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Abstract 

In this paper, we address the issues related to the design of fuzzy robust linear regression algorithms. The design 

of robust linear regression analysis has been studied in the literature of statistics for over two decades. More recently 

various robust regression models have been proposed for processing noisy data. We proposed a new objective 

function by using fuzzy complement and derive improved algorithms that can produce good regression analysis from 

the spoiled data set. Data set from the U.S. Department of Transportation is used to evaluate the performance of the 

regression algorithms. 
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1. Introduction 

Linear regression analysis is the study of linear relationships between variables. As a basic and  79 popular statistical 

technique, it has been widely used in various fields. Since linear regression analysis algorithms have to process data from the real 

world, it should have the ability to cope with the outlier defined as the observation point that is distant from other observ ations. 

Robustness theory is concerned about solving problems subject to model perturbation or outlier. According to Huber [1], a 

robust algorithm not only performs well under the assumed model, but also produces a satisfactory result under the deviation of 

the assumed model. 

More recently, many researchers proposed various robust algorithms for regression analysis. Kopsinis et al. [2] proposed  

a mechanism for iteratively detecting and excluding corrupted data. Papageorgiou et al. [3] splited the noise into two compon ents: 

the inlier bounded noise and the outliers. They constructed a robust method in the framework of greedy algorithms. Huang et al. 

[4] developed an effective convex approach that used recent advances on rank minimization and applied the method in computer 

vision applications. Cheng et al. [5] introduced a robust adaptive loss function to measure the representation loss. Nurunnabi et 

al. [6] used global polynomial functions and designed robust algorithms for extracting the ground points in laser scanning 3-D 

point cloud data. Unlike previous approaches, our proposed robust regression analysis is based on fuzzy objective functions. 

2. Traditional Linear Regression Analysis 

Regression analysis is a statistical process for estimating the dependent variable from one or more independent variables . 

The target dependent variable is formulated as a function of the independent variables called the regression function.  When the 

function is linear, the process is called linear regression analysis.  
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,i i iD x y   denotes the i-th data pair. 1 2( , ,.., )k

i i i ix x x x   is the vector of k independent variables  and iy  is the target 

dependent variable. There are n data pairs.  

1 2

0 1 2( ) .. k

i i i k if x w w x w x w x      is the linear estimation function that is the linear combination of input components. 

The weight  0 1( , ,.., )kw w w w  is the coefficients vector for estimation.  
2

( ) ( )
i i i

e x y f x   is the loss function.  

The objective function of traditional linear regression analysis for minimization is  
1

n

i

i

e


 .  

The following is the online algorithm of linear regression derived by gradient descent approach. 

Step 1. Initially set the iteration count t , iteration bound T, learning coefficient 
0 (0,1]  and   the weight w. 

Step 2. While t is less than T, do steps 3-7. 

Step 3.Compute 
0
(1 / )

t
t T   and set 1i    

Step 4. While i is less than n, do steps 5-6. 

Step 5. Update the weight: 

0 0 ( ( ))new old

t i iw w y f x    (1) 

1

1 1 ( ( ))new old

t i i iw w y f x x    (2) 

( ( ))new old k

k k t i i iw w y f x x    (3) 

Step6. Add 1 to i. 

Step 7. Add 1 to t. 

The above algorithm is known to fail when outliers exist. 

3. Robust Linear Regression Analysis Based On Fuzzy Objective Functions 

For tackling the noise, we add a noise cluster in which the data has a constant influence  . Assume that there is an outlier 

cluster outside the data cluster. 
i

u  is the membership of ix  in the data cluster, while the standard fuzzy complement of iu , 

1( )
i

u , is the membership of ix  in the noise cluster. The fuzziness variable, m, determines the influence of small iu  compared 

to large iu .  Following the fuzzy theory, we propose a robust linear regression objective function:  

1 1
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Subject to iu in [0,1]  and m in [1,  ). 

Compute the gradient of RLG  with respect to iu and get 

1/ ( 1)
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Substituting this membership back and after simplification, we get  
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Following the multidimensional chain rule, the gradient of RLG with respect to w is:    
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Let ( )
i

x  denote
1/ ( 1)
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. m is called the fuzziness variable in the literature of fuzzy clustering. The following is the 

proposed algorithm. 

Step 1. Initially set the iteration count t, iteration bound T, learning coefficient 
0 (0,1]  , soft threshold   and the weight w. 

Step 2. While t is less than T, do steps 3-7. 

Step 3.Compute 
0
(1 / )

t
t T    , set 1i  . 

Step 4. While i is less than n, do steps 5-6. 

Step 5. Update the weight: 

0 0 ( ( ))( )new old

t i iixw w y f x  
 

(8) 

1

1 1 ( ( ( )))new old

t ii i ixw w y f x x  
 

(9) 

( )( ( ))new old

k t i i ii

k

k xw w y f x x  
 

(10) 

Step 6. Add 1 to i. 

Step 7. Add 1 to t. 

4. Simulations 

  
Fig. 1 Results of traditional linear regression Fig. 2 Results of the proposed linear regression 
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To show the experimental differences between the traditional and the proposed, we use the data set from the U.S. 

Department of Transportation.  The data pair is the population and fatal motor vehicle crashes per state in 2015. There are 51 pairs 

corresponding to 50 states and the District of Columbia. For convenience, we scale down the data to be (population/107, 

crashes/103). In the following experiments, we set iteration bound T =1000, learning coefficient 
0 0.3   and the fuzziness 

variable 3m  . The noisy data set is generated by adding 5000 crashes to the first 3 data. Fig. 1 shows the traditional linear 

regression is greatly affected by the outliers while Fig. 2 shows the proposed one is slightly affected by the outliers. As 

suggested by Huber [1], the constant influence is set as the mean of the ( )ie x  from the result of the traditional linear 

regression. The initial weight w in the robust approach is also set by the result of the traditional linear regression. 

5. Conclusions 

With consideration of outliers, we propose a fuzzy objective function for robust linear regression. The derived algorithm 

adapts the estimated component according to the current membership of the input data. Thus, the influence of outliers is 

alleviated.  The results of a simple simulation comparing the traditional linear regression and the robust linear regression 

correspond to our expectations. 
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