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Future challenges on focused fluid migration in sedimentary basins:
Insight from field data, laboratory experiments and numerical simulations

A Gay1∗, V Vidal2†

In a present context of sustainable energy and hazard mitigation, understanding fluid mi-
gration in sedimentary basins – large subsea provinces of fine saturated sands and clays –
is a crucial challenge. Such migration leads to gas or liquid expulsion at the seafloor, which
may be the signature of deep hydrocarbon reservoirs, or precursors to violent subsea fluid
releases. If the former may orient future exploitation, the latter represent strong hazards
for anthropic activities such as offshore production, CO2 storage, transoceanic telecom
fibers or deep-sea mining. However, at present, the dynamics of fluid migration in sedi-
mentary layers, in particular the upper 500 m, still remains unknown in spite of its strong
influence on fluid distribution at the seafloor. Understanding the mechanisms controlling
fluid migration and release requires the combination of accurate field data, laboratory ex-
periments and numerical simulations. Each technique shall lead to the understanding of
the fluid structures, the mechanisms at stake, and deep insights into fundamental processes
ranging from the grain scale to the kilometers-long natural pipes in the sedimentary layers.
Here we review the present available techniques, advances and challenges still open for the
geosciences, physics, and computer science communities.

I Introduction

Fluids (water, gases, CO2, sulphides, hydrogen, hy-
drocarbons) migrating through pipes in sedimen-
tary basins and being expelled at the seafloor is a
widespread process which is gaining increased at-
tention in the assessment of geohazards, for envi-
ronment conservation [1], and for securing fossil en-
ergy resources. Pipes (or chimneys) are very com-
mon in sedimentary basins and they are interpreted
as focused fluid flow structures which hydraulically
connect deep sources with the sedimentary cover
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leading to the formation of various seafloor fluid
seep structures such as pockmarks, mud-volcanoes
and injectites [2–4]. Pockmarks are generally devel-
oping in unconsolidated fine-grained sediments as
cone-shaped circular or elliptical depressions (neg-
ative relief compared to the regional slope), due to
fluid migration and expulsion (Fig. 1). Mud vol-
canoes and sand extrudites-injectites are due to a
mix of fluid and mud or sand migrating from buried
overpressured (pressure that exceeds the normal
hydraulic pressure at depth) mud-rich or sand-rich
reservoirs, respectively, forming a dome structure
at the seafloor (a positive relief compared to the
regional slope) (Fig. 1). They range from a few
metres to 2 km or more in diameter and from a few
m to hundreds of m in height [5]. Because of the
nature and relatively low temperature of the flu-
ids expelled, they are called cold seeps, supporting
methane- and sulphide-dependant biological com-
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Figure 1: Sketch representing the challenges on fluid
migration through pipes in sedimentary basins. From a
physicist’s point of view, the host medium (lithosphere)
can be viewed as liquid-saturated grains.

munities (see [6] and references therein).

For the last decade, increasing explo-
ration/production and consumption of fossil
fuels has led to tremendous greenhouse gas
emissions (CO2, methane, etc.), causing a rise
in the global temperature level [7] and severe
natural hazards [8]. Methane (CH4) is a powerful
greenhouse gas whose natural and anthropogenic
emissions contribute ∼20% to global radiative
forcing (Pachauri et al., 2015) [9]. Current annual
global methane emissions sourced from natural
geological sources are estimated at 18–63 Mt, with
offshore seeps contributing 5–10 Mt, there being
considerable uncertainty in these estimates [10,11].

In spite of its importance, the subject still suf-
fers from a lack of interdisciplinary studies incor-
porating geologists, oceanographers, physicists and
geophysicists, chemists and geochemists, biologists,
mineralogists, and sandbox/numerical modellers.

Combination of these research topics in constrain-
ing the physical properties of fluid pathways and
the mechanisms of fluid flow is an outstanding
opportunity to 1) study the dynamical processes
involved in the formation of fluid pipes and fo-
cused fluid flow systems, 2) evaluate the dynam-
ics of resources (including gas hydrates), 3) pre-
vent submarine slope failures and related tsunamis
through risk assessment, 4) constrain driving mech-
anisms and quantification of expelled fluid volumes
through pipes, 5) understand the occurrence of
chemosynthetic benthic ecosystems that develop
in deep seep sites, and 6) better understand cou-
pling between the deep geosphere and the bio-
sphere by quantifying the input of greenhouse gases
(e.g. methane & CO2) into the ocean/atmosphere
system, which may influence the atmospheric car-
bon budget and Earth’s paleo- and present climate
(Fig. 1).

For the physicist, fluid migration through pipes
in sedimentary basins (Fig. 1) can be seen as a
large-scale example of a multiphase flow in a de-
formable dense granular medium - namely, a fric-
tional multiphase flow. For a non-wetting fluid
invading a granular medium immersed in a wet-
ting fluid, the morphology of fluid invasion is de-
termined by the interplay between capillary forces,
viscous forces, buoyancy and particle friction and
cohesion [12]. The capillary number compares the
relative effects of viscous drag forces and surface
tension forces, Ca = ηV/γ where η is the viscosity
of the wetting fluid, V the typical invasion veloc-
ity and γ the surface tension. The Bond number
corresponds to the ratio between gravitational and
capillary forces, Bo = ∆ρgL2/γ, with ∆ρ the den-
sity difference between the two fluids (usually, be-
tween the surrounding liquid and the invading gas),
g the gravitational acceleration and L a characteris-
tic length, usually taken as the pore size. The cap-
illary number is mostly used to classify horizontal
frictional flows [13], while the Bond number is more
classically used to describe the morphology of rising
gas in saturated sands [14, 15]. However, in spite
of their successful application to different invasion
geometries, their use becomes limited when dealing
with highly polydisperse or cohesive/frictional sys-
tems. Other dimensionless numbers have been pro-
posed involving the hydraulic conductivity [16] or
the width of the distribution of the capillary over-
pressure in the system [17,18]. The fracturing num-
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ber, initially proposed by Holtzmann et al. [19,20],
predicts the emergence of a fracturing pattern and
was later adapted to buoyancy-driven experiments
[21].

When the invading fluid is similar to the fluid
initially surrounding the grains, however, most of
the above dimensionless numbers are ruled out
as capillary forces no longer play a role. In the
context of hydraulic fracturing, the threshold is
reached when the pore pressure, increasing faster
upon the injected flow than its dissipation through
the medium, overcomes the tensile strength of the
poroelastic medium [22,23]. In most configurations,
a continuous fluid injection is uniformly imposed
at the base of the granular medium. Although
stable, uniform fluidization has been reported be-
fore the onset of instabilities [24], it leads in most
cases to a focused fluid flow during fluidization,
either in monolayer [25, 26] or in multi-layer sys-
tems [27]. Recent works in microfluidics have pro-
vided additional insights into the importance of bed
compaction and dilation, which play a fundamen-
tal role in the hysteretic behavior of the sediment
bed near fluidization [28]. Localized fluidization
has also been investigated for practical applications
such as tapered beds [29], leaking pipes [30] or mag-
matic intrusions [31]. In this configuration, the
fluid is injected through a single nozzle at the base
of the granular medium leading, in the fluidization
regime, to a stable fluidized cavity or a chimney
crossing the whole layer [32–35]. To our knowledge,
however, there has been no quantitative analysis of
the morphology of the fluidized zone over long time
lapses. However, localized fluidization is the most
probable configuration for pipe formation at depth,
resulting from localized fluid escape from a deeper
layer.

In this work, we focus on the localized fluidiza-
tion of a particle medium initially at rest. This
scenario corresponds to the formation and evolu-
tion of the pipe presented in Fig. 1. In the next
sections, we present the most recent state-of-the-
art imaging of active fluid pipes (section II.i) as
well as information retrieved from analogous fossil
fluid pipes in the field (section II.ii). We then intro-
duce two methods to tackle the challenge of fluid
focusing on liquid-saturated sands: laboratory ex-
periments (section III.i) and numerical simulations
(section III.ii). We focus here on the morphology
of the fluidized zone in two-phase systems, show

preliminary results and discuss the challenges. The
last section summarizes the most recent advances
and perspectives for the future.

II Insights from field data

i Geophysical imagery of active fluid pipes

As the inner crust below the seafloor or ground
cannot easily be imaged, geologists and geophysi-
cists have used an indirect method, namely seismic
acquisition. The principle is to generate acoustic
waves from one of various sources (airguns, explo-
sion, vibrator trucks), propagating in any direction,
including below ground. Using receivers to measure
time arrivals of waves reflected on buried layers,
they are able to reconstruct a vertical seismic sec-
tion that consists of numerous reflections with lo-
cation given along the x-axis (horizontal) and two-
way traveltime along the y-axis (vertical). Such an
approach has been in long use in the oil industry
and is now commonly used in both onshore and off-

Figure 2: Seismic profiles displaying various fluid pipe
structures. Left image from Dumke et al., 2014 [36];
Gay et al., 2012 [37]. Right image from Gay et al.,
2006 [38].
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shore exploration. Pipes (or chimneys) are usually
imaged on seismic sections as systematic disrup-
tions and/or offset of the reflections within vertical
zones (Fig. 2), 50–1000 m wide and up to 1000 m
high [37–40], forming various shapes such as flower
or lenticular structures [37,39–42].

Although various techniques based on derived at-
tributes and neural network were used to enhance
pipes [37, 43–47], neither the internal architecture,
nor the root of the pipes were clearly characterized.
Even if a genetic link has been established between
pipes and supposed underlying sources (structural
structures, see [48, 49] and references therein, or
buried sedimentary bodies [50–52]), the lack of a
precise location of roots leads to a great uncertainty
on the feeding source, the related driving processes
(underlying overpressure, overlying sediment load-
ing, etc.) or their mutual feed-back. It means that
even with the best quality seismic data available to-
day, the interpretation is based on a very simplified
picture [53,54].

The pipes identified on seismic sections are due
to gas-charged sediments and to a network of nu-
merous hard carbonate tubes modifying the sound
velocity, confirming that the resolution of the ac-
tual geophysical imagery is too low. As fluid pipes
have never been drilled due to high risk, only pas-
sive cores can be recovered for sediment sampling,
but they are only 10-15m long. Fluid fluxes at the
seafloor have only be measured using local devices
on cores, in the water column or on ROV (Remotely
Operated Vehicles) [55,56]. As for seismic imagery,
in situ measurements in the shallow sub-surface
give a present-day photograph of fluid fluxes, which
is not representative of past emissions. Even a large
seafloor tent for integrating fluid fluxes could not
be set up for a period of time long enough as the
involved processes are active over millions of years
[57].

ii Analogous fossil fluid pipes in the field

Even if the internal architecture of pipes cannot
be properly imaged using modern geophysical ap-
proaches, they could be characterized in the fossil
record, once the host sediments have transformed
into rocks and they were uplifted by past geo-
dynamic events (tectonic faults, mountains rising
etc. . . ), allowing human inspection today all along
the vertical pipe from source to seep. Surprisingly,

Figure 3: Example of a vast field of tubes, 150 m
wide, in Cape Turnagain (New Zealand), which is now
interpreted as one single conduit (i.e. a fluid pipe).

given the number and the size of pipes described
offshore and given the large number of exhumed fos-
sil paleo-seafloor seep structures reported onshore
[58–60], underlying feeding pipes have never been
identified in the fossil record. Only a few exam-
ples of carbonate tubes have been reported worl-
wide: in France [57, 61], in Greece [40, 62, 63] and
in New-Zealand [64–68]. The tubes are separated
from 5 to 30 m, locally connecting to their neigh-
bours and, taken all together, they are organized in
a 150-250 m sub-circular area without disrupting
the general layering of marls (Fig. 3). A pipe may
indeed correspond to the sum of smaller carbon-
ate tubes focusing fluids, coupled to more diffuse
migration in a hectometres-wide area.

Reaction-transport modelling (RTM) has shown
that authigenic carbonate precipitation is largely
controlled by fluid flow intensity and sedimenta-
tion rate [69–74] providing the first quantitative
insights into the link between carbonate precipi-
tation and upward CH4 flow [75]. This means that
the total volume of expelled fluids can now be de-
duced directly from the volume of carbonates iden-
tified within a seep area. However, such an ap-
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proach only gives the total amount of fluids that
have migrated through the pipe from its birth to its
death. Recent studies conducted in the South-East
basin of France have shown that the 800 m wide gi-
ant paleo-seep site of Beauvoisin has developed for
over 3.4 Ma [57]. They have also shown that peri-
ods of active fluid seep alternated with periods of
apparent quiescence, about 200 kyr each. Under-
lying fossil fluid tubes have the same mineralogic
and geochemical phases, indicating that they have
formed contemporaneously due to the same fluids
[61]. Once the carbonate tubes are formed within
the underlying feeding pipe, they remain open for a
very long period of time (156 Ma), which is of pri-
mary importance for the sealing capacity of such
“impermeable” intervals in the case of CO2 or nu-
clear waste storage. It means that these conduits
may contribute to a major leak, carbonate tubes
acting as an active plumbing system connecting
deep layers (reservoirs) with the ground and the
ocean/atmosphere. It is called a seal-bypass sys-
tem [76]. Field work gives very important informa-
tion on the 3D reconstruction of the fluid pipes. It
also provides clues to the seep activity, but only in
a binary mode: 1=seep ; 0=no seep. It does not
give any details on the dynamics of the fluids.

III Challenges in the lab

Although the challenges are numerous, insights
from field data bring forward the following key
questions related to fluid migration in a liquid-
saturated granular matrix: What are the physi-
cal mechanisms controlling the formation of fluid
pipes? How to quantify the origin/volume of fluids
at depth based on seafloor observations? To tackle
these questions in the laboratory, the method is
two-fold: 1) laboratory experiments to reproduce
at a smaller scale the complex behavior of multi-
phase flows; 2) numerical simulations to control the
parameters down to the grain size and quantify the
interface phenomena.

i Laboratory experiments

Several authors have used laboratory experiments
to study the formation of fluid invasion and pierce-
ment structures in different contexts: kimberlite
pipes [77], hydrothermal vents [78], mud volcanoes
[79], gas seeps [17,80,81], magmatic intrusions [82]

or air sparging [15, 83]. Most of these experiments
consist of non-cohesive dry or immersed granular
material such as glass microbeads or sand in which
a fluid (gas or liquid) is locally injected. To mimic
the existence of a pressure gradient and the pos-
sible importance of buoyancy effects, the fluid is
injected at the bottom of the granular layer, and
is free to rise and escape at its surface. We do not
mention here the huge literature on fluid invasion
patterns in other geometries, going back to the pi-
oneering works of Darcy (1856) [84] or Taylor and
Saffman (1959) [85]. The initial fluid invasion pat-
tern strongly varies depending on the experimental
parameters, ranging from percolation (no displace-
ment of the granular matrix) to fracture [18,86] or
even, for sufficiently high fluid overpressure, a coni-
cal structure corresponding to the uplift shear zone
at short times [78]. However, interestingly, most ex-
periments exhibit a similar fluidization morphology
at long times. For 3-phase systems (gas invasion in
liquid-saturated sands), the stationary shape of the
fluidized zone is a parabola [15,16,87,88], although
it has often been mistaken for a cone-shape inva-
sion [18, 88]. To our knowledge, 2-phase systems
mostly focus on the fluidization process at short
times, and lack statistics in the stationary state to
conclude univocally on the fluidized zone morphol-
ogy.

Although these experiments appear (almost) as
easy to set up as playing with sand, they raise many
questions when they aim to model the natural phe-
nomena described in section II. First, scaling down
to the laboratory scale – or upscaling back to nature
– finds its limitation in the narrow range in which
the grain size is limited, typically between a few
tens of µm to a few mm, attempting to avoid, on the
one side, Brownian motion, and on the other side,
unrealistically large pores. Confining pressures are
much lower compared to those in the field, but vis-
cous pressures are also lower, making it possible
to reproduce similar physics, as in the case of hy-
draulic fracturing. As stated in section I, however,
there is not yet any single, relevant dimensionless
number to describe the morphology of the fluidized
zone either at the laboratory scale or in the field;
despite the much lower confining pressures com-
pared to those in the field, the viscous pressures
are also lowered.

Second, the particle material, shape, roughness,
wettability and polydispersity are among the many
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Figure 4: (a) Fluidized zone formed by water injected at constant flow-rate (Q=50 mL/min) at the base of
a granular layer (glass beads 106-212 µm) immersed in water. t1, t2, t3 indicate successive times (t3 ' 2.5 h).
At short times (t1), the lower part of the fluidized zone is a vertical narrow zone while the upper part is wider,
analogous to the stem and corolla described in section II.i. (b) (A) Modeling an interface between coarse (bottom)
and fine (top) grains. (B) Full fluidization or (C) formation of a cavity for an initially homogeneous granular layer
immersed under water (5000 particles, radius 200 µm, cell dimensions indicated in m, 25 s simulations). The
water injection velocity through the central bottom point is (B) v = 2× 10−2 m/s and (C) v = 1.5× 10−2 m/s.

parameters which may have a direct influence on
fluid migration and the formation of structures. Fi-
nally, most granular media are opaque, prohibiting
direct visualization of the fluid invasion pattern.
This last drawback can be overcome by working
in a confined environment (Hele-Shaw cell), ensur-
ing a direct visualization by light transmission but
introducing possible wall interaction effects. Tech-
nical developments have made it possible to extend
direct fluid flow visualization to 3D experiments
with refractive index-matching (RIM) with light-
transmission [89,90] or coupled with Planar Laser-
Induced Fluorescence (PLIF) [91–94], magnetic res-
onance imaging (MRI) [95] or X-Ray tomography
[82].

In spite of these limitations, analogue experi-
ments make it possible to access spatial and tempo-
ral scales which may not be achieved by numerical
simulations. In addition, they account inherently
(1) for the coupling between the physical processes
at stake and (2) for large deformations, complex
rheological behavior of dense polydisperse packings
[96], transition from laminar to turbulent flows, and
many other effects which still challenge theoretical

or numerical predictions.

Here, we present preliminary results of localized
fluidization in a granular medium, by injecting wa-
ter in an initially water-saturated sand. These re-
sults do not aim at being exhaustive, but at point-
ing out puzzling behaviors in an apparently sim-
ple system, and challenges still to overcome. Fig-
ure 4a presents the experimental observation of the
formation of a fluidized zone by injecting water at
the bottom of an immersed granular layer. Exper-
iments are performed in a Hele-Shaw cell (356 mm
× 295 mm, gap 3 mm) initially filled with spher-
ical glass beads (106-212 µm, USF Matrasur) im-
mersed in water. At time t = 0, water is injected
at constant flow-rate Q through a nozzle (inner di-
ameter 1 mm) at the bottom, by means of a pump
coupled to a flow-rate controller (Bronkhorst, mini
CORI-FLOW). Direct visualization is performed
by a light source (transparency flat viewer, Just
NormLicht) located behind the experiment, and a
camera (BASLER) in front. This technique makes
it possible to evidence the granular layer and inner
grain motion by intensity contrast – the darker the
image, the more important the grain packing frac-
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tion. In the fluidization regime, at short times, the
lower part of the fluidized zone is a vertically ex-
tended narrow zone while the upper part is wider,
analogous to the stem and corolla described in sec-
tion II.i (Fig. 4a, t1). Running the experiment over
longer time lapses shows the evolution of the flu-
idized zone morphology. The upper part narrows
(Fig. 4a, t2) until it eventually closes, leading to the
formation of a lenticular fluidized cavity stable over
the experimental time (Fig. 4a, t3). This puzzling
result, still under investigation, shows the richness
and sometimes surprising complexity of fluid migra-
tion behavior inside liquid-saturated sands. How-
ever, it is experimentally difficult, if not impossi-
ble, to control precisely the local grain packing, to
quantify the force chains, etc. It is therefore inter-
esting to complement this approach by numerical
simulations.

ii Numerical simulations

Several authors have attempted to numerically sim-
ulate fluid pipe initiation and propagation into
overlying layers. They involved porosity waves as
the main mechanism for the formation of pipes
[97–105]. Porosity waves occur as a result of fluid
flow instability enhanced by strong interaction be-
tween the fluid flow and viscous matrix deforma-
tion [105–109]. In the absence of chemical reactions
and high shear strains, focused fluid flow is gen-
erated due to non-symmetrical dilation and com-
paction of the pore space, where the latter is de-
layed compared to its dilation [110–112]. Viscoelas-
tic rocks further sustain the upward propagation
of such pipes, its direction being defined by pres-
sure gradient and gravity. The viscous compaction
time scale, which depends on the difference between
solid and fluid densities creating buoyancy forces,
controls the upward pipe propagation. These struc-
tures are produced by arching or diapiric intrusion
into the overlying sediments along high permeabil-
ity channels, such as zones of mechanical weakness,
like fractures and faults [113, 114]. However, such
structures are more related to mud diapirs and mud
volcanoes as they are piercement structures formed
by high subterranean pressure imposed on ductile
material in deep basins hosting relatively thick sed-
imentary sequences [115]. As shown in fossil ana-
logues, they do not represent fluid pipes.

Contrary to laboratory experiments, numerical

simulations provide accurate control over grain
shape, packing, and the boundary conditions.
However, they are limited by 1) the system size
– the larger the number of particles, the higher the
computational cost; 2) the adequate coupling be-
tween the physical mechanisms, in particular the
fluid-grains interactions; 3) the dilemna in choos-
ing a high spatial and temporal resolution, which
limits the system evolution to short time scales or
face irrealistically long computational times.

Recently, we have used the LMGC90, an open
platform dedicated to the modelling of large collec-
tions of interacting objects in 2D and 3D [116,117].
It aims at modelling objects of any shape with var-
ious mechanical behaviour and to take into account
interaction laws as complex as necessary. Further-
more, multi-physics couplings (thermal effects, flu-
ids, etc) can be taken into account. LMGC90 is
designed as a research software which offers to de-
velopers the possibility to add new physical mod-
els (behaviour law, interaction law, etc), numeri-
cal models (finite element, natural element, etc),
technical features (contact detection, visualization,
parallelism, etc) and numerical strategies (time in-
tegration, numerical solver, etc). Based on this
DEM-CFD software, we aim at modelling the ini-
tial pipe formation and evolution when injecting a
fluid at the base of a liquid-saturated sand (Fig. 4b,
A). The first simulations in 2D reproduce quali-
tatively the different regimes observed in the ex-
periments, in particular the full layer fluidization
(Fig. 4b, B) or the formation of a cavity (Fig. 4b,
C) for an initially homogeneous granular layer. The
current work focuses on modelling an interface be-
tween two layers – a challenge accessible to this
method, which has recently been developed to cap-
ture the interface between two non-miscible fluids
during their migration [118].

IV Conclusion and perspectives

In offshore exploration, the thick water column
leads to the use of indirect methods, such as geo-
physical imagery and sampling tools, to get im-
agery and data of the seafloor and what lies be-
neath. The deeper the object to be imaged, the
lower is its resolution, and models may help in bet-
ter understanding processes at depth. However,
given the fact that the number of clay particles
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(< 2 µm) in a cube of 100 m side of sediments
typical of continental slopes is of the same order
of magnitude as the number of stars in the known
universe (∼ 3 × 1023), it is impossible to simulate
all grains in models. These latter are generally
simplified representations of natural cases and they
are used to test ideas and processes. Since models
are representations of scientific understandings, as
these understandings change, so the models change
as well and are constantly redesigned to give im-
proved predictions.

Since the end of the 19th century, scientists
have tried to simulate fluid invasion into granu-
lar media for various purposes, including in the
last two decades fluid migration and expulsion at
the seafloor. For instance, Nermoen et al. (2010)
[78] derived analytical solutions and concluded that
fluidization occurs when the seepage forces inte-
grated over the conical fluidized area balance the
weight of the granular material [78,119]. They also
noticed that their model overestimated the criti-
cal pressures observed in natural examples. The
main reason of this overestimation probably comes
from the cohesive behaviour of natural materials
which could not be simulated by non-cohesive glass
beads. In cohesive materials, hydraulic fractures
form when the fluid pressure reaches a critical value
σ3+T , where σ3 is the minimum stress and T is the
tensile strength, which can be smaller than fluid
pressure required for fluidization. In a sedimen-
tary basin, at shallow depth (< 1000 m), tensile
strength of fine sediments (clays) ranges between
0.2 to 1.1 MPa for porosity ranging between 0.7
and 0.4 [120]. These small, but not null, values of
cohesion may modify the piercement morphologies
of fluid pipes. Fundamental attempts to describe
fluidization in cohesive granular media mainly fo-
cused on gas invading dry materials [124]. In this
configuration, laboratory experiments pointed out
different regimes: low-cohesive grains mostly dis-
played expansion and pipe formation, while cohe-
sive sediments exhibited uplift and tensile fractures
[125]. A more detailed experimental and numerical
study by Galland et al. [126] pointed out the im-
portance of two dimensionless parameters, (1) the
ratio between the fluid pressure and the gravita-
tional stress, and (2) the fluid pressure-to-host rock
strength ratio. They have shown that low-energy
systems result in fracturing and V-shaped vent,
while high-energy systems are characterized by cir-

cular pipes resulting from plastic yielding of the
host rock. To our knowledge, however, no investi-
gation of piercement structures have been reported
for a cohesive material immersed in a fluid. A re-
cent work by Seiphoori et al. [127] considered sed-
imentation for attractive particles, and underlined
the critical interplay between the particle interac-
tion and the liquid flow out of the gel-like struc-
ture. Clay gels, in particular, exhibit fracture-like
channels during the collapse phase of sedimenta-
tion. This fascinating behavior opens many ques-
tions regarding the role of particle interaction on
the morphodynamics of piercement structures in
liquid-driven configurations.

In numerical experiments, three types of mod-
els are currently developed 1) based on hydraulic
fracturing hypothesis where overpressured gas in
the source rock induces fractures in the overlying
rocks, and a network of hydraulic fractures propa-
gates towards the surface as high-permeability con-
duits [121], 2) based on porosity waves where pipes
propagate spontaneously due to complex nonlin-
ear coupling between fluid buoyancy, asymmetric
compaction-decompaction of pores, and viscoplas-
tic deformations of sediment matrix [111,112], and
3) based on fluidization leading to brecciation and
erosion processes within the conduit [122, 123].
However, they all account for a complete or partial
loss of stratigraphy within focused fluid flow con-
duits, which is not the case shown in fossil pipes
[61].

Furthermore, given the size of the geophysical
anomalies described on seismic profiles, 1000 m
high and 250 m wide, and the number of fluid seep
structures found both in modern and fossil basins,
massive pipes have never been identified in the fos-
sil record. This suggests that either the geophysical
anomaly is identified only when the fluid ascent is
active, or the migration processes are more diffusive
through the sediment matrix and the stratigraphy
is not affected. This also could mean that fluid-
rocks interactions are slow processes, contrary to
fluid migration, and once fluids pass through sed-
iments they leave no any macroscopic evidences,
such as concretions.

The next challenges in both laboratory experi-
ments and numerical models of fluid migration and
related fluid pipe formation will be (1) to explore
very-low flow rates to better fit with real processes
in the geological record; (2) to investigate pierce-
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ment structure formation in cohesive media; (3) to
develop numerical simulations solving fluid-grains
interactions and cohesion in more realistic granu-
lar systems, in particular at the interface between
two layers of different grain size. Sediments are
far from being the mono- or bi-disperse granular
assemblies which are typically investigated by the
physicists, and rather exhibit alternating litholo-
gies with various grainsizes, chemical and physical
properties. The geological world still provides open
challenges that only an interdisciplinary approach
shall be strong enough to take on.
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(2017).

[4] M Huuse, C A L Jackson, P Van Rensbergen,
R J Davies, P B Flemings, R J Dixon, Subsur-
face sediment remobilization and fluid flow in
sedimentary basins: An overview, Basin Res.
22, 342 (2010).

[5] A Gay, M Lopez, C Berndt, M Séranne, Ge-
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[67] P Malié, J Bailleul, F Chanier, R Toul-
lec, G Mahieux, V Caron, B Field, R Fer-
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