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Beltrami flow structure in a diffuser. Quasi-cylindrical approximation

Rafael González,1,2∗ Ricardo Page,3 Andrés S. Sartarelli1

We determine the flow structure in an axisymmetric diffuser or expansion region connecting
two cylindrical pipes when the inlet flow is a solid body rotation with a uniform axial flow of
speeds Ω and U , respectively. A quasi-cylindrical approximation is made in order to solve
the steady Euler equation, mainly the Bragg–Hawthorne equation. As in our previous work
on the cylindrical region downstream [R González et al., Phys. Fluids 20, 24106 (2008);
R. González et al., Phys. Fluids 22, 74102 (2010), R González et al., J. Phys.: Conf.
Ser. 296, 012024 (2011)], the steady flow in the transition region shows a Beltrami flow
structure. The Beltrami flow is defined as a field vB that satisfies ωB = ∇× vB = γvB ,
with γ = constant. We say that the flow has a Beltrami flow structure when it can be put
in the form v = Uez + Ωreθ +vB , being U and Ω constants, i.e it is the superposition of a
solid body rotation and translation with a Beltrami one. Therefore, those findings about
flow stability hold. The quasi-cylindrical solutions do not branch off and the results do not
depend on the chosen transition profile in view of the boundary conditions considered. By
comparing this with our earliest work, we relate the critical Rossby number ϑcs (stagnation)
to the corresponding one at the fold ϑcf [J. D. Buntine et al., Proc. R. Soc. Lond. A 449,
139 (1995)].

I. Introduction

We have recently conducted studies on the for-
mation of Kelvin waves and some of their fea-
tures when an axisymmetric Rankine flow expe-
riences a soft expansion between two cylindrical
pipes [1, 2]. One of the significant characteristics
of this phenomenon is that the downstream flow
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shows a Rankine flow superposing a Beltrami flow
(Beltrami flow structure [4])). Yet, upstream and
downstream cylindrical geometries were considered
without taking into account the flow in the expan-
sion. This work considered that the base upstream
flow, formed by a vortex core surrounded by a po-
tential flow, would have the same Beltrami struc-
ture at the expansion and downstream. Neverthe-
less, the flow at the expansion was not determined.
However, it has been seen that this flow is only
possible when no reversed flow is present and if its
parameters do not take the values where a vortex
breakdown appears [6–8]. The starting point in
the study of the expansion flow is an axysimmetric
steady state resulting from the Bragg–Hawthorne
equation [7, 9–11] for both the vortex breakdown
and the formation of waves. Therefore, the solu-
tion behavior, whether it branches off or shows a
possible stagnation point on the axis, will be deter-
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minant to delimit both phenomena.
Our previous research focused on the formation

of Kelvin waves with a Beltrami flow structure
downstream [1–3], when the upstream flow was a
Rankine one. This present investigation considers
only a solid body rotation flow with uniform axial
flow at the inlet. As a first step in the study of the
flow at the expansion, we only study the rotational
flow. However, comparisons with our previous work
[1] will be drawn.

The aim of this present work is to obtain the
steady flow structure at the expansion, consider-
ing a quasi-cylindrical approximation when the in-
let flow is a solid body rotation with uniform axial
flow of speeds Ω and U , respectively. If a is the ra-
dius of the cylindrical region upstream, a relevant
parameter is the Rossby number ϑ = U

Ωa . Thus,
we would like to determine how this flow depends
on the Rossby number, on the geometrical param-
eters of the expansion and on the critical values of
the parameters. We focus on finding the param-
eter values for which a stagnation point emerges
on the axis, or for which the solution of the Bragg–
Hawthorne equation branches off. We take them as
the conditions for the vortex breakdown to develop.

First, this paper presents the inlet flow and the
corresponding Bragg–Hawthorne equation written
for the transition together with the boundary con-
ditions in section II. Second, it works on the
quasi-cylindrical approximation for the Bragg–
Hawthorne equation and its solution is developed
in section III. Third, results and discussions are of-
fered in section IV together with a comparison with
our previous work [1]. Finally, conclusions are pre-
sented in section V.

II. The Bragg–Hawthorne equation

We assume an upstream flow in a pipe of radius
a as an inlet flow in an axisymmetric expansion of
length L connecting to another pipe with radius b,
b > a. The inlet flow filling the pipe consists of a
solid body rotation of speed Ω with a uniform axial
flow of speed U :

v = Uez + Ωreθ, (1)

U and Ω being constants. The equilibrium flow
in the whole region is determined by the steady

Euler equation which can be written as the Bragg–
Hawthorne equation [10]

∂2ψ

∂z2
+ r

∂

∂r

(
1

r

∂ψ

∂r

)
+ r2 ∂H

∂ψ
+ C

∂C

∂ψ
= 0, (2)

where ψ is the defined stream function

vr = −1

r

∂ψ

∂z
, vz =

1

r

∂ψ

∂r
, (3)

and H(ψ), C(ψ) are the total head and the circula-
tion, respectively

H(ψ) =
1

2
(v2
r + v2

θ + v2
z) +

p

ρ
, C(ψ) = rvθ. (4)

To solve Eq. (2), the boundary conditions must
be established. These consist of giving the inlet
flow, of being both the centerline and the bound-
ary wall, streamlines, and of being the axial veloc-
ity positive (vz > 0). For the upstream flow, the
stream function is ψ = 1

2Ur
2, and H(ψ), C(ψ) are

given by

H(ψ) =
1

2
U2 + Ωγψ, C(ψ) = γψ, (5)

γ = 2U
Ω being the eigenvalue of the flow with Bel-

trami structure [3]. Thus, by considering the inlet
flow, Eqs. (5) are valid for the whole region. The
second condition regarding the streamlines implies
the following relations

ψ(r = 0, z) = 0,

ψ(r = σ(z), z) =
1

2
Ua2, 0 ≤ z ≤ L (6)

where r = σ(z) gives the axisymmetric profile of
the pipe expansion. Deducing from Eq. (6), the
boundary conditions are determined by the inlet
flow. Additionally, curved profiles are considered,
so

∂ψ

∂z
(r, z = L) = 0, 0 ≤ r ≤ b. (7)
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III. Quasi-cylindrical approximation

If we consider that ∂2ψ
∂z2 = 0, the solutions to Eqs.

(2) and (5) for the cylindrical regions are given by
[10]

ψ =
1

2
Ur2 +ArJ1[γr], (8)

where A is a constant. The quasi-cylindrical ap-
proximation consists of taking the dependence of

A(z) on z but with the condition ∂2ψ
∂z2 ≈ 0 com-

pared with the remaining terms of (2). The ampli-
tude A(z) is then obtained by imposing the bound-
ary conditions (6) which depend on the wall profile
r = σ(z), giving

A(z) =
1

2

U
(
a2 − σ2(z)

)
σ(z)J1[γσ(z)]

. (9)

By using the dimensionless quantities r̃ = r
a ,

z̃ = z
a , ṽ = v

U the stream function in the quasi-
cylindrical approximation can be written as

ψ̃ =
1

2
r̃2 + Ã(z̃)r̃J1[

2

ϑ
r̃],

Ã(z̃) =
1

2

(
1− σ̃2(z̃)

)
σ̃(z̃)J1[ 2

ϑ σ̃(z̃)]
, (10)

where ϑ = U
Ωa is the Rossby number. Hence the

velocity field becomes

ṽr(r̃, z̃) = −Ã
′
(z̃)J1[

2

ϑ
r̃] (11)

ṽθ(r̃, z̃) =
1

ϑ
r̃ +

2

ϑ
Ã(z̃)J1[

2

ϑ
r̃] (12)

ṽz(r̃, z̃) = 1 +
2

ϑ
Ã(z̃)J0[

2

ϑ
r̃], (13)

where Ã
′
(z̃) = dÃ(z̃)/dz̃.

Finally, it is necessary to give the wall profile
σ̃(z) to completely determine the flow. Two kinds
of profiles were seen:

i- conical profile

σ̃(z̃) = 1 +

(
η − 1

L̃

)
z̃,

0 ≤ z̃ ≤ L̃ and η =
b

a
. (14)

ii- curved profile

σ̃(z̃) =
1 + η

2
−
(
η − 1

2

)
cos

(
πz̃

L̃

)
,

0 ≤ z̃ ≤ L̃. (15)

The latter meets the boundary condition (7) as
well. Therefore, Eqs. (11-15) together with the
boundary conditions (6,7) allow to determine the
flow structure for both the conical and curved wall
profile.

IV. Results and discussion

We note that the flow keeps a Beltrami flow struc-
ture in the quasi-cylindrical approximation. Effec-
tively, giving (11-13)

ṽr(r̃, z̃) = ṽBr(r̃, z̃) (16)

ṽθ(r̃, z̃) =
1

ϑ
r̃ + ṽBθ(r̃, z̃) (17)

ṽz(r̃, z̃) = 1 + ṽBz(r̃, z̃), (18)

it is easy to see that under this approximation ∇×
vB(r̃, z̃) = 2

ϑvB(r̃, z̃) and so, the whole flow is the
sum of a solid body rotation flow with a uniform
axial flow plus a Beltrami flow, given the latter in
a system with uniform translation velocity U = 1.ẑ
and uniform rigid rotation velocity V = 1

ϑ r̃θ̂.
Given the flow field and its structure, the param-

eters are considered by evaluating the behavior of
ṽz(r̃, z̃0) with z̃0 = L̃ i.e., taken at outlet, and with
L̃ = 1. In order to do so, a wall profile is selected
(14 or 15) and three different values of the expan-
sion parameter are taken, mainly η1 = 1.1, η2 = 1.2
and η3 = 1.3.

The first step is to analyze the flow dependence
on the Rossby number. In Fig. 1, the contour
flows corresponding to the conical and curved pro-
files for η1 = 1.1, ϑ1 = 0.695 are shown. Graph-
ics in Fig. 2 represent the same configuration but
for ϑ = 0.68 < ϑ1. The broken lines represent
points for which ṽz = 0. Inflow and recirculation
are present but it is not a real flow because the
model fails when considering inflow. It can be seen
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Figure 1: Contour flow in the transition region for conical and curved profiles for η1 = 1.1, ϑ1 = 0.695.
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Figure 2: Contour flow in the transition region for conical and curved profiles for η1 = 1.1, ϑ1 = 0.68.
The broken lines represent points with ṽz = 0.

that for ϑ1 = 0.695, ṽz = 0 at the outlet, on the
axis. For the Rossby numbers with ϑ ≥ ϑc, the
azimuthal flow vorticity is negative (ωφ < 0), re-
sulting in an increase in the axial velocity with the
radius, and so having a minimum on the axis where
the stagnation point appears [6]. Therefore, the
critical Rossby number can be defined ϑc as the
value where ṽz is zero at the outlet on the axis i.e.,
where the flow shows a stagnation point. This is

the necessary condition to produce a vortex break-
down [6]. We find the same critical Rossby number
for both wall profiles and so we will not treat them
separately from now on. The critical Rosssby val-
ues for η2 = 1.2 and η3 = 1.3 are ϑ2 = 0.869 and
ϑ3 = 1.052, respectively.

Given the previous analysis, the second step is to
show the behavior of ṽz on the axis at the outlet as
a function of ϑ for each η in order to study the ex-
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istence of folds in the Rossby number-continuation
parameter (equivalent to the swirl parameter in
[5,7,11]); indeed, we have seen that ṽz has the min-
imum on the axis. Besides, when using Eq. (13)
when r = 0, it is easy to see that ṽz decreases with
z and so it reaches the minimum at the outlet being
ṽz ≥ 0. In Fig. 3, the radial dependence of ṽz is
plotted at the outlet for η1,η2,η3 and its variation
with ϑ when it is slightly shifted from ϑ1. In Fig.
4, it can be seen that the minimum of ṽz on the
axis increases with ϑ so there is no fold of ṽzmin
as defined by Buntine and Saffman in a similar ap-
proximation [5].
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Figure 3: (a) ṽz at the outlet as a function of r
for η1,η2,η3 and the corresponding critical Rossby
numbers ϑ1,ϑ2,ϑ3. (b) ṽz at the outlet as a function
of r for ϑ1 and for values of ϑ slightly shifted from
ϑ1 . In each case, the minimum of ṽz is reached on
the axis.

The dependence of the results on L is analyzed.
It can be seen that when z = L in Eqs. (14) and
(15), σ̃(L̃) = η is obtained. By replacing this in
Eq. (13) for z = L and r = 0 it gives

ṽzmin = 1 +

(
1− η2

)
ϑηJ1[ 2

ϑη]
, (19)

and so ϑc is obtained as a function of η by solving
the last equation when ṽzmin = 0, as shown in
Fig. 5. This result seems to be surprising, but
it is not so if it is considered as derived from the
quasi-cylindrical approximation: the dependence of
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Figure 4: ṽz at the outlet on the axis as a function
of the Rossby number ϑ for η1 = 1.1, η2 = 1.2, η3 =
1.3. Here ϑ1 = 0.695, ϑ2 = 0.869 and ϑ3 = 1.052
correspond to stagnation points.

the flow on z is obtained through the boundary
conditions expressed by Eq. (6). At the same time,
these boundary conditions depend on the inlet flow
and on the parameter η. This explains the fact
that the same results, for both conical and curved
profiles, have been obtained and that the condition
given by Eq. (7) at the outlet has not influenced
them.
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Figure 5: Critical Rossby number ϑc as a function
of η.

Differences with Batchelor’s seminal work should
be marked [10]. Mainly, he works in cylindrical ge-
ometry and does not consider the dependence of the
flow on z . We introduce this z dependence through
the quasi-cylindrical approximation. This, there-
fore, allows us to find the structure of the flow in the
transition together with the Rossby critical number
defined by considering this structure and by show-
ing that the minimum of ṽz is reached at the outlet
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on the axis. Nevertheless, once the flow reaches the
pipe downstream, the analysis coincides because, as
shown, the problem depends on the inlet flow and
on the parameter expansion η. This allows us to
consider the issue of the vortex core that we have
not considered at the inlet flow. As we know the
structure of the flow in the downstream cylindri-
cal region [1] and by assuming a quasi-cylindrical
approximation for the vortex core in the transition
region, the minimum of vcorez at the outlet on the
axis is given by

vcorezmin = 1 +

(
1− η̂2

)
ϑ̂η̂J1[ 2

ϑ̂
η̂]
, (20)

where ϑ̂ = ϑ
ι , η̂ = ξ

ι and ξ and ι are the dimension-
less radius of the core downstream and upstream,
respectively. We note that η̂ is the expansion pa-
rameter of the core. Hence Eqs. (19) and (20)
have the same structure. In the present work, we
have not found any fold in the Rossby number-
continuation parameter of ṽz, as found in our pre-
vious work [1] where the fold was associated with a
critical Rossby number called ϑcf by Buntine and
Saffman [5]. As we have already done, we define
the Rossby critical number for which vcorezmin = 0
where there is a stagnation point, and we will call
it ϑcs. In [1], for ι = 0.272 and pipe expansion
parameters η1,η2,η3, we have found that ϑcf were
0.35, 0.44 and 0.53, respectively, while the core ex-
pansion parameters η̂ were 1.25, 1.47 and 1.65, re-
spectively.

By replacing these values in Eq. (20) when

vcorezmin is zero, we get the corresponding ϑ̂cs and
then ϑcs for the vortex core. These are respectively
0.26, 0.38 and 0.49. That is to say that in all the
cases we have ϑcs < ϑcf . Therefore, at the fold
ṽz > 0. This coincides with the results found by
Buntine and Saffman [5] in their analysis using a
three-parameter family inlet flow.

V. Conclusions

The main conclusions drawn from the previous sec-
tions are:

1. In the quasi-cylindrical approximation, the
steady flow in the transition expansion region
corresponding to a solid body rotation with

uniform axial flow as inlet flow has the same
Beltrami flow structure as in the pipe down-
stream, which is compatible with the bound-
ary conditions. Therefore, findings from our
previous work on stability [1–3] can hold.

2. For fixed values of η and ϑ ≥ ϑc, ωφ < 0 and
then ṽz in the transition region is an increasing
function of r and a decreasing function of z
reaching its the minimum on the axis at the
outlet.

3. For fixed values of η, the minimum of ṽz on
the axis is an increasing function of ϑ (Fig. 4),
where the stagnation point corresponds to ϑc.

4. As a consequence, no branching off takes place
for the solutions of Bragg–Hawthorne equa-
tion.

5. The critical Rossby number ϑc corresponding
to stagnation is an increasing function of η
(Fig. 5).

6. The whole picture can be reached by putting
together these results with those obtained in
[1], where there is a branching owing to the
boundary conditions at the frontier between
the vortex and the irrotational flow. Moreover,
since the results in [1] for the rotational flow
depend on the inlet flow as well as on the ro-
tational expansion parameter η̂ defined in Eq.
(20), given a quasi-cylindrical approximation,
it can be concluded that this expression is the
minimum of vz in the core. Therefore, we can
get the critical Rossby number ϑcs and com-
pare it with that corresponding to the fold ϑcf .
This present work verifies that ϑcs < ϑcf , in
accordance with Buntine and Saffman’s results
[5].

7. In the quasi-cylindrical approximation, previ-
ous results do not depend on the chosen profile.
This can be explained by the boundary condi-
tions chosen depending on the inlet flow and
on the parameter expansion.
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