprotein[34–36]. Furthermore, 
IDL and LDL have LDL receptor-binding domains which 
allow receptor-mediated lipoprotein endocytosis to 
facilitate uptake of vitamin E into the peripheral tissue[37]. 
The pathways of vitamin E absorption and distribution are 
depicted in Figure 2.

Figure 2. Pathways for vitamin E absorption and distribution.

Vitamin E is one of the most vital lipid-soluble antioxidants 
that protects membranes from oxidation by reacting with 
lipid radicals produced in the lipid peroxidation chain 
reaction[31]. As an antioxidant agent, vitamin E does not 
work independently in scavenging free radicals. It is a part 
of the redox antioxidant system. Vitamin E is efficiently 
reduced from its free radical form (tocotrienoxyl or 
tocopheroxyl) back to its reduced native form via 
enzymatic or non-enzymatic mechanisms. Vitamin C 
can directly restore vitamin E and thiol antioxidant, 
for instance GSH, and indirectly restore vitamin E via 
redox antioxidant network. This system maintains the 
concentration of vitamin E radicals low. Hence, the loss 
or consumption of vitamin E is prevented[38].

ISOMER OF VITAMIN E

Tocopherol

Tocopherol contains a chromanol ring and a saturated 
phytyl side chain[39]. The structural formulae of tocopherols 
are shown in Figure 3. Tocopherol is primarily found in 
sunflower and olive oils. Among 8 isomers of vitamin E, 
α-tocopherol was firstly derived from wheat germ oil and 
named in 1936 by Evan et al.[40]. The α-tocopherol have the 
highest bioavailability among the isomers because of the 
recognition of α-TTP[41]. The core function of α-tocopherol 
is terminating the chain reaction of lipid peroxidation 
to inhibit cell membrane and LDL from oxidative 
disintegration[42]. Tocopherol also provides protection 
against peroxynitrite-induced lipid oxidation. Other than 
antioxidant function, vitamin E has functions in cell 

signaling activities, for instance regulation of protein kinase 
C, inhibition of cyclooxygenase-2 activity and modulation 
of phospholipase A2 activity were due to the present of 
α-tocopherol. The α-tocopherol could dilate blood vessels 
and interferes with aggregation of platelets[43]. Osakada 
et al.[44] reported that 1-10 µM α-tocopherol effectively 
protects striatal neurons against cytotoxicity induced by 
a L-buthionine-S,R-sulfoximine (BSO) via the reduction 
of oxidative stress. Study indicated that α-tocopherol can 
effectively relieve neuronal damage induced by oxygen-
centered free radicals[45]. Also, α-tocopherol functions in 
regulating inflammation by reducing the release of cytokine 
interleukin-1β (IL-1β) via inhibition of 5-lipoxygenase 
pathway[45].

Figure 3. Structural formulae of Tocopherols.

Tocotrienol

Tocotrienols vary from tocopherols by having 3 double 
bonds in the hydrophobic tridecyl side chain[42]. Figure 4 
depicted the structural formulae of tocotrienols. Tocotrienols 
are rich in barley oil and palm oil. More than 95% of studies 
on vitamin E focusing on α-tocopherol due to its richness in 
the human body and its antioxidant functions. Nevertheless, 
recent studies exhibited that tocotrienol possesses health-
promoting properties such as vital neuroprotective effect, 
cholesterol lowering and anti-cancer properties that are 
usually not displayed by tocopherols[46]. Even though 
tocotrienols have low bioavailability, its antioxidant activity 
is higher than tocopherols[47]. The α-tocotrienol exhibited 
better peroxyl radical scavenging potency than α-tocopherol 
in liposomal membrane[48]. The unsaturated side chain of 
tocotrienol allowing even distribution of tocotrienol in 
the membrane bilayer that further enhance the interaction 
of chromanol ring of α-tocotrienol with lipid radicals. 
Tocotrienols also moves between lipid vesicles much faster 
than α-tocopherol. Furthermore, the chromanoxyl radical 
of α-tocotrienol (α-tocotrienoxyl) was to be recycled in 
membranes and lipoproteins more rapidly compared to 
α-tocopheroxyl radical[49,50].

Figure 4. Structural formulae of Tocotrienols.
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FUNTIONS OF VITAMIN E

Antioxidant

Vitamin E efficiently inhibits lipid peroxidation and 
scavenges the chain-propagating peroxyl radical. 
The scavenging outcome of α-tocotrienol was 1.5-
fold higher than α-tocopherol in liposomes[49]. 
Moreover, α-tocotrienol was 6.5 times more effective 
in protecting cytochrome P-450 against oxidative 
damage. The tocotrienol-rich fraction (TRF) from palm 
oil is significantly more effective than α-tocopherol in 
inhibiting oxidative damage in rat brain mitochondria 
induced by ascorbate-Fe2+, the free radical initiator 
azobis (2-amidopropane) dihydrochloride (AAPH) 
and photosensitization[51]. Furthermore, palm TRF at 
micromolar concentration providing better protection 
against copper-induced oxidation of plasma low 
density lipoprotein and also lipid peroxidation in 
human umbilical vein endothelial cells (HUVEC), as 
compared with α-tocopherol[52]. Moreover, the efficacy 
of α-tocotrienol in protection against Fe2+ NADPH-
induced lipid peroxidation in rat liver microsome was 
40 times higher than α-tocopherol[49]. This could strongly 
suggest that α-tocotrienol has greater scavenging effect 
compared to α-tocopherol.

Neuroprotection

Recent studies demonstrated that vitamin E have 
health benefit properties which go beyond their known 
antioxidant activity. Studies indicated that α-tocotrienol 
prevented both oxidative stress-dependent and 
oxidative stress-independent apoptosis, whereas δ- and 
γ-tocotrienol only inhibited oxidative stress-dependent 
apoptosis. This displays that neuroprotective effect of 
α-tocotrienol could be mediated via non-antioxidant anti-
apoptotic actions in addition to its antioxidant property[53]. 
Moreover, nanomolar concentrations of α-tocotrienol 
could block glutamate-induced neuronal cell death, 
while α-tocopherol did not exhibit this property[54]. 
Furthermore, nanomolar concentration of α-tocotrienol 
could protect glutamate-induced cell death in mouse 
neuroblastoma HT4 cell via inhibition of 12-lipoxygenase 
and phospholipase A2 activation that further interfere the 
state of phosphorylation[26,54,55]. Additionally, tocotrienols 
effectively inhibited the activation of pp60 c-src kinase, 
a kinase that centrally involved in glutamate-induced 
cell death[26]. For neuroprotection properties, studies 
reported that other sources (e.g. microbial resources) 
were also demonstrating strong antioxidants[56–66] and 
neuroprotective properties[67–72], for instance radical 
scavenging and metal chelating potentials[73–80]. 

Other Beneficial Properties of Vitamin E

Numerous studies indicated that tocotrienols could 
suppress proliferation and induce apoptosis of several 
tumor cells such as breast, liver, lung, colon, stomach, 
skin, pancreas and prostate cancer cells[81–87]. The 
γ-tocotrienol and δ-tocotrienol were reported to have 
anti-tumor activity in breast cancer cell irrespective 
of estrogen receptor status[88,89]. The γ-tocotrienol 
also prevents cholesterol synthesis by suppressing 

3-hydroxy-3-methylglutaryl-CoA reductase activity via a 
post-transcriptional mechanism[90]. The cardioprotective 
effects of tocotrienol are also facilitated via their ability 
to suppress inflammation thus reduce the expression 
of adhesion molecules and monocyte-endothelial cell 
adhesion[91].

BIOMARKER OF NEURONAL CELL INJURY

The continuous supply of oxygen and glucose is extremely 
important for brain energy metabolism. The disruption of 
this supply for a few minutes can introduces a sequence 
of biochemical event that lead to cell swelling, leakage 
and damage leading to neuronal cell death[92]. Intracellular 
components, such as neuron specific enolase (NSE), can 
be detected in the extracellular fluid and celebrospinal 
fluid (CSF) upon neuronal damage[93]. Among various 
intracellular proteins, the concentrations of NSE, S100β, 
glial fibrillary protein (GFAP) and myelin basic protein 
(MBP) exhibited positive correlation to the severity of 
the brain damage[94]. The NSE catalyzes the conversion 
of 2-phospho-D glycerate to phosphoenolpyruvate 
in glycolytic pathway and localized predominantly 
in neuronal cytoplasm[95]. The level of NSE in the 
cerebrospinal fluid has been used as markers of neuronal 
damage in patients with a variety of neurologic condition 
including status epilepticus and metastatic lung cancer. 
Furthermore, positive correlation was reported between 
the glutamate-induced changes of the neuron-specific 
enolase efflux fraction[96]. NSE is highly expressed as 
a glycolytic enzyme to replenish the ATP supply when 
energy depletion occurs, which could be due to neurotoxin 
agents for instance glutamate[97]. Meanwhile, S100β is a 
calcium-binding protein localized in astrocytes. The S100β 
levels were increased after central nervous system lesions. 
Furthermore, high level of NSE and S100β were reported 
in the CSF of infants and children after traumatic brain 
injury[98].

CONCLUSION

Vitamin E, which made up of tocotrienols and tocopherol 
isomers, is a known chain-breaking antioxidant. 
Studies demonstrated that vitamin E have health benefit 
properties beyond their known antioxidant activity. 
With the α-tocotrienol preventing both oxidative stress-
dependent and oxidative stress-independent apoptosis, 
while δ- and γ-tocotrienol only inhibited oxidative 
stress-dependent apoptosis. These findings demonstrated 
that neuroprotective effect of α-tocotrienol could be 
mediated via non-antioxidant anti-apoptotic actions in 
addition to its antioxidant property[53]. Furthermore, TRF 
and α-tocopherol at concentration of 100 to 300 ng/mL 
demonstrated minor prophylactic properties but significant 
recovery ability in improving the glutamate-injured cell 
viabilities in both mono-culture and co-culture model. TRF 
at nanomolar concentration also exhibited better protection 
to neuronal cell against glutamate toxicity compared to 
α-tocopherol. Therefore, the putative mechanism of TRF 
and α-tocopherol action in protecting and recovering 
glutamate-injured cells was of great interest and warrant 
further research. More in vivo studies should be performed 
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to further understand the recovery mechanism of TRF and 
α-tocopherol in a complete body system.
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