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Abstract 

The study aims to analyze the association between gestational diabetes mellitus (GDM) and other risk factors of 

cesarean delivery using machine learning (ML). The dataset used for the analysis is from the pregnancy risk 

assessment survey (PRAMS), considered in two scenarios, i.e., all the data is taken, and all the data of the women 

who developed GDM. Further, the data is developed in two groups Data-I and Data-II by considering multiparous 

and primiparous women details, respectively. The correlation analysis and major classification algorithms are 

applied to the data. It is founded that the top risk factors for the first time cesarean delivery are the age, height, weight, 

race of the women, presence of hypertension and gestational diabetes mellitus. The major risk factor for repeated 

cesarean delivery is the previous cesarean delivery. The presence of GDM is also one of the risk factors for cesarean 

delivery. 
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1. Introduction 

A cesarean (C-section) delivery is a surgical procedure in which a fetus delivered through an incision in the mother's 

abdomen and uterus. Over the past 30 years, there is an increase in C-section delivery. The CDC reported that the highest ever 

national cesarean birth rate was 29.1% in November, 2005 [1]. The factors associated with deciding the type of deliveries are 

social-demographic, medical, obstetric history, antenatal history, etc. It is very important to know the presence of any of the 

above-mentioned risk factors at earliest which will help the doctors and the patients to make the right decision at the right time. 

1.1.   Complications associated with C-section delivery 

The potential complications to mothers are infection and bleeding which can lead to anemia. Further complications are 

pregnancies, pain, medicine, anesthesia negative reactions, etc. The rate of maternal mortality is higher in C-section deliveries 

when compared to vaginal deliveries. Complications for the baby are low birth weight and respiratory problems. There is a 

possibility of injury for the baby during incision. 

1.2.   Machine learning in healthcare 

Machine learning (ML) is a technique of training a machine to recognize patterns using data and an algorithm. The 

prediction accuracy of the machine increases with the data and the complexity of the rules fed into the machine. Healthcare is 

one of the leading applications of ML which has massive and enormous data. ML assists healthcare professionals in analyzing 

the data and helps them in the right decision making [2]. 
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The purpose of this work is to apply ML and statistical techniques for the analysis of the association between cesarean 

delivery with GDM and other risk factors, as well as to apply the predictions model for the prediction of C-section delivery for 

the first time delivery and repeated deliveries. 

2. Literature Survey 

Sunantha Sodsee [3] proposed a cephalopelvic disproportion (CPD) based on the nearest neighbors (NN) algorithm for 

the prediction of cesarean delivery. In the proposed NN model, two determined threshold distances were used to identify the 

nearest and farthest neighbors. The highest performance was achieved by the proposed model [3]. Obstetric and pregnancy 

factors were used in predicting the type of delivery using data mining models by Sonia Pereira et al. [4], and applied different 

data mining algorithms in different scenarios; they have achieved the highest accuracy of 84%. Farhad Soleimanjan et al. [5] 

used decision tree C4.5 for the prediction of cesarean delivery, the attributes considered are age, blood pressure, and heart 

problems. The obtained accuracy by the classifier is 86%. 

Decision tree and artificial neural network were used to classify the births into normal and caesarian by Ayesha Sana et al. 

[6], the classification accuracy obtained was 80% and 82%, respectively. The authors also used association rules for the 

identification of caesarian birth patterns. In the study, the authors showed that high blood pressure, lack of education, and pulse 

rate are associated with caesarian birth. Alisha Kamat et al. [7] proposed a prediction model using Naive Bayes and ID3 

classifiers to determine the type of delivery based on ultrasonography, urine and blood reports of pregnant women. ML 

techniques like a decision tree and Naïve Bayes were applied for the prediction of pregnancy-related risk factors [8] and to 

predict normal or abnormal stages of pregnancy [9]. A classification model was proposed, and it allows an estimation of the 

interval for the value of the Apgar score depending on mother and newborn data [10]. 

Abbas et al. [11] proposed a decision support system using ML techniques to assist the physicians in adopting the correct 

decisions. They had used neural networks, kNN, Naïve Bayes, and SVM classifiers for the analysis of risk factors of C-section 

delivery. Md Rafiul Hassan et al. [12] proposed a feature selection algorithm coupled with automated classification using ML 

techniques to analyze and predict IVF pregnancy in greater accuracy. They had used five attributes to asses the prediction 

ability of IVF pregnancy and five different ML models, namely MLP, SVM, C4.5, CART, and random forest. Prema 

Pushpalatha [13] used SVM and logistic regression for the diagnosis of preterm birth in the pregnant woman having either 

diabetes mellitus or GDM; the highest accuracy obtained is 86%. Prema Pushpalatha [13] also conducted a review on 

applications of data mining techniques in preterm birth prediction. Furthermore, the most commonly used data mining 

technique which was founded is classification in that the usual techniques are support vector machine (SVM) and logistic 

regression. The most commonly considered risk factors are socio-demographic, behavioral (lifestyle), and pregnancy history. 

Further, the application of deep neural networks for the prediction of diabetes was proposed, for five-fold cross-validation, 

and achieved good results [15]. A prediction of the model using support vector machine and the nearest neighbor was proposed 

for the prediction of breast cancer, they have obtained the highest accuracy of 99.68% for support vector machine in the 

training phase [16]. 

3. Materials and Methods 

3.1.   Dataset 

The data used for this work is the pregnancy risk assessment survey (PRAMS) collected from the centers for control and 

prevention (CDC). The PRAMS data will be helpful to identify the group of women and infants with high-risk health issues. 

The data set contains about 41000 instances with more than 350 attributes related to maternal and child healthcare. The data set 

used for this work is reduced to 13550 instances after removing missing values instances and the outliers. Outliers are detected 
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using the interquartile range. The PRAMS dataset has about 350 attributes, in that few are redundant and many are irrelevant to 

the present study, hence only the required attributes are considered. About 20 attributes (as risk factors) are considered, which 

are related to the following factors: 

 Maternal Age 

 Height and weight of the mother 

 Obesity 

 Diabetes Mellitus(DM & GDM) 

 Hypertension 

 Lifestyle 

 Obstetric history 

 Educational level 

 Maternal race 

 Urban or rural 

Most of the values are all categorical, few attributes are of type ordinal. The analysis of the data is done by considering 

complete data and the details of the women who developed GDM, respectively. Further, the data is developed in Data-I and 

Data-II groups by considering multiparous and primiparous women details, respectively. In the data set containing the details 

of women having GDM about 9% and 6% cases are C-section deliveries in Data-I and Data-II respectively as shown in Fig. 1. 

 

Fig. 1 C-section Delivery distribution in GDM and NON-GDM data 

3.2.   Association between the features 

Feature association refers to the statistical relationship(s) between the feature variables. Nominal variables are measured 

at the nominal level and have no inherent ranking. There are many statistical measures available to measure the dependency 

between the variables, for our data the following measures are used: 

(1) The correlation coefficient: The strength of the relationship between two variables is measured using the correlation 

coefficient. The correlation may be negative or positive is decided by the correlation coefficient values, -1 and 1, 

respectively; the value 0 indicates there is no relationship. 

(2) Cramer's V: By using Cramer’s V to calculate the strength of association, if the chi-square test is significant, the V value 

is between 1 and 0 which tells strong and little association between the variables respectively. 

(3) Feature selection: The following features selection techniques are applied to the data to figure out the most important 

features. 
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 Correlation-based feature-subset selection: This technique is applied for the selection of the best subset of features. In 

this method subset of attributes is evaluated by considering the individual predictive ability of each feature along with 

the degree of redundancy between them. Subsets of features that are highly correlated with the class while having low 

inter-correlation are preferred. 

 CfsSubsetEval: Evaluates the worth of a subset of attributes by considering the individual predictive ability of each 

feature along with the degree of redundancy between them. Subsets of features that are highly correlated with the class 

while having low intercorrelation are preferred. 

 GainRatioAttributeEval: Evaluates the worth of an attribute by measuring the gain ratio concerning the class. 

Gaines(Class, Attribute)=(H(Class)-H(Class|Attribute))/H(Attribute). 

 InfoGainAttributeEval: Evaluates the worth of an attribute by measuring the information gain concerning the class. 

InfoGain(Class,Attribute)=H(Class)-H(Class|Attribute). 

 OneRAttributeEval: Evaluates the worth of an attribute by using the OneR classifier. 

 SymmetricalUncertAttributeEval: Evaluates the worth of an attribute by measuring the symmetrical uncertainty 

concerning the class. 

 SymmU(Class, Attribute)=2*(H(Class)-H(Class|Attribute))/H(Class)+H(Attribute) 

3.3.   Classification 

It is a supervised technique of grouping objects into different labeled classes. The classifiers used for this work are 

random forest, Naive Bayes, logistic regression and the nearest neighbor classifier(kNN). 

(1) NaiveBayes: This is a classifier based on Bayes theorem with independence assumptions between the features, which uses 

the maximum likelihood method. 

(2) Random forest: A random forest is an ensemble approach that can also be thought of as a form of the nearest neighbor 

predictor. Each decision tree is constructed by using a random subset of the training data. Ensembles are a 

divide-and-conquer approach used to improve performance. 

(3) Logistic regression: Logistics is the regression analysis when the dependent variable is binary. It is used to describe data 

and to explain the relationship between one dependent binary variable and one or more nominal, ordinal, interval or 

ratio-level independent variables. 

(4) kNN: It is a non-parametric, lazy learning algorithm, which can be used for both classification and regression. An object is 

classified by a majority vote of its neighbors, with the object being assigned to the class most common among its k nearest 

neighbors. If k = 1, then the object is simply assigned to the class of that single nearest neighbor. 

4. Result and Discussion 

4.1.   The correlation coefficient 

The correlations between all the individual features are calculated for Data-I and Data II as shown in Fig. 2 and Fig. 3, 

respectively. It can be observed from the matrix that if a mother is diabetic then there is a strong chance of getting, GDM in the 

current pregnancy. Features like hypertension, age, weight, and GDM are associated with C-section delivery. For repeated 

C-section, a previous C-section feature has a strong correlation. 
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Fig. 2 Correlation matrix of Data-I 

 

Fig. 3 Correlation matrix of Data-II 

Cramer’s V test is done on the Data-I and Data-II separately, and the values are tabulated in Table 1. From the V values, 

it can be observed that there is a strong association between previous C-section delivery and repeated C-section delivery in 

Data-I. There is a moderate association between C-section delivery and the age, weight, height of the women in both the data 

sets. The maternal chronic condition like diabetes and hypertension are also associated with C-section delivery. 

Table 1 Top features after Cramer’s V test 

Data set used Feature Cramer’ V 

Data-I 

(Repeated C-section ) 

 Previous C-section 

 GDM 

 Hypertension 

 Mothers Weight 

 Mothers Height 

0.9038 

0.0469 

0.0602 

0.1695 

0.0900 

Data-II 

(First C-section) 

 Mothers Age 

 GDM 

 Mothers Weight 

 Mothers Height 

 Hypertension 

0.0581 

0.0449 

0.1454 

0.0720 

0.0799 
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4.2.   Feature selection 

The top-ranked attributes by the above-mentioned features selection techniques are shown in Table. 2, It can be observed 

in Data-II that, the most ranked feature is hypertension, body mass index (BMI), the height of the women, age as well as weight. 

And, in Data-I, the attributes previous C-section is the top-ranked attribute by all the techniques. Along with previous 

C-section, the other top-ranked attributes for Data-I is height, weight, BMI, and age of the women. 

Table 2 The Ranked features using various features selection techniques 

Sl..no Method 
Selected features: 

For Data-II 

Selected features: 

For Data-I 

1 CfsSubsetEval: Bestfit 

 Hypertension 

 Mothers height 

 Previous live birth 

 Previous C-section 

 Mothers BMI 

2 CorrelationAttributeEval 

 Hypertension 

 Mother weight 

 GDM 

 Previous C-section 

 Mothers weight 

 Mothers Age 

3 GainRatioAttributeEval 

 Hypertension 

 GDM 

 Diabetes 

 Previous C-section 

 Mothers weight 

 Hypertension 

4 InfoGainAttributeEval 

 Hypertension 

 Mothers BMI 

 Mothers Age 

 Previous C-section 

 Mothers BMI 

 Mothers Age 

5 OneRAttributeEval 

 Mothers Race 

 Maternal Education 

 Mothers height 

 Previous C-section 

 Mothers Race 

 Smoking 

6 SymmetricalUncertAttributeEval 

 Hypertension 

 Mothers BMI 

 Mothers Age 

 Previous C-section 

 Mothers BMI 

 Mothers weight 

7 ReliefFAttributeEval 

 Mothers Race 

 Mothers BMI 

 Maternal Education 

 Previous C-section 

 Mothers BMI 

 Maternal Education 

4.3.   Classification 

Table 3 Accuracy obtained for the classifiers 

Data set used Classifier 
Accuracy in % 

For All features For Top -7  features For GDM data 

Data-I 

(Repeated C-section) 

KNN(k=15) 96 96 95 

Naive Bayes 96.5 96.5 96.9 

Logistic Regression 96.5 96.5 96.8 

Random-Forest 95 96.5 95 

Data-II 

(First C-Section) 

KNN(k=15) 88.9 88.8 84.8 

Naive Bayes 88.6 88.9 84.6 

Logistic Regression 88.9 88.9 84.8 

Random-Forest 88.9 88.9 84.9 

The above-mentioned classifiers were applied for Data-I and Data-II in both the scenarios by considering all the attributes, 

and the accuracy obtained by the algorithms are shown in Table 3. For the prediction, different classifier are used firstly; 

random-forest adopted about ten trees and maximum instances for splitting is taken as five. For the k-nearest neighbor classifier, 

the value of k chosen is 15, and the measure of the distance used is Euclidean. The different k values have experimented with 

KNN. If the value k is 15, the highest accuracy is achieved. The classifiers were evaluated using 10 fold cross-validation which 

the original sample is randomly partitioned into 10 equal-sized subsamples. Of the 10 subsamples, a single subsample is retained 
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as the validation data for testing the model, and the remaining subsamples were used as training data. The cross-validation 

process is then repeated 10 times, with each of the 10 subsamples used exactly once as the validation data. The accuracy of the 

classifiers is more for the Data-II compared to Data-I in both the scenarios. Logistic regression and Naïve Bayes classifiers are 

giving the highest accuracy for both the data sets. There is a decrease in the accuracy of the classifiers in the first C-section in the 

dataset containing GDM women’s details when compared with the accuracy of the data. The same classifiers are applied for the 

top-selected features by using the above-mentioned feature selection methods but there is not much improvement in the 

accuracy of the classifiers. The ROC analysis curves of both data are shown in Fig. 4 and Fig. 5. 

  

Fig. 4 ROC for Data-I Fig. 5 ROC for Data-II 

5. Conclusions 

A machine learning-based decision support system has been presented, and the top risk factors for Cesarean delivery have 

been analyzed in both the first times and repeated pregnancy cases. The major risk factors for the first time Cesarean delivery 

are the age, height, weight, race of the mother, and the presence of hypertension. For repeated Cesarean, the delivery of 

previous Cesarean delivery is the major risk factor. There is an association between GDM and Cesarean delivery in the data set 

considered for the study. The classification model has achieved the highest accuracy of 96% for multiparous and 89% for 

primiparous mothers in predicting C-section delivery. 

In the future, the analysis will be done with paternal risk factors, including ethnicity, financial status, and stress-related 

factors. The data set is imbalanced, and the ratio of negative classes is more compared to the positive instances. Therefore, 

there is a lot of scopes to improve the classification accuracy handling imbalanced dataset problems. 
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