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Abstract  

To obtain the correct analysis of electroencephalogram (EEG) signals, non-physiological and physiological 

artifacts should be removed from EEG signals. This study aims to give an overview on the existing methodology for 

removing physiological artifacts, e.g., ocular, cardiac, and muscle artifacts. The datasets, simulation platforms, and 

performance measures of artifact removal methods in previous related research are summarized. The advantages and 

disadvantages of each technique are discussed, including regression method, filtering method, blind source 

separation (BSS), wavelet transform (WT), empirical mode decomposition (EMD), singular spectrum analysis 

(SSA), and independent vector analysis (IVA). Also, the applications of hybrid approaches are presented, including 

discrete wavelet transform - adaptive filtering method (DWT-AFM), DWT-BSS, EMD-BSS, singular spectrum 

analysis - adaptive noise canceler (SSA-ANC), SSA-BSS, and EMD-IVA. Finally, a comparative analysis for these 

existing methods is provided based on their performance and merits. The result shows that hybrid methods can 

remove the artifacts more effectively than individual methods.  
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1. Introduction 

Electroencephalogram (EEG) is a voltage test recording the electrical activity of the neurons in the brain. EEG is obtained 

in various frequencies including delta (1-4 Hz), theta (4-8 Hz), alpha (8-13Hz), beta (13-30 Hz), and gamma (greater than 30 

Hz) [1]. EEG brain rhythms with different frequency ranges are shown in Table 1 [2]. EEG is suitable for brain signal 

acquisition because of its non-intrusiveness, portability, high temporal resolution, and cost-effectiveness. Brain signal 

acquisition and processing are mainly used for clinical research purposes to diagnose multiple brain disorders, e.g., sleep 

disorders, depression, schizophrenia, and epileptic disorder [3]. However, EEG processing and analysis are affected by a 

couple of conditions, such as technical and physiological conditions. During the signal acquisition process, the most prevalent 

disorders (artifacts) are ocular, muscle, and cardiac disorders, and electrooculogram (EOG) is cumbersome [4]. 

Table 1 Basic brain rhythms and their frequency range [2] 

Serial number Brain rhythm Frequency range State of the brain 

1 Delta 1-4 Hz Sleeping/unconscious 

2 Theta 4-8 Hz Imagination 

3 Alpha 8-13 Hz Calm consciousness 

4 Beta 13-30 Hz Focused consciousness 

5 Gamma >30 Hz Peak performance 
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These artifacts, power line interference, impedance fluctuation, and wire movement collide and intrude the energy with 

EEG signals. Due to these artifacts, it is difficult to obtain the correct diagnosis and analysis of EEG. Therefore, artifact 

removal methods are required to reduce the artifacts and preserve the originality of the actual EEG signals. The placement of 

electrodes in the 10-20 system is shown in Fig. 1. 

 

Fig. 1 Depicture of 10-20 electrode placement system [5] 

 Researchers developed automated approaches and techniques wherein the EEG signals are recorded using single- and 

multi-channels. Different methods are proposed for the mitigation of artifacts from single- and multi-channels. The accuracy of 

the methods using single-channels is less than the one using multi-channels, but the complexity over time is less when using 

single-channels. The basic process includes recording the EEG data with precaution and removing the epochs in EEG data, 

which can cause the removal of some valuable data [6]. Generally, artifact removal techniques are categorized into two types: 

regression-based method and blind source separation (BSS) based method [7]. So far, no specific method can remove all the 

artifacts. Researchers are trying to suppress the artifacts by improving the existing techniques and combing two and more 

methods to get the artifact-minimized EEG signals. 

The main objective of this study is to give an overview on the existing methodology to remove the artifacts in EEG 

recordings and to choose the better method based on artifact removal types. The remaining paper is organized as follows. The 

artifacts affecting the EEG recordings are discussed in section 2. Literature review is clearly explained in section 3. The 

primary artifact removal techniques’ advantages and disadvantages proposed by various researchers are discussed in section 4. 

The comparative analysis for multiple artifact removal methods is presented in section 5. 

2. About the Artifacts 

Human brain is a combination of billions of neurons, and the activity of this brain region is measured by recording the 

electrical signals generated by the neurons. EEG is such a signal recording acquired by placing the electrodes on the scalp. The 

recorded EEG signals include the signals from the brain neurons and the neurons of other body parts. The signals generated by 

other than brain neurons are called artifact signals. These artifacts are due to ocular artifacts (OAs), muscle artifacts, cardiac 

artifacts, electrode placement, impedance mismatching, etc. [8]. Non-physiological artifacts can be removed by simple 

methods such as high-pass filtering and low-pass filtering because these artifacts’ frequency does not overlap with the desired 

EEG signals [9]. However, the removal of physiological artifacts requires different methods because the frequency spectrum of 

physiological artifacts overlaps with the desired EEG signals [10].  

OAs are generated from eye movements (EMs) and eye blinks, and are propagated to the scalp region and overlap with the 

EEG signals. The OA frequency range is petite and is recorded by EOG by placing the electrodes (one above the eye and the other 

on one side of the eye) as shown in Fig. 2. EEG signals are deteriorated by EOG signal components and vice versa, so 

bi-directional interference is introduced [11]. The amplitude of EOG is higher than the amplitude of EEG. Muscle artifacts are 

originated from different muscle groups such as contraction, stretch, talking, sniffing, swallowing, etc. The frequency range of 
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muscle artifacts is vast and is overlapped entirely with the actual EEG signals. The amplitude of muscle artifacts depends on the 

activity of the muscle and is measured by electromyography (EMG). Because of the broad spectrum, muscle artifacts cannot be 

obtained by single-channels. The autocorrelation of muscle artifacts is very small and independent of the EEG signals both 

temporally and spatially [8]. Cardiac artifacts are originated from the heart and are measured by electrocardiography (ECG). 

Cardiac artifacts follow some regular patterns, so removing the cardiac artifacts is simple by using reference signals. 

 

Fig. 2 EOG and EMG elements of a sleep montage setup [5] 

For the better analysis of human brain and the diagnosis of patients, artifacts must be removed. Generally, the recorded 

EEG signals are between the ranges of 0.01 Hz to 100 Hz. Different types of the brain rhythms and the artifacts generated by 

the brain and body are shown in Fig. 3 and Fig. 4.  

 
(a) Delta wave 

 

  
(b) Theta wave (c) Alpha wave 

  
(d) Beta wave (e) Gamma wave 

Fig. 3 Graphical representation of different brain rhythms 

 

 
Fig. 4 Different physiological artifacts [8] 
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3. Literature Survey  

3.1.   Related works 

In 2013, Zou et al. [12] have addressed an automatic algorithm for general artifact identification. It was composed of 

electrode-scalp impedance information and an event-associated feature-oriented clustering algorithm. The former identified 

the non-biological artifacts, and the latter identified the artifacts with physiological origins. It could efficiently remove, 

separate, and detect the non-biological and physiological artifacts. It efficiently improved the signal quality. The classification 

accuracy was also improved. Mahajan and Morshed [13] have proposed a uniquely robust, unsupervised, and computationally 

speed statistical algorithm that employed modified multiscale sample entropy (mMSE) and kurtosis to recognize the 

independent eye blink artifactual components automatically. These components were denoised by the biorthogonal wavelet 

decomposition. The persistent neural activity was preserved in the independent components (ICs), and the artifactual activity 

was removed. Their proposed method attained average specificity, sensitivity, and execution time, which are better than the 

ones in other previously existing methods.  

In 2014, Acharjee et al. [14] have described the conflict of gradient artifact removal from the EEG signals recorded in a 

concurrent manner with functional magnetic resonance imaging (MRI) acquisition. The artifacts were estimated by the quasi 

periodicity and its similarity over distinct channels with the help of independent vector analysis (IVA). Their proposed method 

utilized spatio-temporal information to evaluate the artifacts for a specific channel with the support of spatial dependences. 

Hence, it offered robustness in terms of uncontrollable variations such as fluctuations and head movement during acquisition. 

In 2015, Khatun et al. [15] have evaluated the unsupervised wavelet transform (WT) approach for removing OAs in the case of 

a single-channel EEG system. A group of 7 raw EEG dataset was investigated. Two familiar WT techniques, i.e., stationary 

wavelet transform (SWT) and discrete wavelet transform (DWT), were used. Four WT basis functions were utilized for 

removing OAs, i.e., bior4.4, sym3, coif3, and haar, having statistical threshold (ST) and universal threshold (UT). Their 

proposed method was an efficient tool for real-time applications.  

In 2016, Tibdewal et al. [16] have performed detection of EM artifacts and classification of non-artifactual/artifactual 

EEG time series together with multiple EM artifactual zones. Artificial neural network (ANN) was employed for the 

identification. The researchers also proposed a computationally fast, robust, simple, and novel time-amplitude algorithm. Their 

proposed method provided the ANN model accuracy for the classification of the artifacts, and detected and marked the 

multiple EM artifactual zones automatically and appropriately. Liu et al. [17] have introduced a practical and efficient filtering 

algorithm based on multiscale entropy and multivariate empirical mode decomposition (MEMD) for computing the depth of 

anesthesia (DOA). The mean entropy found the artifact-free intrinsic mode functions (IMFs). The impact of distinct levels was 

investigated by means of the simulated data. The complexity was also computed for monitoring the DOA. The ANN was used 

for the range mapping for correlating the measurements with bispectral index (BIS). The BIS and entropy values contained a 

more robust correlation, and it also efficiently filtered the artifacts. 

In 2017, Barua et al. [18] have proposed an algorithm which is known as automated artifact handling in EEG (ARTE). It 

was employed as a pre-processing step in the driver monitoring application, and functioned based on the wavelets, hierarchical 

clustering, and independent component analysis (ICA). It was analyzed on a driver sleepiness study, and was evaluated with 

the help of a clinical neurophysiologist using quantitative measures. The outcomes demonstrated that it minimized the effect of 

artifacts in the recorded EEG signals. It was a data-driven one, and it did not depend on manually defined thresholds or extra 

reference signals. Sai et al. [19] have introduced a new technique for artifactual component identification with the help of a 

pre-trained support vector machine (SVM). The researchers also proposed an extendable and robust system that enabled 

removing the artifacts without arbitrary thresholding. The target artifacts were removed in a successful manner. The training  
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used a group of features such as amplitude range, Shannon’s entropy, variance, and kurtosis. The multiple forms of artifacts in 

the multi-channel EEG were also accommodated. Li et al. [20] have introduced a unified framework based on canonical 

correlation analysis (CCA) to remove artifacts.  

The raw signals constructed a pair of matrices based on the sources via the autocorrelation maximization. These sources 

were eradicated by placing them as zeros, and the remaining sources reconstructed the artifact-free EEG. The actual and 

simulated recorded data assessed this framework. It lessened the associated motion artifacts and contained benefits for 

eliminating the gradient artifacts with respect to the computational complexity and combination of characteristics. Roy and 

Shukla [21] have compared the effectiveness of enhanced empirical mode decomposition (EEMD) with distinct interpolations 

based on an artifact removal technique. The input single-channel EEG signals were transformed to multi-channel signals, and 

the motion artifact randomness was eradicated by DWT filtering and CCA. Their proposed method acted as a supplement for 

the traditional algorithms and provided enhancements in difference signal to noise ratio (DSNR) and several performance 

parameters.  

In 2019, Chang et al. [22] have evaluated artifact subspace reconstruction (ASR) during the simulated driving 

experiments. The IC classifier and ICA separated the artifacts for assessing the efficiency of ASR. The temporal activity power 

was minimized. It enhanced the quality of a subsequent ICA decomposition. The brain activities were retained, and non-brain 

signals were removed. Their proposed method was an automatic and powerful artifact removal technique for online real-time 

EEG applications or offline data analysis like brain-computer interfaces and clinical monitoring. Cheng et al. [23] have 

addressed an efficient technique for removing different artifacts for the single-channel EEG. It was a combination of 

second-order blind identification and singular spectrum analysis (SSA) method. The possible cases contaminated by ECG, 

EOG, and EMG artifacts were analyzed. Their proposed method removed different artifacts and acted as a promising tool for 

biomedical signal processing applications. Saini et al. [24] have introduced a robust framework for detecting and eliminating 

OAs based on turning point count and variational mode decomposition (VMD). It exploited the efficiency in two stages, i.e., 

VMD-I and VMD-II. It was composed of four components: EEG signal decomposition into two modes using VMD-I, rejection 

of low-frequency baseline components, processed EEG signal decomposition into three modes using VMD-II, rejection of 

mode containing OAs based on turning point count-based threshold criteria.  

The OAs were eliminated with minimal loss in the entire local rhythms and reconstructed EEG signals. Liu et al. [25] have 

labeled a robust and effective muscle artifact removal technique with the help of fast multivariate empirical mode 

decomposition (FMEMD) and CCA in the case of few-channel EEG. The input EEG recordings were decomposed into various 

multivariate IMFs. The CCA processed the IMFs for measuring the underlying sources. In the final step, the sources with less 

autocorrelations were eradicated. The average correlation coefficient (CC) and the accuracy were largely consistent. Their 

proposed method worked much robust in the low sampling rate based on the benchmark and real data. Dora and Biswal [26] 

have suggested an ECG artifact correction algorithm for the automatic diagnosis and analysis of single-channel EEG signals. It 

employed a modified and enhanced signal decomposition version for attaining band limited intrinsic mode functions 

(BLIMFs). It was helpful when the signal was composed of correlated properties. It suppressed the QRS complexes and 

estimated the ECG reference. It offered less distortion and was computationally more intensive than other methods. It 

overcomes the shortcomings such as the requirement of a reference ECG channel and the requirement of R-R interval or 

amplitude thresholding for QRS complex identification.  

In 2020, Dora et al. [27] have introduced an adaptive SSA algorithm for muscle artifact removal. The mobility threshold 

was decided in an adaptive manner by neural network regressor (NNR). Their proposed method was trained using several 

contamination levels. It discriminated among several contamination levels and performed superior to the traditional 

single-channel algorithms. Yedurkar and Metkar [28] have proposed a technique for removing physiological artifacts and 
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positioning the epileptic region. A hybrid method was recommended based on multi-resolutional analysis and adaptive 

filtering (MRAF) . In the initial step, the EEG signals were decomposed by DWT that localized the epileptic region. The 

multi-resolutional soft thresholding removed the abrupt changes. 

Moreover, the adaptive filtering (AF) eradicated the low-frequency components that described the physiological artifacts. 

It retained most of the seizure signals that were available in the validated datasets. Islam et al. [29] have introduced a technique 

for removing motion-related artifacts in the field of epilepsy. Initially, it involved the EEG signal recording with the help of a 

wearable EEG headset. It was colored using few motion artifacts produced in a lab-controlled experiment. It was followed by 

the spectral and temporal spectral signal characterization and artifact removal by ICA. The actual clinical EEG data tested it, 

and the outcomes described an average improvement in accuracy for detecting the seizures and prediction. Bajaj et al. [30] 

have addressed an algorithm based on wavelet packet decomposition (WPD) that permitted the presumed artifact removal by 

optimizing intuitive parameters. It was composed of 2 tuning parameters and 3 operating modes. It was compared with 

comparative wavelet-oriented technique and ICA-oriented techniques. The performance could be enhanced by proper 

optimization of the parameters for an individual predictive method. It was accomplished better for artifactual noise removal 

and neural information retention computed using CC and mutual information (MI) than the comparative wavelet-oriented 

technique.  

In 2021, Noorbasha and Sudha [31] have labeled the conflict of EOG artifact removal and separation of different cerebral 

activities in a single-channel contaminated EEG. A new method based on ICA and SSA together with SWT was proposed. The 

single-channel contaminated EEG signals were transformed into multivariate information. Then, ICA separated the source 

signals as distinct ICs. The SWT accomplished the thresholding for preserving the EEG signals and dividing the actual artifacts. 

Their proposed method provided better artifact separation characteristics than the traditional approaches.  

3.2.   Utilized datasets 

 Several kinds of datasets are used in the considered previous research, including the manual dataset, Mendeley, MIT-BIH 

polysomnographic database, EEG during mental arithmetic task database, synthetic dataset, simulated dataset, temple 

university hospital (TUH) EEG database, gold-standard dataset, epileptic EEG signal dataset from the local hospital, Freiburg 

EEG dataset, semi-simulated dataset, real dataset, open-source dataset, etc. Table 2 lists different kinds of datasets used in the 

considered works in a detailed manner. Most of the considered works utilize the manual dataset, followed by a real dataset, 

simulated dataset, MIT-BIH polysomnographic database, etc. The manual dataset is used in 50% of the works, real dataset was 

used in 20% of the works, simulated dataset was used in 15% of the works, MIT-BIH Polysomnographic database was used in 

10% of the works, and the remaining datasets was used only in 5% of the works.  

Table 2 Different datasets used in the considered works 

Dataset Previous work 

Manual dataset [12-15, 18-19, 22-23, 25, 31] 

Mendeley [24] 

MIT-BIH polysmnographic database [24, 26] 

EEG during mental arithmetic task database [24] 

Synthetic dataset [31] 

Simulated dataset [17, 20, 27] 

TUH EEG database [27] 

Gold standard dataset [28] 

Epileptic EEG signal dataset from local hospital [28] 

Freiburg EEG dataset [29] 

Semi-simulated dataset [26] 

Real dataset [16-17, 20, 30] 

Open-source dataset [21] 
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3.3.   Simulation platforms 

 The platforms used in the considered works are given in Fig. 5. Here, MATLAB and LabVIEW softwares are used for the 

implementation. 92% of the works use the MATLAB software, and 8% use the LabVIEW software.   

 

3.4.   Performance measures 

The performance measures used in the analyzed research are depicted in Table 3, including accuracy, sensitivity, 

specificity, mean square error (MSE), root mean square error (RMSE), relative root mean square error (RRMSE), etc. Among 

the considered works, time measure is used in 25% of the works, CC is used in 45% of the works, MI is used in 25% of the 

works, accuracy is used in 20% of the works, sensitivity is used in 25% of the works, specificity is used in 15% of the works, 

MSE is used in 10% of the works, mean absolute error (MAE) is used in 20% of the works, RRMSE is used in 25% of the 

works, RMSE is used in 15% of the works, signal to noise ratio (SNR) is used in 30% of the works, power spectral density 

(PSD) is used in 10% of the works, signal to artifact ratio (SAR) is used in 10% of the works, and the remaining measures such 

as euclidean distance, normalized mean square error (NMSE), spectral coherence, agreement rate, signal quality index (SQI), 

relative error (RE), normalized root mean square error (NRMSE), variance, power, maximum absolute error (MAX), 

normalized maximum absolute error (NMAX), normalized root mean square difference (NRD), percentage root mean square 

difference (PRD), autocorrelation, peak signal to noise ratio (PSNR), precision, false alarm rate (FAR), coherence, mean 

entropy value (MEV), DSNR, and spectral distortion improvement are used only in 5% of the contributions. 

Table 3 Performance measures used in the previous research 

Ref. Time CC MI Accuracy Sensitivity Specificity MSE MAE RRMSE RMSE SNR PSD SAR Miscellaneous 

[12] √ - - - - - - - - - - - - Euclidean distance 

[13] √ √ √ √ √ √ - - - - - - - 
Spectral coherence 

and agreement rate 

[14] - - √ - - - - - - - - - - - 

[15] - √ √ - - - - - - - - - √ NMSE 

[16] - - - - - - - √ - - - - - - 

[17] √ - - - - - - - - - √ - - MEV 

[18] - - - - - - √ √ √ - - - - SQI, RE, and NRMSE 

[19] - - - √ √ √ - - - - - - - - 

[20] - √ - - - - √ - - - √ - - - 

[21] - - - - - - - - - √ - - - 

DSNR and spectral 

distortion 

improvement 

[22] - - - - - - - - - - - - - Variance and power 

[23] - √ - - - - - - √ √ √ - - - 

[24] √ √ - - - √ - √ - √ √ - - 
MAX, NMAX, NRD, 

and PRD 

[25] √ √ - - - - - - √ - - √ - Autocorrelation 

[26] - √ - - - - - - - - √ √ √ - 

[27] - √ √ - - - - - √ - - - - PSNR 

[28] - - - √ √ √ - - - - - - - Precision 

[29] - - - √ √ - - - - - - - - FAR 

[30] - √ √ - - - - - - - - - - Coherence 

[31] - - - - - - - √ √ - √ - - - 
 

92%

8%

Contribution
MATLAB

LabVIEW

Fig. 5 Simulation platforms used in the literature 
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4. Survey on the Existing Artifact Removal Techniques 

4.1.   Artifact avoidance and rejection 

The first basic technique to remove artifacts is to instruct the patient to shun unnecessary actions such as EMs and stay 

calm until the completion of the process. However, since it is not possible to keep quiet, artifacts are recorded in the EEG 

signals [3]. The second way is to remove the epochs in EEG data by observation. This method is also not available because the 

data is vast, and the expertise must be analyzed appropriately. Therefore, a separate automatic procedure is needed to remove 

the artifacts as much as possible [32]. 

4.2.   Regression methods 

The regression method is a straightforward and commonly used method for removing artifacts in EEG signals. In this 

method, a reference signal is required to remove artifacts. EEG signals are generally most affected by EOG and EMG signals. 

The regression method depends on the subtraction of artifact signals from the EEG signals. It assumes that OAs and EEG 

signals are linearly uncorrelated [33]. Identifying the reference artifact signals is very difficult because EEG and EOG are both 

neural activities [2]. While subtracting EOG signals, some useful information related to the original EEG signals was also 

removed; loss of data is there. The simple mathematical analysis is shown here in Eq. (1). 

( ) ( ) ( ); with 1, 2, ,osEEG l EEG l EOG l l O= + = ⋯γ  (1) 

Here, the recorded EEG signals are denoted as EEGs the fraction of the EOG signals is denoted as �, and the original EEG 

signals are denoted as EEGo respectively. 

4.3.   Filtering methods  

4.3.1.   Adaptive filtering  

The performance of WT depends upon the mother wavelet effectively. The WT efficiency is improved if the artifact 

component’s frequency does not overlap with the usage frequency of the EEG signals. Unfortunately, ECG, EMG, and EOG 

artifact frequencies are coinciding with the desired EEG signals. In ICA, the improvement performance of artifact removal 

depends on the reference signal and a large amount of data. However, AF overcomes the problem of extensive data and 

frequency band overlap [34]. Fig. 6 presents a block diagram to implement AF. 

 
Fig. 6 Basic block diagram of adaptive filter [34] 

More than one channel can be selected as a reference channel, and AF is employed mainly to minimize power line 

interference artifacts. However, this has two particular limitations: (i) the noise content in the original signals must be 

corrected with some reference noise signals; (ii) the original signal helpful information may be uncorrected with the 

reference noise.  

42 



Proceedings of Engineering and Technology Innovation, vol. 20, 2022, pp. 35-56 

 

4.3.2.   Kalman filtering  

Kalman filter (KF) is one of the appropriate estimators for the analysis of linear systems and signals. It is a recursive 

filtering algorithm to remove the artifacts in EEG signals. The inputs used for this algorithm are the state of the system, 

recorded signal, and past observations. In this algorithm, a reference signal is not required; KF estimates the state of the system 

and the reference signal from the contaminated part of the EEG signals. The recorded EEG signals are denoted as EEGr, true 

EEG signals are denoted as EEGt, and OAs are denoted as EOG. KF uses a state-space model to represent the complete 

analysis. The state-space model of the KF is as follows [35]: 

( ) ( 1) ( 1) ( 1)x n Ax n Bu n Cw n= − + − + −  (2) 

( ) ( ) ( )z n Hx n v n= +  (3) 

where z(n) is the measured signal; x(n) is the system’s state; A, B, C, and H are the matrices obtained from different regions of 

the acquired EEG signals; w(n) and v(n) are the process noise and measurement noise respectively; u(n) is the control input for 

the system. The measured signal is the combination of EEGt and artifactual signals like EOG [36]. 

( ) ( ) ( )
t

z n EEG EOG Hx n v n= + = +  (4) 

After estimating EEG and EOG components, KF is applied to remove the artifacts. In this algorithm, two steps are there.  

(1)  Estimate the state variables. 

(2)  Compare the previous estimation with the measured signal to obtain an improved version of the state variables.  

 The disadvantage of KF is that it assumes the errors are Gaussian, and the system is a linear model. The measurement of 

covariance matrices for process noise and measured noise is tough to calculate because the practical recorded EEG signals are 

not a linear combination of the underlying source signals. The extension of KF is extension Kalman filter (EKF) and unscented 

Kalman filter (UKF), which work on nonlinear systems. 

4.4.   Blind source separation (BSS) 

BSS is a separation approach of underlying sources from the mixed signals without knowing prior information about the 

origin of signals and mixing parameters. The main plan of BSS is to recover the sources from mixed signals [37]. Let us 

consider X as an observed EEG signal from the scalp electrodes, which is a linear mixture of underlying sources (S) with 

unknown mixing matrix A, Eq. (5) is obtained. 

X AS=  (5) 

BSS algorithm is reverted to recover the underlying sources. 

Y WS=  (6) 

where Y is the estimation of sources, and W is an un-mixing matrix. These algorithms are used to remove artifact components 

and to reconstruct artifact-free EEG signals. In the following section, some of the BSS algorithms are discussed.  

4.4.1.   Principle component analysis (PCA) 

 Principle component analysis (PCA) is one of the simple data reductions and BSS techniques to remove the artifacts using 

the orthogonality principle [8]. Berg and Scherg proposed PCA to minimize OAs. PCA is a multiple data analysis procedure 

that involves the transformation of many correlated variables into a smaller number of uncorrelated variables. PCA is defined 
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as “linear projection that transforms multivariate data into a set of components called principle components (PCs)” [38]. PCs 

are calculated using a simple algorithm called singular value decomposition (SVD). In SVD, eigenvalues are computed from 

the covariance matrix (C) [36]. Most significant eigenvalues are related to the highest variance, and the lowest eigenvalues are 

related to the lower variance. Assume the recorded EEG signals (EEGr) combine the original EEG signals (EEGo) and the 

artifacts from EOG and EMG, Eq. (7) is obtained. 

r oEEG EEG EOG EMGα β= + × + ×  (7) 

where α and β are real constants. The drawback of PCA is the orthogonality principle only because it cannot separate the artifacts 

if they have the same amplitude as original EEG data. The orthogonality principle is not always held due to the nonlinearity 

between the electrical signals generated by brain neurons from eye blinks and EMs compared with original EEG signals [39]. The 

advancement in PCA is done by robust PCA and kernel PCA [40]. The performance of PCA is better compared to the regression 

method and filtering methods. PCA can remove OAs, but other artifacts cannot be removed. Therefore, researchers preferred 

alternative methods such as ICA, CCA, empirical mode decomposition (EMD), IVA, SSA, etc. 

4.4.2.   Independent component analysis (ICA) 

 ICA is a powerful BSS method to remove the artifacts in EEG signals. It converts the multi-dimensional data into 

different ICs. In this method, the observed EEG signals’ primary assumption is a linear mixture of underlying independent 

sources [39]. PCA is unable to differentiate the artifacts if the neural activity and artifacts have the same amplitude. Assume 

that the recorded EEG signals X(k) use N channels and that the number of underlying sources S(k) are N [2], Eq. (8) is obtained. 

( ) ( )X k AS k=  (8) 

where X(k) = [X1(k), X2(k), …, XN(k)]
T
 and S(k) = [S1(k), S2(k) , …, SN(k)]

T
. T and k are transpose operator and time index 

operator, respectively. A ϵ R
NXN

 is mixing the unknown matrix. The goal of ICA is to recover S from X without knowing A and 

S. For this, a separate un-mixing matrix W should be found such that Eq. (9) is obtained. 

( ) ( )Y k WX k=  (9) 

where Y is the expected value of S. Y is precisely equal to S if and only if W = A
-1

. This model is by assuming no noise model. 

For experimental conditions, some noises are also included. A simple model of how the electrodes are placed to record the 

EEG signals from the brain is shown in Fig. 7. 

 

Fig. 7 A simple model of recording EEG signals by electrodes [2] 

 In the preprocessing of EEG signals using ICA, two main steps are there; one is centering, and the second is whitening 

[37]. In the centering step, the EEG data is centered by subtracting the mean from the data. In the whiting step, the EEG data is 

de-correlated. ICA uses higher-order statistics (HOS) to identify independent artifactual components. Unlike PCA, 
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orthogonality is not required; only statistical independence is needed. The main drawback of ICA is that the number of 

channels used to collect the data should be huge compared to underlying artifactual sources. The second drawback is that ICA 

removes the artifacts whose topologies are stereotyped like EOG, but muscle artifacts are not stereotyped because the muscle 

artifacts are from different sources. 

4.4.3.   Canonical correlation analysis (CCA) 

 Hotelling in 1936 has proposed CCA. The entire concept of this approach is to find the vectors for two dataset variables so 

that the correlation between the projections of the variables on this basis vector is mutually maximized. This analysis relies on the 

coordinate system where the variables are described; however, if there is a strong linear relationship between the sets of 

multi-dimensional variables, they may depend on the coordinate system. This correlation relation may not be visible, but it may 

seek a pair of linear transformations. Each set of variables are transformed, and the corresponding coordinates are correlated to the 

maximum [41]. CCA is also treated as one of the powerful tools used in BSS to remove artifacts in EEG signals. This analysis 

mainly uses second-order statistics (SOS) with a less computational cost than ICA (which uses HOS) [42]. CCA removes muscle 

artifacts easily because muscle artifacts do not have stereotyped topography [43]. Muscle artifacts are distributing a total range of 

frequency spectrum. The autocorrelation of muscle artifacts is very low, while the EEG signal autocorrelation is high. CCA uses 

this property to remove the EMG artifacts which are mainly affected in the frequency range of 20Hz-50Hz. 

 Consider that there are a multi-channel EEG signal X(t) and its delayed version Y(t) such that Y(t) = X(t-1). The basis vectors 

are x = w
T
X and y = w

T
Y. In this scenario, CCA maximizes the correlation between x and y by removing the mean of x and y [3]. 

, ,

[ ][ ]
( , ) max max max

( )( )[ ] [ ] [ ] [ ]

T T TT

x y x xy

T Tx y x yT T T T T T

x xx y yy yx x x y

w w w w

E w w w C wE XX
x y

w C w w C wE XX E YY E w w E w w
ρ = = =  (10) 

where Cxx and Cyy are auto-covariance matrices of X and Y, respectively. Cxy is the cross-covariance matrix of X and Y. By 

calculating the derivative of Eq. (10) with respect to wx and wy and equating to zero, the following equations are derived. 

^ ^
1 1 2

x xxx xy yy yx
C C C C w wρ− − =  (11) 

^ ^
1 1 2

y yyy yx xx xy
C C C C w wρ− − =  (12) 

where ρ is the canonical CC. ρ is maximized such that artifact components can be removed. If ρ is minimized, then these 

components approach to artifactual features. 

4.5.   Wavelet transform (WT) 

 The observed EEG signals are not entire because physiological and non-physiological signals contaminate the observed 

signals. For the better analysis of EEG signals, artifact signals are removed. In PCA and ICA, the drawback is maintaining 

orthogonality and large data requirements. These drawbacks are overcome by WT. WT decomposes the time-domain EEG 

signals by convolving a scaled and translated wavelet function [44].  

,

1
( ) ( )

a b

n b
n

aa
ψ ψ

−
=  (13) 

where a and b are real numbers. N = 1, 2, 3, …., N. DWT removes OAs because the wavelets have resembled OAs [45]. Here, 

some of the basic wavelets are shown in Fig. 8. 
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(a) Haar (b) Shannon or sinc (c) Daubechies 4 (d) Daubechies 20 

    
(e) Gaussian or spline (f) Biorthogonal (g) Mexican hat (h) Coiflet 

Fig. 8 Graphical representation of different basic wavelets 

 DWT is a non-redundant and outstanding transform technique that aims to remove the artifacts from the time domain 

EEG signals. In this analysis, the signal is passed through a series of low-pass and high-pass filters to attain approximate and 

detailed coefficients [44]. The process is iteratively repeated until the desired frequency is reached. When this is achieved, 

the output is down-sampled by a factor of 2 and up-sampled to get the reconstructed signal. The basic block diagram of 

DWT is shown in Fig. 9. 

 
Fig. 9 DWT graphical decomposition representation [44] 

(HPF = high-pass filter; LPF = low-pass filter) 
 

DWT’s advantage is that it can provide good temporal resolution for high frequency components and better frequency 

resolution for lower frequency components [19]. The major drawback of DWT is its time invariance. However, EEG data is 

not time-invariant and is randomly varying. This problem can be overcome by SWT, but the drawback is redundant 

information and slowness. In MATLAB, it is implemented by SWT function [46]. 

4.6.   Empirical mode decomposition (EMD) 

The practical recorded EEG signals are random stochastic signals, but not static signals. In the standard methods of 

artifact removal, the EEG signals are projected onto the basis vectors. In WT, the basis vectors are predefined. The 

experimentally recorded EEG data is not following the same pattern for different patients and, at other conditions, follows 

the random nature. Using predefined basis vectors to remove artifacts is not perfect because some proper EEG signals are 

also removed. A new method is proposed in 1998 to process nonlinear stochastic random data to overcome this problem [34]. 

EMD decomposes the EEG signals into some oscillatory functions called IMFs [47]. The derived IMFs must follow two 

criteria. 

(1)  In the whole dataset, the number of extremes and the number of zero-crossings must be equal or differ by at most one. 

(2)  At any point, the mean value of the envelope is given by the local maxima, and the minima must be zero. 
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It is a data-driven method; unlike WT, the decomposition is not done by using predefined bass functions. Here are the 

steps for performing EMD [48]: 

(1)  For the given EEG signal x(t), identify all the local maxima and minima of the given signal. 

(2)  Interpolate between the maxima and minima to calculate the upper envelope u(t) and lower envelope l(t), respectively. 

(3)  Calculate the average m1 from the lower and upper envelopes and subtract it from the signal x(t) to get the first IMF. 

1

( ) ( )

2

u t l t
m

+
=  (14) 

1 1( )h x t m= −  (15) 

(4)  Check if h1 satisfies the two criteria for IMF. If not, repeat the steps (1)-(3). After i
th

 iteration, the conditions are satisfied. 

1( 1) 1 1i i i
h m h− − =  (16) 

Then, c1 = h1i becomes the first IMF. The stopping criteria are explained by Huang et al. [49-50], which are given by 

Cauchy convergence test. The first IMF is expected to have a high frequency. 

1 1
( )x t c r− =  (17) 

where r1 is the first remainder, which contains remaining frequencies. Now, r1 is the input signal for the next sifting process. 

The second IMF is c2.  

1 2 2
r c r− =  (18) 

1n n n
r c r− − =  (19) 

This procedure is stopped when the residue is not satisfied with the IMF criteria and is a monotonic function. The given EEG 

signal is represented as: 

1

( ) [ ( ) ( )]
I

i I

i

x t c t r t
=

= +∑  (20) 

EMD decomposes the signals based on amplitude and frequency information. The EMG artifacts cannot be separated from the 

EEG signals due to the overlapping at higher frequencies, but these kinds of EMG artifacts can be removed using some 

standard forms of recent artifact removal techniques.   

4.7.   Singular spectrum analysis (SSA) 

SSA is a powerful decomposition method for the removal of artifacts in single-channel and multi-channel EEG signals. 

The BSS method is mainly applied to multi-channel data. In SSA, the procedure is primarily divided into two steps, and each 

step is further divided into two phases [51]. 

(1)  Decomposition: (i) time delay embedding; (ii) SVD. 

(2)  Reconstruction: (i) grouping; (ii) diagonal averaging. 
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Consider that there are N sampled signals x(t) = x1, x2, …, xN, then in the first embedding step, the x(t) is mapped as X 

whose size is K × P [52]. 

1 2
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⋯

 (21) 

where L is the embedding size. The general value L = N/2. Xi is a lagged vector. The second step is SVD. By using SVD, the 

trajectory matrix X is defined as: 

i i i i
X VUλ=  (22) 

where λi is eigenvalue; Ui and Vi are left and right singular eigenvectors. Now the trajectory matrix X is written as: 

1

L

i

i

X X
=

= ∑  (23) 

As the indices In are divided into R groups. The matrix X after grouping is:  

1
j

R

I

j

X X
=

= ∑  (24) 

In the last step of diagonal averaging, the sub-matrix ��� is translated to new series by the averaging of anti-diagonal elements. 

The final trajectory matrix is represented as:  

1

( ) ( )

L
rc

j

j

x t x t
=

=∑  (25) 

The SSA method can remove muscle artifacts better compared to BSS methods. By combing the SSA with other BSS methods, 

artifacts can be removed further. 

4.8.   Independent vector analysis (IVA) 

The EEG data is contaminated by noises/artifacts while recording from the scalp. There are many methods for removing 

EOG artifacts, e.g., ICA, CCA, EMD, SSA, etc. The removal of muscle artifacts is difficult; only a few methods are there 

because muscle artifacts have high amplitude and variable topographical distribution, and overlap with the entire EEG 

spectrum [53]. ICA separates the muscle artifacts effectively using HOS by linearly un-mixing the EEG data into ICs if and 

only if the artifacts are stereotyped. However, muscle artifacts are not stereotyped because these are generated from a group of 

muscles. CCA extracts the sources maximally autocorrelated and mutually uncorrelated using SOS. Comparing with EEG 

signals, muscle artifacts have a low correlation. CCA uses this property to remove the artifacts. CCA and ICA are applicable 

mainly for multi-channel data. Kim et al. [54] have proposed an IVA approach similar to ICA, and have addressed the 

permutation issue when dealing with acoustic source separation. In recent times, this approach has been applied to EEG signals 

and could remove muscle artifacts successfully.  

IVA operation which relies on “source extraction from different datasets and maximally dependent sources” within the 

dataset is maximally independent [53]. In this analysis, the source independence within the dataset and dependence between 

the datasets exist in parallel. In IVA, the source component vector (SCV) was defined from different datasets [54].  
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The p
th

 SCV is �� = ���	, ���, … , ��� (p = 1, 2, …, P), which is a random vector independent of all other SCVs. ��� (m =1, 

2, …, M) represents the p
th

 source component in the m
th

 dataset. The main intention of IVA approach is to identify the 

independent SCV from the multi-dimensional dataset, which is achieved by minimizing the MI among the SCV estimates �̂�.  

1 2
ˆ ˆ ˆ[ ; ; ...... ]

IVA p
I I s s s≜  (26) 

where ���̂�� is the MI within the p
th

 SCV. 

Initially, IVA assumes that the data follow Laplacian distribution (IVA-L), which uses HOS without considering linear 

dependence using SOS. Anderson et al. [53] proposed IVA-G with the Gaussian distribution model, which uses SOS and does 

not consider linear dependence. Recently, Chen et al. [55] in 2017 implemented a novel IVA algorithm with multivariate 

power exponential distribution (MPE), which uses both SOS and HOS to get both advantages like linear independence and 

correlation. The drawback of IVA is computational complexity and simulation time. It is mainly applied in laboratory 

applications, not in online applications. 

4.9.   Hybrid methods 

Artifact removal in EEG signals is vital for analyzing brain conditions and diagnosing the patient if any abnormalities are 

there. Researchers are trying some new techniques by combing more than one existing previously discussed method for better 

removal of artifacts. By combining one or more methods, the advantages of each technique can be used to develop a new 

modality for completely removing the artifacts. A hybrid method utilizes the combination of several filters to eliminate the 

artifacts. It can eliminate the significant artifacts from the EEG signals without adjusting the interpretation of the neural state in 

the real and simulated EEG data. It improves the previous versions of total variation denoising and EMD variants.  

4.9.1.   Discrete wavelet transform - adaptive filtering method (DWT-AFM) 

For removing the artifacts in EEG signals using ICA, a reference signal is required. This problem can be resolved by using 

DWT. The reference EOG signal can be generated from the given data by selecting low-frequency wavelet coefficients to 

remove OAs [56]. Unlike ICA, a large amount of information is also not required for better removal of artifacts. However, the 

disadvantage of DWT is that it cannot remove the artifacts effectively if the spectrum of artifacts overlap with the original EEG 

signals [44]. The AFM is also called adaptive noise canceler (ANC). ANC can solve this problem. The drawback of ANC is 

that it requires a reference signal for the removal of artifacts. By combing DWT and ANC, both spectral overlap and reference 

signal problems can be solved [33]. For OA removal, DWT is used for generating reference EOG signal, and this reference 

signal is used as an input reference for ANC. With this hybrid method, the removal of artifacts is better compared to using 

DWT and ANC independently. 

4.9.2.   Discrete wavelet transform - blind source separation (DWT-BSS) 

DWT-BSS is one of the hybrid methods to remove the artifacts more effectively. The BSS technique is generally 

applicable to multi-channel data. The disadvantages of both methods are discussed in previous sections. To overcome these 

disadvantages by combing these methods, the advantages in both methods can be combined. Based on single-channel and 

multi-channel, one of these methods can be used as the first method to apply. First, DWT is applied to decompose the time 

series signal into wavelet coefficients for the single-channel technique, and these coefficients are applied to BSS (ICA or CCA) 

[46]. For multi-channel data, DWT or BSS can be used first, and the resultant signal is applied to the second method for the 

removal of artifacts. If ICA and CCA are applied first, the time domain signal is decomposed into ICs and CCs, and by using 

DWT, these coefficients are further decomposed to better remove the artifacts from the EEG data [19]. 
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4.9.3.   Empirical mode decomposition - blind source separation (EMD-BSS) 

BSS techniques are used for decomposing multi-channel data into separate ICs and CCs using ICA and CCA, respectively. 

These techniques are mainly helpful for laboratory experiments, where multi-channel data is available. However, for 

ambulatory or single-channel data analysis, different methods should be used, e.g., DWT, EMD, SSA, etc. The performance 

can be increased in terms of artifact removal using a hybrid model combing multiple methods. DWT decomposes the data 

using predefined mother wavelets [57]. However, for nonlinear and non-stationary stochastic data like EEG signals, DWT is 

not sufficient. EMD is a data-driven technique that effectively decomposes randomly varying data like single-channel EEG 

signals into IMFs [10]. Then, by using any BSS like ICA or CCA, these IMFs can be further decomposed to remove artifacts. 

For multi-channel data, EMD can also apply channel-wise to decompose into IMFs [43]. 

4.9.4.   Singular spectrum analysis - adaptive noise canceler (SSA-ANC) 

SSA-ANC is one of the hybrid methods for the removal of artifacts from single-channel and multi-channel EEG signals. It 

can be applied to portable devices, where multi-channel data collection is not possible because ICA and CCA are multi-channel 

data methods. In the ANC method for EOG artifact removal, a reference EOG artifactual signal is required. In a hybrid method 

like SSA-ANC, the reference signal for removing EOG artifacts for ANC is given by SSA, like DWT, based on eigenvalues. In 

DWT, last few low-frequency components are used for generating the EOG reference signal [56]. In SSA, the reference signal 

is also generated from the lower eigenvalues, which are developed while applying SVD for the trajectory matrix [58]. The 

performance is improved in terms of artifact removal compared with SSA and ANC because the input reference EOG signal is 

given for ANC, which is generated from the output of SSA.  

4.9.5.   Singular spectrum analysis - blind source separation (SSA-BSS) 

ICA and CCA are powerful BSS methods that use SOS and HOS to remove OAs and muscle artifacts from the recorded 

EEG signals [57]. BSS methods are multi-channel techniques, and each one has its own advantages and disadvantages. BSS 

methods are combined with SSA as a hybrid method to remove artifacts from the recorded EEG signals. SSA decomposes 

the single-channel or multi-channel EEG data, and the decomposed data is further processed by BSS methods to remove 

artifacts. 

4.9.6.   Empirical mode decomposition - independent vector analysis (EMD-IVA) 

IVA uses SOS and HOS for the removal of artifacts [55]. By combing with EMD, IVA removes the artifacts effectively 

compared with IVA independently. EMD method decomposes the single-channel signals into multiple IMFs, and these IMFs 

are applied to IVA to remove artifacts effectively. To overcome the disadvantages in EMD, noise-assisted EMD is proposed, 

which is EEMD. EEMD is applied to single-channel, but MEMD is applied to multi-channel data also. By combining MEMD 

and IVA, Zou et al. [12] proposed a method MEMD-IVA for removing the artifacts from multi-channel signals. 

5. Comparative Analysis of the Existing Methods 

A tabulated survey of literature and methods are presented in Table 4. No independent method can remove all the artifacts. 

The categorization of procedures is done based on the reference channel requirement. The automatic process can be applied 

online, whether single-channel or multi-channel, but prior information is required to improve the performance to remove 

artifacts. Some methods are used for physiological artifact removal, and some are for non-physiological artifact removal. 

Regression methods are elementary for the removal of artifacts but require reference channels and multi-channel data. Filtering 

methods remove the artifacts by first estimating the artifactual components and subtracting them from the original EEG 

contaminated signals, but part of the EEG signals is also removed while subtracting. In KF, the first artifactual region is 
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identified, and by estimating noise, it will be subtracted from only the contaminated area [35]. BSS methods are very effective 

and helpful for the removal of artifacts. Most researchers use ICA to remove artifacts but are restricted to stereotyped artifacts 

only [61]. Muscle artifacts are not stereotyped and thus cannot be removed by ICA effectively. CCA can overcome this 

problem, but it increases computational cost and simulation time, making CCA not being applied in online applications. ICA 

and CCA are multi-channel data processing methods that cannot be used for ambulatory analysis where few channels or 

single-channel data is available.  

Table 4 Comparative analysis of artifactual methods discussed in the survey 

Method 
Reference 

electrode required 

Prior 

knowledge 
Automatic Online 

Single-/ 

multi-channel 
Ref. 

Regression Yes No Yes No Multi [33] 

AF Yes Yes Yes Yes Both [34] 

KF No Yes Yes Yes Both [35] 

PCA No No No No Multi [8] 

ICA No No Yes Yes Multi [2] 

CCA No No Yes Yes Multi [3] 

DWT No No No No Both [44] 

EMD No No No Yes Both [48] 

SSA No No Yes No Both [52] 

IVA No No No No Both [54] 

DWT-AFM No No Yes Yes Both [56] 

DWT-BSS No No No No Both [46] 

EMD-BSS No No No No Both [10, 59] 

SSA-ANC No No Yes Yes Both [57] 

SSA-BSS No No No No Both [57] 

EMD-IVA No No No No Both [55, 60] 
 

EMD and SSA methods can be applied for both single-channel and multi-channel, but the disadvantage is mode mixing 

and aliasing in EMD. SSA method removes only one type of artifacts. An extension of ICA from 1-D data is IVA technology, 

which can be used to remove both ocular and muscle artifacts as it takes advantage of both CCA and ICA methods. Automatic 

methods can remove artifacts without manual intervention. Regression methods can be used as intuitive if the reference 

channel is there [8]. BSS methods are used as automatic if a subsequent procedure like SVM is applied to verify artifactual 

components. 

Individually each method has its advantages and disadvantages. Researchers are combing more than one method like a 

hybrid method to get better results to use the benefits of both approaches. In hybrids methods, multi-channel strategies can be 

applied for single-channels by applying single-channel techniques first. The output is applied as the input for the multi-channel 

approach. EEMD-ICA method removes the EOG artifacts, and EEMD-CCA removes EMG artifacts from a single-channel, 

even though ICA and CCA are multi-channel methods [62]. EEMD decomposes the single-channel data into multiple IMFs. 

These IMFs can be applied to ICA or CCA for further processing to remove artifacts. Compared to WT-ICA, EEMD-ICA 

removes artifacts effectively because EEMD is a data-driven method. FMEMD-CCA is used to remove muscle artifacts from a 

few channel methods with less computational time [25]. WT-ICA combined with SVM was proposed to remove OAs 

automatically. The recursive least square (RLS) notch filter method is proposed to remove ECG artifacts because regression 

and filtering methods cannot delete the ECG artifacts [63]. The MEMD-IVA method is proposed to remove the muscle 

artifacts from the acquisition channels, in which the inter-channel interference is also considered one of the noises [60]. Some 

recommendations are suggested to remove muscle artifacts from a few channel data [64]. All the above methods remove the 

artifacts effectively by hybrid application. Apart from these methods, researchers will propose one optimal method to remove 

all the artifacts in the future. 
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6. Conclusions 

EEG signals are generated from the brain and recorded from the scalp using electrodes. Different physiological and 

non-physiological artifacts contaminate these time-domain EEG signals. In this study, many methods are summarized from 

various author’s publications, but no specific method can eradicate the artifacts with high accuracy and efficiency. The 

advantages and disadvantages of each method are discussed in this study. Some methods are used primarily to remove artifacts 

such as EOG, EMG, and ECG, but no specific method can remove all the artifacts. Regression methods and filtering methods 

require artifactual reference signals for the removal of artifacts. BSS methods remove the artifacts effectively, but they require 

multi-channel extensive data and are computationally complex. DWT, EMD, and SSA methods are used for single-channel 

and multi-channel, but the efficiency of removing artifacts is not up to the level. By combining more than one method, i.e., the 

hybrid method, the efficiency is improved compared to individual methods. Still, cost and complexity is increased, and this 

may not be suitable for online applications. In this aspect, researchers are finding an optimal solution for minimizing the 

artifacts in the EEG signals. In the future, with the existing artifact removal techniques, one specific method will be 

implemented by combing present trends, e.g., machine learning, artificial intelligence (AI), and genetic algorithm (GA), with 

increased accuracy and efficiency for the removal of artifacts. 

Nomenclature 

EEG Electroencephalogram MAX Maximum absolute error 

BSS Blind source separation NRD Normalized root mean square difference 

OA Ocular artifacts PRD Percentage root mean square difference 

EMG Electromyography NMSE Normalized mean square error 

ECG Electrocardiography PSNR Peak signal to noise ratio 

mMSE modified multiscale sample entropy FAR False alarm rate 

IVA Independent vector analysis MEV Mean entropy value 

WT Wavelet transform DSNR Difference signal to noise ratio 

SWT Stationary wavelet transform AF Adaptive filtering 

DWT Discrete wavelet transform EOG Electrooculogram 

ST Statistical threshold EKF Extension Kalman filter 

UT Universal threshold UKF Unscented Kalman filter 

EM Eye movement PCA Principle component analysis 

ANN Artificial neural network PC Principle component 

DOA Depth of anaesthesia SVD Singular value decomposition 

BIS Bispectral index CCA Canonical correlation analysis 

ARTE Automated artifact handling in EEG ANC Adaptive noise canceler 

SVM Support vector machine CC Correlation coefficient 

ASR Artifact subspace reconstruction MI Mutual information 

EEMD Enhanced empirical mode decomposition SOS Second-order statistics 

SQI Signal quality index HOS Higher-order statistics 

IMF Intrinsic mode function AI Artificial intelligence 

MEMD Multivariate empirical mode decomposition GA Genetic algorithm 

FMEMD Fast multivariate empirical mode decomposition SNR Signal to noise ratio 

BLIMF Band limited intrinsic mode function MSE Mean square error 

SSA Singular spectrum analysis MAE Mean absolute error 

NNR Neural network regressor RE Relative error 

MRAF Multi-resolutional analysis and adaptive filtering RMSE Root mean square error 

WPD Wavelet packet decomposition RRMSE Relative root mean square error 

ICA Independent component analysis NRMSE Normalized root mean square error 

IC Independent component PSD Power spectral density 

TUH Temple university hospital SAR Signal to artifact ratio 
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