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Abstract 

Credit evaluation of customers is a critical issue in financial organizations. Classification algorithms have been 

proposed for credit evaluation in recent years, and the class distribution in the financial data for those studies are not 

skewed. However, only a small proportion of customers will be the cases for bad credit. Financial records should be 

considered as an imbalanced data set for analyzing credit risk. Ensemble algorithms that make predictions by group 

decisions generally have relatively high accuracy than the ones inducing only one model from data. This study 

introduces a mechanism based on the weighted random forest to improve the prediction accuracy on the records with 

bad credit. This mechanism is tested on two financial data sets to demonstrate that it can achieve relatively high 

performance in evaluating credit risk and that the number of decision trees in a forest is not helpful. Critical attributes 

are also identified to provide practical meanings for credit risk analysis. 
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1. Introduction 

Credit risk evaluation is getting important since the global financial crisis. The credit evaluation of customers is critical to 

financial organizations. It will be extremely helpful if the data of customers can be used to build models for supporting 

decisions. Support vector machine and neural network are two popular classification algorithms for credit evaluation [1-11].  

Feature selection is a possible way to improve the performance of financial risk analysis [12-14]. Ensemble algorithms induce 

several prediction models to make group decisions, and hence they generally have a better performance than the ones that learn 

only one model from data. For example, the random forest is an ensemble algorithm proposed by Breiman [15], that grows 

multiple decision trees to take a majority vote for class prediction. Studies have demonstrated that a random forest is a proper 

tool for credit risk analysis [16-20].  

Only a small proportion of the customers in a financial organization will have troubles in paying their loans. This implies 

that the data for credit risk analysis will be imbalanced, while none of the previous studies considered this to process data and 

to interpret the learning results. There are generally two class values in an imbalanced data set, and the one with fewer 

instances is called positive, and another is called negative. When over 90% of the instances in a data set are negative, the 

prediction accuracy of a classification model will be larger than 0.90 if it predicts a negative class value for all instances. This 

indicates that pursuing higher prediction accuracy is not appropriate for processing imbalanced data sets, while most 

classification algorithms are designed to have high accuracy. 

The learning procedure of traditional classification algorithms is generally designed to achieve a high probability of 

correct prediction.  There are two popular ways in processing imbalanced data sets: change the class distribution in data sets, or 

modify the learning procedure of a classification algorithm [21]. Resampling is a popular approach to adjust the class 
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distribution in a data set [22-23]. For example, SMOTE is an over-sampling method for generating synthetic instances to 

balance positive and negative ones in a data set [24]. It is also possible to apply under-sampling methods for removing negative 

instances [25]. However, the model induced from the revised data set can be overfitting and difficult to interpret [26-27].  

Barandela et al. [28] consider weights to calculate distances for k-nearest neighbors in processing imbalanced data.   

An ensemble-based classifier that collects the predictions from multiple classification models to make group decisions is also 

an effective way for improving the performance on imbalanced data sets [29-30]. This study will employ the weighted random 

forest proposed by Chen et al. [31] to analyze customer credit and propose a way to rank attribute for credit evaluation. The 

experimental results will demonstrate that the weighted random forest is more effective and suitable for discovering important 

attributes in credit risk analysis. 

The purpose of this paper is to consider the data for credit evaluation as an imbalanced set. Ensemble method weighted 

random forest will be employed to analyze this kind of data sets not only for improving the prediction accuracy on positive 

instances but also for discovering critical attributes in evaluating the credit of customers. The data set after discretization will 

also be used to test ordinary random forest for demonstrating that the weighted random forest is a better tool for imbalanced 

data analysis. The implications of the critical attributes will be discussed. The whole research procedure is shown in Fig. 1. 

 
Fig. 1 The research procedure 

2. Weighted Random Forest 

A forest is composed of a set of decision trees, and every decision tree has two kinds of nodes: internal nodes and leaf 

nodes. Every internal node is marked by an attribute to indicate the paths for branching, and there is a class value inside every 

leaf node for prediction. Training data will be used to calculate impurity measure, such as information value and Gini index, to 

determine the branching attributes in internal nodes. 

The random forest proposed by Breiman [15] iteratively performs two steps to find a decision tree until the number of 

decision trees reaches a pre-specified threshold. Let a data set have n instances composed of m attributes. The first step is to 

randomly select n instances with replacement from the data set. The instances that are not chosen for training are called  

out-of-bag data. They will be used to validate the decision tree built from the training data. When n is large, about 36.8% of the 

instances in the data set will play the role of validation. After the training set is determined, the second step is to randomly 

select m  attributes for growing a decision tree; i.e. only the chosen attributes can be considered in growing a decision tree.  

Since the instances and the attributes for growing a decision tree are both random, the decision trees built in this way will be 

diverse for making group decisions in classifying new instances. Ordinary decision tree learning has a pruning step to avoid the 

occurrence of overfitting. Group decisions are not sensitive to noise, and hence every decision tree in a forest need not be 

pruned. 

The Gini index of a candidate attributes A is calculated as 
21)(
ii

pAGini  , where pi is the proportion of the instances 

with a class value i. The one with the largest Gini index will be the branching attribute. This implies that the misclassification 

cost of all instances are the same regardless of their class values.  A decision tree grown by this way is unlikely to have a high 

prediction accuracy on the positive instances in an imbalanced data set.  This is the main reason why the random forest is not a 

proper tool for classifying imbalanced data sets. The weighted random forest proposed by Chen et al. [31] considers the 
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misclassification costs of various class values to determine branching attributes. Let c+ and c- be the misclassification cost of 

positive and negative instances, respectively. Then the weight of positive class value is w = c+/(c++c-), and the weighted Gini 

index of attribute A is calculated as 22 )1(1)(


 pwwpAGini . 

Weight w is also considered in classifying new instances. Let y+ and y- be the respective numbers of positive and negative 

training instances reaching the leaf node for classing a new instance. Then the weighted votes for positive and negative class 

values from this decision tree are wy+ and (1-w)y-, respectively. These weighted votes are aggregated over decision trees to 

determine the predicted class value of the new instance. Weighted random forest is, therefore, more suitable for processing 

imbalanced data sets. 

3. Performance Evaluation 

True positives and false negatives represent the numbers of correct and wrong predictions on positive instances, 

respectively, and similarly for true negatives and false positives on negative instances. Let TP, FP, TN, and FP be true 

positives, false positives, true negatives, and false negatives, respectively in a confusion matrix as shown in Table 1. Then 

accuracy is calculated as (TP+TN)/N, where N = TP+FP+TN+FP is the number of testing instances. Since most of the instances 

are negative, FP+TN is far larger than TP+FN. Accuracy will be large when a negative value is assigned to all instances. That 

is the reason why accuracy is an improper measure for performance evaluation when data sets are imbalanced. F-measure is a 

harmonic mean of recall = TP/(TP+FN) and precision = TP/(TP+FP), and it can be expressed as Eq. (1): 

)/(2 precisionrecallprecisionrecallmeasureF   (1) 

Recall shows the percentage of the positive instances that are correctly predicted, and precision indicates the accuracy of 

positive predictions.  When the values of recall and precision are largely different, F-measure will be close to the smaller one.  

An algorithm that has a high value on only one of recall and precision cannot achieve a large F-measure. 

Table 1 The confusion matrix for an imbalanced data set 

 
Predicted class value 

Yes No 

Actual class value 
Yes True Positive (TP) False Negative (FN) 

No False Positive (FP) True Negative (TN) 

AUC represents the area under the ROC curve determined by the value of recall and FP-rate = FP/(FP+TN). The ROC 

curve represents the achievement of positive instances with respect to the number of misclassifications on negative instances.  

The maximal possible value of AUC is one when an algorithm makes correct predictions on all positive and negative instances.  

Both F-measure and AUC can provide information about the prediction accuracy on positive instances, and hence they are 

popular measures in analyzing imbalanced data sets. 

Knowing the importance of attributes in credit evaluation is extremely helpful for decision makers. It is easy to interpret 

the result implied by a single decision tree. However, every prediction of weighted random forest is made by the weighted 

majority vote of its induced decision trees.  To rank attributes about their importance becomes relatively complex. This study 

proposes the following method composed of three steps to evaluate the critical level of each attribute.  

Step 1. Calculate the precision of each decision tree from its out-of-bag data, denoted as q1. 

Step 2. Consider attributing A as noise to recalculate the precision of each decision tree from its out-of-bag data, denoted as q2. 

the way of changing attribute A into a noisy one is to randomly permute the values of this attribute. 

Step 3. Calculate difference q1-q2 that represents the benefits of introducing attribute A for this decision tree, and average the 

differences of all decision trees to be the critical level of this attribute. 
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A larger critical level for an attribute means that this attribute is more useful in identifying positive instances. Attributes 

are thus sorted in a descending order based on their critical levels to filter important ones for credit evaluation.  

4. Experimental Study 

Two data sets for credit risk evaluation are download from the internet to test whether weighted random forest can have a 

better performance on imbalanced data sets than random forest. The basic characteristics of the two data sets are given in Table 

2. Note that the instances with missing values have been removed from the data sets. Calculating the Gini index is relatively 

straightforward for discrete attributes. The entropy-based discretization proposed by Fayyad and Irani [32] is employed to 

transform continuous attributes into discrete ones. This discretization method recursively bipartitions an interval into two 

subintervals based on information gain. The maximal description length principle is employed to derive a threshold for 

stopping the bipartition. The evaluation method is k-fold cross-validation with k = 5. This kind of cross-validation method first 

divides a data set into k folds. Every fold will be in turn used to test the learning results induced from the other k-1 folds. The 

values of TP, FN, FP, and TN are aggregated over the testing instances for computing F-measure and AUC in each iteration of 

k-fold cross-validation. The mean values of the metrics over the k folds will be compared to investigate the effectiveness of 

weighted random forest. The number of trees in both classification algorithms will be ranged from 100 to 500 with step size 

100 to investigate the impact of forest size. 

Table 2 Basic characteristics of the two data sets for credit evaluation 

Data set Credit card scoring Give me some credit 

Source https://github.com/gastonstat/CreditScoring https://www.kaggle.com/c/GiveMeSomeCredit 

Number of positives 1,217 8,357 

Number of negative 3,160 111,912 

Class Credit status Serious past-due delinquency 

Attributes 

Job seniority Revolving utilization of unsecured lines 

Type of home ownership Age 

Time of requested loan Number of times 30-59 days past due 

Client’s age Debt ratio 

Marital status Monthly income 

Existence of records Number of open credit lines and loans 

Type of job Number of times 90 days late 

Amount of expenses Number real estate loans or lines 

Amount of income Number of times 60-89 days past due 

Amount of assets Number of dependents 

Amount of debt - 

Amount requested of loan - 

Price of good - 

4.1.   Data set “credit card scoring” 

This data set has 4,454 instances, and every instance has 13 attributes. The proportion of the instances with bad credit is 

less than 30%. The prediction accuracy is higher than 0.7 when all instances are classified as negatives. It is not a typical 

imbalanced data set, while can still be used to test the applicability of weighted random forest. The respective misclassification 

costs for positive and negative class values are 3160/1217 and 1 based on their proportions in the data set. The testing results of 

random forest and weighted random forest are summarized in Table 3. Note that all values in Table 3 are the averages over five 

folds. Consider the case for the random forest with 100 decision trees. The five pairs of recall and precision for folds 1 through 

5 are (0.3770, 0.6835), (0.4052, 0.6225), (0.4783, 0.6395), (0.4570, 0.7222), and (0.4575, 0.6848). The F-measures calculated 

from the five pairs are 0.4859, 0.4909, 0.5473, 0.5598, and 0.5485, and their average is 0.5265 as shown in the second row of 

Table 3(a). In this case, the mean recall and mean precision are 0.4350 and 0.6705, respectively, and the harmonic mean of 

these two values is 0.5277 that is not equal to 0.5265. 
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For the sake of clarity, the values of recall, precision, and F-measure for algorithms Random Forest (RF) and Weighted 

Random Forest (WRF) are depicted in Fig. 2. Regardless of the number of trees, precision is larger than recall. This suggests 

that increasing the value of recall will have a larger chance to improve F-measure. The precisions for random forest and 

weighted random forest are close for any given forest size. Since weighted random forest has a larger recall, it also has a larger 

F-measure. This data set is not highly skew, and hence the improvement on F-measure is not large. Though every AUC in 

Table 3(b) is larger than its corresponding value in Table 3(a), their difference is less than 0.01 in all cases. Weighted random 

forest almost has no improvement on AUC for this data set. Table 3 and Fig. 2 also show that increasing the number of trees is 

not an effective way to improve the performance of both classification algorithms. 

Table 3 The experimental results of (a) random forest and (b) weighted random  

forest for data set Credit card scoring 

(a) No. of trees Recall Precision F-measure AUC 

100 0.4350 0.6705 0.5265 0.8291 

200 0.4412 0.6772 0.5335 0.8316 

300 0.4415 0.6810 0.5344 0.8331 

400 0.4443 0.6819 0.5370 0.8336 

500 0.4514 0.6814 0.5416 0.8336 

(b) No. of trees Recall Precision F-measure AUC 

100 0.4634 0.6594 0.5430 0.8322 

200 0.4753 0.6677 0.5534 0.8338 

300 0.4711 0.6642 0.5499 0.8337 

400 0.4852 0.6749 0.5630 0.8339 

500 0.4812 0.6661 0.5572 0.8343 

 

 
Fig. 2 The line charts of recall, precision, and F-measure for data set credit card scoring 

4.2.   Data set “give me some credit” 

There are 120269 instances in this data set, and every instance has 8 attributes. The proportion of the instances with bad 

credit is approximately 7%. The prediction accuracy is higher than 0.9 when all instances are classified as negatives, and hence 

it is an imbalanced data set. The respective misclassification costs for positive and negative class values are 111912/8357 and 

1 based on their proportions in the data set. The testing results of random forest and weighted random forest are summarized in 

Table 4 and depicted in Fig. 3. Similar to the previous data set, every precision is larger than its corresponding recall. Every 

recall is less than 0.2, which implies less than 20% of positive instances can be predicted correctly. This suggests that  

F-measure can be greatly improved by increasing recall. This is the reason why weighted random forest that has a slightly 

smaller precision can still achieve a higher F-measure than random forest. 

Similar to the previous data set, weighted random forest achieves a slightly larger AUC than a random forest, while their 

difference is even smaller. This suggests that AUC may not be a proper measure for evaluating the performance of 

classification algorithms on financial credit data. Again, the performance of both algorithms is not sensitive to the increasing 

forest size.  Since computational cost is higher for larger forest size, increasing the number of decision trees should not be 

necessary. The experimental results of these two data sets suggest that increasing the number of decision trees is not beneficial 

for improving the performance of the two classification algorithms. 
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Table 4 The experimental results of (a) random forest and (b) weighted random  

forest for data set “give me some credit” 

(a) No. of trees Recall Precision F-measure AUC 

100 0.1407 0.5604 0.2247 0.8250 

200 0.1422 0.5649 0.2269 0.8307 

300 0.1405 0.5616 0.2245 0.8324 

400 0.1407 0.5605 0.2247 0.8335 

500 0.1408 0.5670 0.2252 0.8327 

(b) No. of trees Recall Precision F-measure AUC 

100 0.1796 0.5507 0.2705 0.8289 

200 0.1769 0.5464 0.2670 0.8335 

300 0.1828 0.5606 0.2753 0.8353 

400 0.1819 0.5536 0.2736 0.8377 

500 0.1800 0.5544 0.2715 0.8373 

 

 
Fig.3 The line charts of recall, precision, and F-measure for data set “give me some credit” 

4.3.  Attribute ranks 

By using the critical level introduced in Section 3 to rank attributes, the results are summarized in Table 5. In data set 

“credit card scoring,” the top three important attributes filtered by weighted random forest are “amount of income,” “job 

seniority,” and “price of good.” All of these three attributes can imply whether customers can consistently pay their bills.  

Marital status is the most useless attribute in this case. It is surprising that the rank of attribute “amount of debt” is 12. This 

implies that the amount of debts is not very helpful in evaluating the financial status of a customer. 

Table 5 Attribute ranks for both data sets 

Rank Credit card scoring Give me some credit 

1 Amount of income Revolving utilization of unsecured lines 

2 Job seniority Debt ratio 

3 Price of good Monthly income 

4 Amount requested of loan Age 

5 Client’s age Number of times 90 days late 

6 Amount of assets Number of open credit lines and loans 

7 Amount of expenses Number of times 30-59 days past due 

8 Existence of records Number of time 60-89 days past due 

9 Type of job Number of dependents 

10 Time of requested loan Number real estate loans or lines 

11 Type of home ownership - 

12 Amount of debt - 

13 Marital status - 

The top three important attributes filtered by weighted random forest for data set “Given me some credit” is “revolving 

utilization of unsecured lines,” “debt ratio,” and “monthly income.” It is surprising that the three attributes (number of times 

30-59, 60-89, and 90 days past due) relevant to whether a customer has a late payment are not critical to the evaluation of bad 

credit. This is not reasonable and could be the major reason why most positive instances cannot be corrected classified, as 

indicated by the small recalls given in Table 4. 
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Attribute “amount of income” has a high rank in both data sets, and hence it is absolutely a necessary attribute in 

evaluating customer credit. The age of a customer should also be considered in approving a loan. The job of a customer is 

relatively important to the information about his/her family. The results of these two data sets are not consistent with the 

attributes relevant to debt. This can be an interesting question to explore further. Since data sets for credit risk analysis may be 

collected from various resources, feature selection should be helpful for improving the performance of weighted random 

forest. 

5. Conclusions 

Most data sets for credit evaluation are imbalanced, and hence random forest may not be a proper tool for this purpose.  In 

this paper, the weighted random forest is introduced to analyze this kind of imbalanced data sets, and a way for filtering critical 

attributes from the learning results of weighted random forest is proposed. The testing results of two credit data sets show that 

weighted random forest outperforms random forest in terms of F-measure because the misclassification costs considered in the 

weighted random forest can increase the probability of correctly identifying positive instances. Area under the ROC curve may 

not be proper measure in determining superior classification algorithms for processing imbalanced data sets. More decision 

trees are generally not helpful for performance improvement, while more computational effort is needed. The critical attributes 

filtered from the two data sets also provide useful implications for understanding the credit of customers. Those implications 

can provide practical suggestions in reviewing the applications of loans. 

The experimental results on two data sets for credit evaluation indicate that identifying positive instances is generally 

more difficult than having a high prediction precision on positive instances. This suggests that a classification algorithm will be 

a better tool for credit risk analysis if its learning procedure can be adjusted to improve the capability in identifying positive 

instances. This can shed some lights on designing the learning mechanism of classification algorithms for processing 

imbalanced data sets. 
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