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Influence of surface tension on two fluids shearing instability

Rahul Banerjee,1∗ S. Kanjilal1

Using extended Layzer’s potential flow model, we investigate the effects of surface tension
on the growth of the bubble and spike in combined Rayleigh-Taylor and Kelvin-Helmholtz
instability. The nonlinear asymptotic solutions are obtained analytically for the velocity
and curvature of the bubble and spike tip. We find that the surface tension decreases
the velocity but does not affect the curvature, provided surface tension is greater than a
critical value. For a certain condition, we observe that surface tension stabilizes the motion.
Any perturbation, whatever its magnitude, results stable with nonlinear oscillations. The
nonlinear oscillations depend on surface tension and relative velocity shear of the two
fluids.

I. Introduction

When two different density fluids are divided by
an interface, the interface becomes unstable with
exponential growth under the action of a constant
acceleration acting in the direction perpendicular
to the interface from the heavier to lighter fluid or
under the action of relative velocity shear of two
fluids. These two types of instabilities are known
as Rayleigh-Taylor and Kelvin-Helmholtz instabil-
ities, respectively. Temporal development of the
nonlinear structure of the interface consequent to
Rayleigh-Taylor or Kelvin-Helmholtz instability is
currently a topic of interest both from theoretical
and experimental points of view. The nonlinear
structure is called a bubble if the lighter fluid pen-
etrates across the unperturbed interface into the
heavier fluid and it is called a spike if the opposite
takes place. The instabilities arise in connection
with a wide range of problems ranging from direct
or indirect laser driven experiments in the abla-
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tion region at compression front during the pro-
cess of inertial confinement fusion [1, 2] to mix-
ing of plasmas in space plasma systems, such as
boundary of planetary magnetosphere, solar wind
and cluster of galaxies [3]. In high energy den-
sity physics(HEDP), formation of supernova rem-
nant or formation of astrophysical jets [4–8] are
also seen in these types of instabilities. In high
energy density plasma experiments using Omega
laser [9], Kelvin-Helmholtz instability growth has
recently been observed .

There are several methods to describe the non-
linear structure of the interface of two constant
density fluids under potential theory and the as-
sociated nonlinear dynamics has been studied by
many authors [10–13]. Layzer [10] described the
formation of the structure using an expansion near
the tip of the bubble or the spike up to second
order in the transverse coordinates in two dimen-
sional motion and this approach was extended in
Ref. [14] for Kelvin-Helmholtz instability. It is
well known [15] that the surface tension reduces
the linear Rayleigh-Taylor Growth rate. The low-
ering in the growth rate is seen to increase with
increase in the wave number k up to a critical wave
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number kc =
√

(ρh−ρl)g
T , where T denotes surface

tension, and ρh and ρl are the densities of the heav-
ier and lighter fluids, respectively. The same effect
has been described by Mikaelian [16] for Rayleigh–
Taylor instability in finite thickness and Sung-Ik
Sohn [17] described the effect using the Layzer non-
linear potential model. The nonlinear theory influ-
ence of surface tension was elaborately studied by
Pullin [18] and Garnier et al. [19] using numerical
methods.

The present paper addresses to the problem of
the time development of the nonlinear interfacial
structure caused by combined Rayleigh–Taylor and
Kelvin–Helmholtz instability in presence of surface
tension. It is shown that the growth rate of the
instabilities is affected by the surface tension. The
growth rate of the tip of the bubble or spike are sig-
nificantly reduced due to the surface tension. We
observed an oscillatory stabilization of the inter-
face for large surface tension. This oscillation de-
pends on the relative velocity shear also. Section II
deals with the basic hydrodynamical equations to-
gether with the geometry involved. Here we assume
that the fluids are inviscid and the motion is irrota-
tional. The investigation of the nonlinear aspect of
the structure of the two fluids interface is facilitated
by Bernoull’s equation together with the pressure
balance equation at the interface. The long time
asymptotic behavior of the bubble and spike tip for
combined Rayleigh–Taylor and Kelvin–Helmholtz
instabilities is derived in section III.A and III.B,
respectively. We have also discussed the character-
istics of the tip of the bubble and the spike derived
analytically and numerically. Finally, we have con-
cluded the results in section IV.

II. Basic mathematical model

We have considered two incompressible fluids sep-
arated by an interface located at y = 0 in a two-
dimensional x − y plane, where x axis lying nor-
mal to the unperturbed fluid interface. The fluid
with density ρh is assumed to overlie the fluid with
density ρl and gravity is taken along negative y-
axis. In the following discussion, we shall denote
the properties of the fluid above the interface by
the subscript h and below the interface by the sub-
script l. After perturbation, the nonlinear interface
is assumed to take up a parabolic shape, given by

y = η(x, t) = η0(t) + η2(t)(x− η1(t))2 (1)

The perturbed interface forms a bubble or spike
according to η0(t) > 0, η2(t) < 0 or η0(t) < 0,
η2(t) > 0. Functions η0(t) and η1(t) are related
to the position of the tip of the bubble from the
unperturbed interface, i.e, at time t the position of
the bubble tip is (η1(t), η0(t)) and η2(t) is related
to the bubble curvature.

In our previous works [14, 20–23], we have con-
sidered η1(t) = 0 due to the absence of velocity
shear parallel to the unperturbed interface. How-
ever, in presence of streaming motion of the fluids,
the tip of the bubble moves parallel to unperturbed
interface with velocity η̇1(t).

According to the extended Layzer model [10,11,
14,20], the velocity potentials describing the motion
for the upper (heavier) and lower (lighter) fluids are
assumed to be given by

φh(x, y, t) = a1(t) cos (k(x− η1(t))e−k(y−η0(t))

+ a2(t) sin (k(x− η1(t))e−k(y−η0(t))

− xUh (2)

φl(x, y, t) = b0(t)y

+ b1(t) cos (k(x− η1(t))ek(y−η0(t))

+ b2(t) sin (k(x− η1(t))ek(y−η0(t))

− xUl (3)

where Uh and Ul are streaming velocities of up-
per and lower fluids, respectively, and k is the per-
turbed wave number.

The evolution of the interface y = η(x, t) can
be determined by the kinematical and dynamical
boundary conditions. The kinematical boundary
conditions are

∂η

∂t
− ∂η

∂x

∂φh
∂x

= −∂φh
∂y

(4)

∂η

∂x
(
∂φh
∂x
− ∂φl
∂x

) =
∂φh
∂y
− ∂φl

∂y
(5)

and the dynamical boundary condition (first inte-
gral of the momentum equation) is of the form
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−ρh(l)
∂φh(l)

∂t
+

1

2
ρh(l)(~∇φh(l))2 + ρh(l)gy

= −ph(l) + fh(l)(t) (6)

The pressure boundary condition at two fluid in-
terface including surface tension [17,22] is

ph − pl =
T

R
(7)

where T is the surface tension and R is the radius
of curvature.

Plugging the condition (7) at the interface y =
η(x, t) in Eq. (6), we obtain the following equation.

ρh[−∂φh
∂t

+
1

2
(~∇φh)2]− ρl[−

∂φl
∂t

+
1

2
(~∇φl)2]

+g(ρh − ρl)y = −T
R

+ fh − fl (8)

We have restricted our study near the peak of the
perturbed structure where |k(x−η1(t))| � 1. Thus,
we can neglect the terms of O(|x−η1|i) (i ≥ 3) [14].
With this point of view, we have

1

R
= 2η2

(
1 + 4η22(x− η1)2

)− 3
2

≈ 2η2
(
1− 6η22(x− η1)2

)
(9)

We substitute all the parameters η, φh and φl in the
kinematic and dynamic boundary conditions repre-
sented by Eqs. (4), (5), (8) and (9), and equate co-
efficients of (x− η1)i,(i = 0, 1, 2) and neglect terms
O(|x−η1|i) (i ≥ 3). This yields the following equa-
tions.

dξ1
dτ

= ξ4 (10)

dξ2
dτ

= Vh −
ξ5(2ξ3 + 1)

2ξ3
(11)

dξ3
dτ

= −1

2
(6ξ3 + 1)ξ4 (12)

kb0√
kg

= − 12ξ3ξ4
6ξ3 − 1

(13)

k2b1√
kg

=
6ξ3 + 1

6ξ3 − 1
ξ4 (14)

k2b2√
kg

=
(2ξ3 + 1)ξ5 − 2ξ3(Vh − Vl)

2ξ3 − 1
(15)

dξ4
dτ

=
N1(ξ3, r)

D1(ξ3, r)

ξ24
(6ξ3 − 1)

+
2(1− r)ξ3(6ξ3 − 1)

D1(ξ3, r)

(
1− 12ξ22

k2

k2c

)
+
N2(ξ3, r)

D1(ξ3, r)

(6ξ2 − 1)ξ25
2ξ3(2ξ3 − 1)2

+
2(4ξ3 − 1)(6ξ3 − 1)

D1(ξ3, r)(2ξ3 − 1)2

× [(Vh − Vl)2ξ3 − (Vh − Vl)(2ξ3 + 1)ξ5] (16)

and

dξ5
dτ

= − (2ξ3 − 1)rξ4ξ5
2ξ3D2(ξ3, r)

+
ξ4(6ξ3 + 1)

2D2(ξ3, r)(6ξ3 − 1)(2ξ3 − 1)
(17)

× [4(Vh − Vl)(4ξ3 − 1)− ξ5
ξ3

(28ξ23 − 4ξ3 − 1)]

where r = ρh
ρl

; ξ1 = kη0; ξ2 = kη1; ξ3 = η2
k ;

ξ4 = k2a1√
kg

; ξ5 = k2a2√
kg

; τ = t
√
kg; k2c = (ρh−ρl)g

T

and Vh(l) =
kUh(l)√
kg

are corresponding dimensionless

quantities. The function N1,2(ξ3, r) and D1,2(ξ3, r)
are given by

N1(ξ3, r) = 36(1− r)ξ23 + 12(4 + r)ξ3 + (7− r);
D1(ξ3, r) = 12(r − 1)ξ23 + 4(r − 1)ξ3 − (r + 1)

(18)

and

N2(ξ3, r) = 16(1− r)ξ33 + 12(1 + r)ξ23 − (1 + r);

D2(ξ3, r) = 2(1− r)ξ3 + (r + 1) (19)

The temporal development of the combined effect
of Rayleigh–Taylor and Kelvin–Helmholtz instabil-
ity is given by Eqs. (10)–(12), (16) and (17).
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Figure 1: Bubble- variation of ξ1, ξ2, ξ3, ξ4 and
ξ5 with τ . Initial value ξ1 =0.1, ξ2 =0, ξ3 =-0.05,
ξ4 = 0, and ξ5 = 0 with ρh = 3, ρl = 2, Vh=0.5,

Vl = 0.1, k
2

k2c
=0 (line), 0.5 (dot), 1 (dash), 3.9 (dash-

dot).

III. Numerical results and discus-
sions

i. Effect of surface tension on bubble
growth

In this section, we present the effect of surface
tension on the nonlinear growth rate of the bub-
ble tip for combined Rayleigh–Taylor and Kelvin–
Helmholtz instability. To describe the dynamics
of the bubble tip, it is essential to integrate Eqs.
(10)–(12), (15) and (16) by numerical simulation.
To obtain the initial conditions of the numerical
integration, we assume that the initial interface
is given by y = η0(t = 0)cos(kx). The expan-
sion of the cosine function gives (ξ2)initial = 0 and
(ξ3)initial = − 1

2 (ξ1)initial, where (ξ1)initial is the
arbitrary initial amplitude. Since the perturbation
starts from rest, we may often choose (ξ4)initial =
(ξ5)initial = 0. The non-dimensionalized time de-
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Figure 2: Bubble- variation of ξ1, ξ2, ξ3, ξ4 and
ξ5 with τ . Initial value ξ1 =0.1, ξ2 =0, ξ3 =-0.05,
ξ4 = 0, and ξ5 = 0 with ρh = 3, ρl = 2, Vh=0.5,

Vl = 0.1, k2

k2c
=10 (line), 15 (dot), 20 (dash).

velopment plots of ξ1, ξ2, ξ3,ξ4 and ξ5 are shown in
Figs. 1, 2 and 3.

Before we describe the nature of the bubble
tip, consider the asymptotic behavior of the tip.
As τ → ∞, the asymptotic values of ξ3, ξ4 and
ξ5 for bubble are obtained by setting dξ3

dτ = 0,
dξ4
dτ = 0 and dξ5

dτ = 0. Note that, if k2 <

3
(

1 + 15
16

ρl
ρh−ρl (∆V )2

)
k2c , where ∆V = Vh − Vl,

the asymptotic values are

[(ξ3)asymp]bubble = −1

6
(20)

[(ξ4)asymp]bubble (21)

=

√
2A

3(1 +A)

(
1− k2

3k2c

)
+

5

16

1−A
1 +A

(∆V )2

and

[(ξ5)asymp]bubble = 0 (22)
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Figure 3: Bubble- variation of ξ1, ξ2, ξ3, ξ4 and
ξ5 with τ . Initial value ξ1 =0.1, ξ2 =0, ξ3 =-0.05,

ξ4 = 0, and ξ5 = 0 with ρh = 3, ρl = 2, k2

k2c
=20,

Vh=0, Vl = 0 (line), Vh=0.5, Vl = 0.1(dot), Vh=1,
Vl = 0.1 (dash), Vh=1.5, Vl = 0.1 (dash-dot).

where, A = ρh−ρl
ρh+ρl

is the Atwood number.

It is clear form Fig. 1 that surface tension sup-
presses the velocity and growth of the bubble tip
significantly, provided surface tension is larger than
a critical threshold, T < T bubblec , where

T bubblec = 3

(
(ρh − ρl) +

15

16
ρl(∆V )2

)
g

k2
(23)

Here the critical value depends on the magnitude of
relative velocity shear of two fluids and the growth
and velocity of the tip reduced if T < T bubblec .

When there is no tangential velocity difference
(i.e., Vh = Vl) between the two fluids initially, the
fluids are purely prone to the Rayleigh–Taylor in-

stability and the critical value becomes 3(ρh−ρl)g
k2 .

These results agree with the argument in Ref. [17].
In absence of surface tension, the asymptotic values
coincide with the results obtained in our previous
work [14].

Further, if T > T bubblec , oscillatory state emerges
even for r > 1. Figures 2 and 3 describe the os-
cillatory state of the motion. The amplitude and
the period of oscillation decrease monotonically for
large surface tension (Fig. 2), while the ampli-
tude of oscillation increases for large relative ve-
locity shear (Fig. 3). In this respect, Figs. 2 and
3 show that there always exists a self generated os-
cillatory transverse velocity component (−ξ5) due
to perturbation and this depends upon surface ten-
sion as well as the relative velocity shear ∆V at
the two fluids interface. For negative velocity shear
(i.e, ∆V < 0), the self generated oscillatory trans-
verse velocity of the bubble peak acts opposite to
the direction of Vh and the amplitude of oscillation
increases for large surface tension.

If T = T bubblec , equilibrium is attained, i.e,

ξ̇3 = ξ̇4 = ξ̇5 = 0

when ξ3 = −1

6
and ξ4 = ξ5 = 0 (24)

and the equilibrium becomes unstable. This feature
is shown with a dot-dash line in Fig. 1. Thus, the
combined Rayleigh–Taylor and Kelvin–Helmholtz
instability is stabilized when

k2 > 3

(
1 +

15

16

ρl
ρh − ρl

(∆V )2
)
k2c ,

i.e., T > T bubblec (25)

while the instability however persists but with re-
duced growth rate for

k2 ≤ 3

(
1 +

15

16

ρl
ρh − ρl

(∆V )2
)
k2c ,

i.e., T ≤ T bubblec (26)

According to the condition (25), for ρh = 3,
ρl = 2, Vh = 0.5 and Vl = 0.1, the motion is stabi-

lized when k2

k2c
> 3.9. These results are exhibited in

Fig. 2, where k2

k2c
> 3.9. For k2

k2c
= 3.9, the growth

rate of the instability is asymptotically diminished
and becomes 0 (dash-dot line of Fig. 1). However,
Fig. 1 shows the suppression of growth rate of the

instability due to surface tension, when k2

k2c
< 3.9.
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Figure 4: Spike- variation of ξ1, ξ2, ξ3, ξ4 and ξ5
with τ . Initial value ξ1 =-0.1, ξ2 =0, ξ3 =0.05, ξ4 =
0, and ξ5 = 0 with ρh = 3, ρl = 2, Vh=0.5, Vl = 0.1,
k2

k2c
=0 (line), 0.5 (dot), 1 (dash), 4.35 (dash-dot).

ii. Effect of surface tension on spike growth

The temporal evolution of spike state is exhibited
in Figs. 4, 5 and 6; the results follow from the
numerical integration of Eqs. (10)–(12), (15) and
(16) using the transformation ξ1 → −ξ1, ξ3 → −ξ3,
g → −g, r → 1

r and Vh ⇀↽ Vl. The saturation
curvature and velocity of the spike tip are given by

[(ξ3)asymp]spike =
1

6
(27)

[(ξ4)asymp]spike (28)

=

√
2A

3(1−A)

(
1− k2

3k2c

)
+

5

16

1 +A

1−A
(∆V )2

and

[(ξ5)asymp]spike = 0 (29)

provided k2 < 3
(

1 + 15
16

ρh
ρh−ρl (∆V )2

)
k2c .
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Figure 5: Spike- variation of ξ1, ξ2, ξ3, ξ4 and ξ5
with τ . Initial value ξ1 =-0.1, ξ2 =0, ξ3 =0.05,
ξ4 = 0, and ξ5 = 0 with ρh = 3, ρl = 2, Vh=0.5,

Vl = 0.1, k2

k2c
=10 (line), 15 (dot), 20 (dash).

Figure 4 describes that large surface tension sup-
presses the growth rate of the spike tip, as well as
the bubble. The nonlinear oscillation of the spike

tip is observed for k2 > 3
(

1 + 15
16

ρh
ρh−ρl (∆V )2

)
k2c

and the equilibrium state arises when equality
holds. The pattern of amplitude and period of os-
cillation are identical to that for the bubble (Figs.
5 and 6). Figure 5 shows the oscillatory behavior
of the spike structure for different values of surface
tension while the dependency of the relative veloc-
ity shear is demonstrated in Fig. 6.

IV. Conclusion

In this paper, we have studied a potential flow
model to describe the nature of the nonlinear struc-
ture of a two-fluid interface under the combined
action of Rayleigh–Taylor and Kelvin–Helmholtz
instabilities due to surface tension. The analytic
expressions for bubble and spike growth rates at
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Figure 6: Spike- variation of ξ1, ξ2, ξ3, ξ4 and ξ5
with τ . Initial value ξ1 =-0.1, ξ2 =0, ξ3 =0.05,
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asymptotic stage are obtained for arbitrary Atwood
number and velocity shear. Surface tension be-
comes a stabilizing factor of the instability, pro-
vided it is larger than a critical value. In this case,
oscillatory behavior of motion described by numer-
ical integration of governing equations. The nature
of oscillations depends on both surface tension and
relative velocity shear of two fluids. On the other
hand, below the critical value, surface tension dom-
inates the growth and growth rate of the instability.
This result is expected to improve the understand-
ing of the stabilization factor for the astrophysical
instability.
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