ISSN-1680-9955

Pak. J. Anal. Envir. Chem. Vol. 7, No. 1, (2006) 62 - 67

Lewis Acid Nature of SnCl₄ and *n*-Bu₂SnCl₂ Determined by Adduct Formation with 3-Methyl-1-Indanone

MUHAMMAD DANISH^{1*}, C.M. ASHRAF², ALI MOHAMMAD³ AND FAIZ-UR-REHMAN³ ^{1*}Department of Chemistry, University of Sargodha, Sargodha, Pakistan ²Department of Chemistry, F.C. College University, Lahore, Pakistan ³Department of Chemistry, University of the Punjab, Lahore, Pakistan

Abstract

Lewis acid nature of $SnCl_4$ and $n-Bu_2SnCl_2$ has been studied using 3-methyl-1-indanone. The equilibrium constant has been calculated for both the tin moieties. It has been found that Lewis acid character of $SnCl_4$ is fourteen times greater than that of $n-Bu_2SnCl_2$.

Key words: Lewis Acid Nature, Adduct Formation, 3-Methyl-1-Indanone

Introduction

Tin is inert and does not react with air or water at room temperature. However, at elevated temperatures, it forms a very thin oxide layer on the surface. Tin behaves in an amphoteric way and this nature depends upon concentration and temperature of the medium [1,2].

There are numerous reports on synthesis and applications of organotin compounds [3-8]; however, study of Lewis acid nature of tin halides and organotin halides covers the academic interest. In tin halides, organotin halides and most of organotin compounds, the tin center behaves as Lewis acid. Crystallographic data show, that tin center may show coordination number up to seven [10]. If a donor atom is much away from tin, it does not affect the coordination number and this state is also retained in non coordinating solvents [7,8,12].

Due to Lewis acid character of tin center, it can be used to study basic properties of compounds containing donor atoms. Compounds containing carbonyl group fit in this category as they act as Lewis bases.

*Author for Correspondence

In the present work, 3-methyl-1-indanone has been selected to study acidic properties of $SnCl_4$ and $n-Bu_2SnCl_2$. Furthermore, it is an important ligand in the synthesis of various tricarbonyl chromium complexes [13-15].

Experimental

All the chemicals were of analytical reagent grade (purchased from Merck) and used without further purification. Fresh distilled benzene was used whenever required.

Preparation of 3-methyl-1-indanone

Dry benzene (50 cm^3) [16] was taken in a two-necked round bottom flask equipped with a water condenser and magnetic stirrer. Crotonic acid (6.5 g) was then added followed by portionwise addition of anhydrous AlCl₃ (31.8 g), under inert atmosphere. The reaction being exothermic started without heating. Afterwards, the reaction mixture was refluxed for five hours. The reaction mixture was cooled, extracted in dry benzene, washed with distilled water to remove unreacted AICl₃. The organic layer was separated and treated with an aqueous solution of sodium bicarbonate to remove un-reacted crotonic acid and β -phenyl butyric acid (by product). The organic layer was separated and washed twice with distilled water. The benzene extract was dried over MgSO₄ for several hours and filtered. Benzene was removed under reduced pressure. The residue was dissolved in dry. ether (100 cm³), stirred with activated charcoal for several hours and filtered through alumina. The filtrate was concentrated to half of its volume and kept overnight. The 3-Methyl-1-indanone was obtained as a crude mass, which was purified by distillation under reduced pressure [17].

Measurement of absorption and equilibrium constant

A stock solution of indanone $(3.8 \times 10^{-3} \text{ M})$ was prepared. Its molar concentration was kept constant throughout the experiment with both tin halides. The molar concentration of tin halides was varied for each determination. Stoichiometric

Table 1. Absorption data for 3-methyl-1-indanone* with SnCl₄.

S. Wave Length Concentration of SnC1₄ (M) No. (nm)3.73×10⁻³ 1.86×10⁻³ 7.45×10-3 14.91×10⁻³ 0 1 380 0.065 0.252 0.264 .285 0.325 2 390 0.048 0.237 0.252 0.276 0.320 3 0.044 0.235 0.247 0.284 400 0.336 0.032 0.223 4 410 0.250 0.293 0.354 5 420 0.022 0.210 0.256 0.302 0.376 6 430 0.017 0.202 0.260 0.310 0.392 0.013 0.190 7 440 0.230 0.304 0.380 8 450 0.010 0.174 0.202 0.285 0.356 9 460 0.008 0.163 0.177 0.250 0.315 0.007 0.149 10 470 0.156 0.190 0.248 11 480 0.006 0.133 0.140 0.150 0.192 0.004 0.116 0.130 0.162 12 490 0.124 0.002 0.103 0.122 0.146 13 500 0.114 510 0.000 14 0.096 0.107 0.114 0.130 15 520 0.000 0.089 0.101 0.106 0.118 530 0.000 0.087 0.098 0.104 0.109 16 17 540 0.000 0.084 0.086 0.102 0.104 * Concentration of 3-methyl-1-indanone taken each time is 3.84×10^{-3} M

amounts of indanone and tin halide were mixed and absorption was measured at various wavelengths using UV-6000 UV-Vis-spectrophotometer, R&M Marketing, England. The absorbance was calculated using Beer-Lambert law.

Discussion

ortho-Dichlorobenzene was chosen as the solvent for studying the basicity of the ketone towards tin halides. Concentration of ketone was maintained constant while the concentration of $SnC1_4$ or $n-Bu_2SnCl_2$ was varied as far as experimentally possible.

The absorption data are given in Tables 1 and 2. The absorption spectra of neat of 3-methyl-1-indanone and with tin moieties are shown in Figs. 1 and 2. On adding $SnC1_4$ or *n*-Bu₂SnC1₂ (as solution in *ortho*-dichlorobenzene),

S No.	Wave Length (nm)	Concentration of <i>n</i> -Bu ₂ SnC1 ₂ (M)					
		0	1.8×10 ⁻²	5.4×10 ⁻²	10.8×10 ⁻²	16.3×10 ⁻²	
1	380	0.078	0.085	0.100	0.103	0.108	
2	390	0.054	0.060	0.071	0.075	0.084	
3	400	0.041	0.050	0.060	0.064	0.068	
4	410	0.025	0.029	0.039	0.043	0.048	
5	420	0.011	0.020	0.026	0.029	0.032	
6	430	0.005	0.014	0.020	0.022	0.028	
7	440	0.001	0.010	0.016	0.018	0.023	
8	450	0.000	0.008	0.012	0.014	0.021	
9	460	0.000	0.005	0.011	0.013	0.018	
10	470	0.000	0.004	0.009	0.011	0.016	
11	480	0.000	0.003	0.007	0.009	0.014	
12	490	0.000	0.002	0.006	0.008	0.011	
13	500	0.000	0.001	0.005	0.006	0.009	
14	510	0.000	0.000	0.004	0.005	0.007	
15	520	0.000	0.000	0.002	0.004	0.005	
16	530	0.000	0.000	0.003	0.003	0.004	
17	540	0.000	0.000	0.000	0.001	0.002	
* Concentration of 3-methyl-1-indanone taken each time is 3.84×10^{-3} M							

Table 2. Absorption data for 3-methyl-1-indanone* with n-Bu₂SnCl₂.

Figure 1. Absorption spectra of 3-methyl-1-indanone (3.84×10⁻³ M) in presence of varying amounts of SnCl₄ using *o*-dichlorobenzene as solvent.

Figure 2. Absorption spectra of 3-methyl-1-indanone (3.84x10⁻³ M) in presence of varying amounts of *n*-Bu₂SnCl₂ using *o*-dichlorobenzene as solvent.

Table 3.	Concentration	and absorp	tion data	of the ligan	d with SnCl ₄

Conc. of SnCl ₄	Absorption at 430 nm	D-D _o	[SnCl ₄] / D-D ₀	1/D
$1.86 \times 10^{-3} M$	0.202	0.185	10.05×10^{-3}	4.950
$3.73\times 10^{\text{-3}}M$	0.260	0.243	15.35×10^{-3}	3.850
$7.45\times 10^{\text{-3}}M$	0.310	0.293	25.43×10^{-3}	3.230
14.91×10^{-3} M	0.292	0.375	39.76×10^{-3}	2.550

Concentration of indanone (base) = 3.84×10^{-3} M Absorption of pure indanone solution at 430 nm = $D_0 = 0.017$ Relation:- [SnCl₄] / D-D₀ = $-1/K \times 1/D + 1/KD_{\infty}$

Where

 D_o =Absorption of pure indanone solution D=Absorption at a given concentration of alkyltin halide D_{∞} =Absorption for complete aduct formation K=Equilibrium constant From graph (Fig. 3) K = 69.7

Conc. of Bu ₂ SnCl ₂	Absorption at 420 nm	D-D _o	[Bu ₂ SnCl ₂] / D-D _o	1/D
$1.81\times 10^{\text{-2}}M$	0.020	0.009	2.640	50.00
$5.44 \times 10^{-2} M$	0.026	0.015	3.630	38.46
$10.87\times 10^{\text{-2}}M$	0.029	0.018	5.040	34.48
$16.31 \times 10^{-2} M$	0.033	0.022	7.410	30.30

Table 4. Concentration and absorption data of the ligand with *n*-Bu₂SnCl₂.

Concentration of indanone (base) = 3.84×10^{-3} M Absorption of pure indanone solution at 420 nm = D_o = 0.011 Relation:- [*n*-Bu₂SnCl₂] / D-D_o = $-1/K \times 1/D + 1/KD_{\infty}$ From graph (Fig. 4) K = 4.6

Figure 3. Plot of $[SnCl_4]/D-D_0$ Vs 1/D for the interaction of 3-methyl-1- indanone with SnCl₄.

Figure 4. Plot of [n-Bu₂SnCl₂]/D-D₀ Vs 1/D for the interaction of 3-methyl-1-indanone with n-Bu₂SnCl₂.

the absorption increased. Absorption maxima were observed at 430 and 380 nm for $SnC1_4$ and n-Bu₂SnCl₂ respectively. Further increase in $SnC1_4$ or n-Bu₂SnCl₂ concentration was not possible experimentally because of weaker interaction between ketone and tin moieties. Attempts are made to calculate the equilibrium constant for the aduct formation between $SnC1_4$ or Bu₂SnCl₂ with 3-methyl-1-indanone and the results are shown in Tables 3 and 4. A plot of $[SnC1_4]/D$ -D₀ and n-Bu₂SnC1₂/D-D₀ against 1/D gave a straight line (Fig. 3 and 4).

The equilibrium constant K found from the plot shown in Figs. 3 and 4 is 69.7 for $SnC1_4$ and 4.6 for *n*-Bu₂SnC1₂. These results show that 3-methyl-1-indanone interacts with $SnCl_4$ or n-Bu₂SnC1₂ in the aprotic medium and the interaction is reversible. The compound formed in solution has a l:l stoichiometry.

The equilibrium constant values show that $SnCl_4$ is about fourteen time stronger acid than *n*-Bu₂SnCl₂. It can be explained on the bases of replacement of two chloro- groups by butyl groups. This dictates that presence of highly electronegative group on tin increases its Lewis acidity.

References

- Mc Graw Hill Encyclopedia of Science and Technology, Mc Graw Hill, New York 18 (1987) 367-369.
- 2. William Benton, *Encyclopedia Britannica*, London, 9 (1997) 1019-1021.
- 3. S. Tsunoi, H. Shioji and M. Tanika, *Analytical Sciences*, 20 (2004)101.

- P. Novak, I. Gisurora, R. Jamber, A. Ruzicka & J. Holecek, *Appl. Organometal*. Chem.,18 (2004) 241.
- W. Rehman, M.K. Baloch, B. Muhammad, A. Badshah and K. M. Khan, *Chinese Sci. Bull.*, 49 (2004) 119.
- I. Din, M. Mazhar, K. M. Khan, M.F Mohan, K.C. Molloy, J. Organomet. Chem., 689 (2004) 899.
- M. Danish, H. G. Alt, A. Badhah, S. Ali, M. Mazhar and N. Islam, J. Organomet. Chem., 486 (1995) 51.
- M. Danish, S. Ali, M. Mazhar, A. Badshah, M. I. Chaudhry, H.G. Alt and G. Kehr, *Polyhedron*, 14 (1995) 3115.
- 9. M. Danish, S. Ali, M. Mazhar, and A. Badshah, *Main Group Metal Chem.*, 19 (1996) 121.
- 10. M. Danish, S. Ali, M. Mazhar, A. Badshah and E.R.T. Tiekink, *Main Group Metal Chem.*, 18 (1995) 617.
- 11. M. Danish, S. Ali, M. Mazhar, T. Masood and E.R.T. Tiekink, *Main Group Metal Chem.*, 18 (1995) 27.
- 12. M. Danish, S. Ali, and M. Mazhar, *Heteroatom Chem.*, 7 (1996) 233.
- 13. C. M. Ashraf, W.R. Jackson and D. Rosh, *Aust. J. Chem.*, 28 (1975) 197.
- 14. C. M. Ashraf and W. R. Jackson, *Aust. J. Chem.*, 31 (1978) 1845.
- 15. C. M. Ashraf, Arab Gulf J. Scient. Res. Math. Phys. Sci., A5 (1987) 11.
- D. D. Perrin and W. L. F. Armergo, *"Purification of Laboratory Chemicals"* ed 3rd, Pergamon, Oxford, (1987).
- 17. F. Koelsch. H. Hockmann and C.D. Claire, *J. Am. Chem. Soc.*, 65 (1943) 59.