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Abstract: In this paper, a new multi-criteria model which enables the processing of 
uncertainty and inaccuracy data through the application of interval rough numbers 
(IRN) is presented. The multi-criteria model represents the integration of the Power 
Aggregator (PA) and the Weighted Heronian Mean (WHM) operators. The goal of the 
forming of a hybrid Weighted Power Heronian Mean (WPHM) is to integrate the 
advantages of both operators into a single multi-criteria model, which has the following 
advantages: 1) it eliminates the influence of unreasonable arguments; 2) it takes into 
account the degree of support between input arguments and 3) it takes into account the 
interconnectedness of input arguments. Based on the mathematical concept of the IRN, 
the hybrid WPHM operator was extended and the IRNWPHM multi-criteria model was 
created. The IRNWPHA multi-criteria model enables objective decision-making in the 
case of imprecise input parameters in the initial decision matrix. Also, the IRNWPHA 
model allows flexible decision-making and the verification of the robustness of results 
through a variation of the p and q parameters. The IRNWPHM model was tested on a 
real-world multi-criteria example. The results showed that the IRNWPHM operator 
enabled a successful transformation of the uncertainties and inaccuracies that exist in 
group decision-making. 

Key words: interval rough numbers; Heronian mean; multi-criteria decision-
making; power operator. 

1. Introduction 

The information that appears in real-world problems is often very difficult to 
quantify, since many facts, such as the complexity of phenomena and the ambiguity of 
human reasoning, represent significant limitations. In the multi-criteria modeling of 
decisions, different decision-makers are likely to use the linguistic expressions of a 



The application of the hybrid interval rough weighted Power Heronian operator in multi-
criteria decision-making 

 

55 
 

 

different precision to express their preferences (Herrera and Martínez, 2000). In such 
situations, uncertainty theories, such as fuzzy sets (Zadeh, 1965), rough sets (Pawlak, 
1982) and the other generalizations of the mentioned theories, are a good tool for 
presenting uncertainty. 

In order to reach the best solution in group multi-criteria models, operators for the 
aggregation of group preferences and the calculation of the criterion functions of 
alternatives have been developed. In general, aggregation operators are important 
tools for the fusion of information into multi-criteria problems, which can also be used 
to evaluate alternatives. To date, many information fusion operators that can be used 
in decision-making models have been developed (Beliakov et al., 2007; Xu et al., 2012; 
Liu et al., 2015), including: the Bonferroni mean (Bonferroni, 1950), the Hamy mean 
(Hara et al., 1998), the Dombi operators (Dombi, 1982), the Maclaurin mean 
(Maclaurin, 1729), the Heronian mean (Beliakov, 2007), the Muirhead mean 
(Muirhead, 1902), Power aggregation (Yager , 2001) and numerous hybrid forms of 
aggregation operators (Pamučar et al., 2020; Sinani et al., 2020). 

A better understanding of correlations between attributes can be very important 
for making objective decisions, so it is necessary to take into account the fact that 
relationships between attributes can be a significant determinant of an aggregated 
outcome. Therefore, the operators that have this feature have attracted significant 
attention in multi-criteria decision-making. Based on the analysis presented by Liu et 
al. (2016), it can be concluded that some aggregation operators only take into account 
the significance of the information presented in a decision matrix, while the 
interrelationships between data are neglected. Although there are aggregation 
operators which respect interrelationships between data, there are still significant 
shortcomings of some aggregation operators that need to be highlighted. For example, 
when aggregating data, power aggregation (Yager, 2001) only takes into account the 
influence of a change in the vector of the weight coefficients of criteria on aggregated 
values. At the same time, Power Aggregation (PA) does not take into account the 
relationships between aggregated arguments. On the other hand, Bonferroni mean 
(BM) operators respect the correlation between the attributes iC  and jC  ( i j ,

 1 2, ,..., nC C C C= ), but ignore the relationship between the attributes iC  and itself. 

Considering the correlations between the attributes using the BM may also lead to 
redundancy (Liu et al., 2016). BM operators consider the correlation between iC  and 

jC  ( i j ) and the simultaneous correlation between jC  and iC  ( i j ), which may 

result in potential redundancy (Dutta et al., 2015). 
Some of the requirements for decision-making in real-world systems include 

flexible decision-making, respect for the mutual influence between decision attributes 
and the elimination of the influence of awkward data. To achieve this goal, the 
integration of the PA and the weighted Heronian mean (WHM) operators into a hybrid 
WPHA operator is presented in this paper. The HM operator is a very useful tool, which 
takes into consideration the relationships between the attributes being aggregated. 
The WPHA operator combines the advantages of the PA and HM operators, and is a 
powerful tool with the following features: 1) it eliminates the influence of 
unreasonable arguments; 2) it takes into account the degree of support between input 
arguments, and 3) it takes into account the interconnectedness of input arguments. In 
recent years, the advantages of aggregation operators have been implemented 
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through multi-criteria models in a number of uncertainty theories: fuzzy sets 
(Pamucar et al., 2020; Ecer and Pamucar, 2020), intuitionistic fuzzy sets (Xu and Yager, 
2011; He and He, 2016), interval- valued intuitionistic fuzzy sets (Liu and Li, 2017), 
hesitant fuzzy sets (He et al., 2015), rough sets (Sremac et al., 2018; Pamucar et al., 
2018; Yazdani et al., 2020) and so on. To the authors’ knowledge, no study considering 
the fusion of the PA and WHM aggregators in an interval rough environment has been 
carried out to date. Therefore, the logical goal and motivation for this study imply the 
presentation of a hybrid IRNWPHM operator. In this paper, Interval rough numbers 
were used to exploit uncertainties and inaccuracies, as they have certain advantages 
over traditional fuzzy sets (Yazdani et al., 2020). These advantages are especially 
evident when IRNs are applied in group decision-making. 

The rest of the paper is organized into the next six sections. After the Introduction, 
the preliminaries of IRNs are presented in the second section of the paper. In the third 
section, the mathematical integration of the WHM and PA operators in an IRN 
environment is presented. In the fourth section of the paper, the structure of the multi-
criteria IRN WPHM model is presented. In the fifth section, the model was tested on a 
real-world example, and the results were validated through the variation of the p and 
q parameters. Finally, the concluding remarks are given in the sixth section of the 
paper. 

2. Interval Rough Numbers 

Assume that U is the universe containing all the objects registered in an 
information table. Assume that there is a set of the k classes representing the DM’s 

preferences 1 2( , ,..., )kR J J J=  provided that they belong to the row that satisfies the 

condition 1 2 ... kJ J J  
 
and another set of the k classes that also represent the DM’s 

preferences *

1 2( , ,..., )kR I I I= . Assuming that all the objects are defined in the 

universe and related to the DM’s preferences. In *R , every class of objects is 

represented by the interval  ,i li uiI I I= , provided that li uiI I  (1 i m  ), and 

,li uiI I R  are satisfied. Then, liI
 
denotes the lower interval limit, while uiI

 
denotes 

the upper interval limit of the i class. If both class limits (the lower and the upper 

limits) presented so as * * * * * *

1 2 1 2,..., , ,...,l l lj u u ukI I I I I I       (1 ,j k m  ) are satisfied, 

respectively, then the two new sets containing the lower class * * * *

1 2( , ,..., )l l l ljR I I I=
 
and 

the upper class * * * *

1 2( , ,..., )u u u ukR I I I=
 
can be defined, respectively. If that is the case, then 

for any class *

liI R  (1 i j  ) and *

uiI R  (1 i k  ), the lower approximation of *

liI  

and *

uiI  can be defined as follows (Pamucar et al., 2018): 

 * * *( ) / ( )li l liApr I Y U R Y I=     (1) 

 * * *( ) / ( )ui u uiApr I Y U R Y I=     (2) 

The above-mentioned approximations of *

liI  and *

uiI
 
are defined by applying the 

following equation: 

 * * *( ) / ( )li l liApr I Y U R Y I=     (3) 
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 * * *( ) / ( )ui u uiApr I Y U R Y I=     (4) 

Both object classes (the upper and the lower classes ( *

liI
 
and *

uiI , respectively)) are 

defined by their lower limits *( )liLim I
 
and *( )uiLim I , and by their upper limits *( )liLim I

 
and *( )uiLim I , respectively: 

* * *1
( ) ( ) ( )li l li

L

Lim I R Y Y Apr I
M

=    (5) 

* * *

*

1
( ) ( ) ( )ui u ui

L

Lim I R Y Y Apr I
M

=    (6) 

where LM
 
and *

LM
 
denote the number of the objects contained in the lower 

approximations *

liI
 
and *

uiI , respectively. The upper limits *( )liLim I
 
and *( )uiLim I

 
are 

defined by the equations (7) and (8), as follows: 

* * *1
( ) ( ) ( )li l li

U

Lim I R Y Y Apr I
M

=    (7) 

* * *

*

1
( ) ( ) ( )ui u ui

U

Lim I R Y Y Apr I
M

=    (8) 

where UM
 
and *

UM
 
denote the number of the objects contained in the upper 

approximations *

liI
 
and *

uiI , respectively. 

For the lower class of objects, the rough boundary interval from *

liI
 
is represented 

as *( )liRB I
 
and denotes the interval between the lower and the upper limits: 

* * *( ) ( ) ( )li li liRB I Lim I Lim I= − ,  (9) 

while for the upper object class, the rough boundary interval *

uiI  is obtained based on 

the following equation: 
* * *( ) ( ) ( )ui ui uiRB I Lim I Lim I= −   (10) 

Then, the uncertain class of the objects *

liI
 
and *

uiI
 
can be expressed by using their 

lower and upper limits, as follows: 
* * *( ) ( ), ( )li li liRN I Lim I Lim I =

    (11) 

* * *( ) ( ), ( )ui ui uiRN I Lim I Lim I =
    (12) 

It can be seen that every class of objects is defined by its lower and upper limits 
that create the interval rough number that can be defined as: 

* * *( ) ( ), ( )i li uiIRN I RN I RN I =     (13) 

Interval rough numbers are characterized by specific arithmetic operations, which 
differ from those dealing with typical rough numbers. Arithmetic operations between 
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two interval rough numbers    ( )1 2 3 4( ) , , ,IRN A a a a a=
 
and    ( )1 2 3 4( ) , , ,IRN B b b b b=

 
are done by applying the following expressions (14), (15), (16), (17) and (18) 
(Pamučar et al., 2019): 

(1) The addition of interval rough numbers “+” 

   ( )    ( )

   ( )
1 2 3 4 1 2 3 4

1 1 2 2 3 3 4 4

( ) ( ) , , , , , ,

, , ,

IRN A IRN B a a a a b b b b

a b a b a b a b

+ = +

= + + + +
  (14) 

(2) The subtraction of interval rough numbers “-” 

   ( )    ( )

   ( )
1 2 3 4 1 2 3 4

1 4 2 3 3 2 4 1

( ) ( ) , , , , , ,

, , ,

IRN A IRN B a a a a b b b b

a b a b a b a b

− = −

= − − − −
  (15) 

(3) The multiplication of interval rough numbers “×” 

   ( )    ( )

   ( )
1 2 3 4 1 2 3 4

1 1 2 2 3 3 4 4

( ) ( ) , , , , , ,

, , ,

IRN A IRN B a a a a b b b b

a b a b a b a b

 = 

=    
  (16) 

(4) The division of interval rough numbers “/” 

   ( )    ( )

   ( )
1 2 3 4 1 2 3 4

1 4 2 3 3 2 4 1

( ) / ( ) , , , / , , ,

/ , / , / , /

IRN A IRN B a a a a b b b b

a b a b a b a b

=

=
 and (17) 

(5) The scalar multiplication of interval rough numbers, where 0k   

   ( )    ( )1 2 3 4 1 2 3 4( ) , , , , , ,k IRN A k a a a a k a k a k a k a =  =      (18) 

3. Interval Rough Weight Power Heronian Operator 

The Power Aggregation (PA) operator proposed by Yager (2001) is a very 
significant aggregation operator, which eliminates the impact of unreasonable 
arguments. The traditional PA operator can be defined as follows: 

Definition 1 (Yager, 2001): Let ( 1 2, ,..., n   ) be a set of non-negative numbers and 

p,q ≥ 0. If  

( )

( )

1

1 2

1

1 ( )

( , ,..., )

1 ( )

n

i i

i

n n

i

i

T

PA

T

 

  



=

=

+

=

+




 (19) 

where 
1,

( ) ( , )
n

i i j

j j i

T Sup  
= 

=   and ( , )i jSup    denote the degree of the support 

that i  received from j , where ( , )i jSup    satisfies the following axioms: 

1) ( , ) ( , )i j j iSup Sup   = ; 

2)  ( , ) 0,1i jSup   = ; 

3) ( , ) ( , ),     i j i k i j i kSup Sup if        −  − . 
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The Heronian Mean (HM) operator was proposed by Beliakov (2007). The HM 
takes into account the interconnectedness between input arguments (Liu and Pei, 
2012). The HM operator can be defined as follows: 

Definition 2 (Yu, 2013): Let p,q ≥ 0, ( 1 2, ,..., n   ) be a set of non-negative numbers. 

If  
1

,

1 2

1

2
( , ,..., )

( 1)

n n p q
p q p q

n i j

i j i

HM
n n

    
+

= =

 
=  

+ 
  (20) 

then HMp,q is called the Heronian Mean (HM) operator. 
Definition 3 (Zhao, 2019): Let ,  0p q  and ( 1 2, ,..., n   ) represent a set of non-

negative numbers. Then, the Weight Heronian Mean (WHM) operator for averaging 
can be defined as follows: 

( ) ( )( )
1

,

1 2

1,

2
( , ,..., )

( 1)

n p qqpp q

n i i j j

i j i

WHM nw nw
n n

    
+

= =

 
=  

+ 
  (21) 

where WHMp,q is called the Weighted Heronian Mean (WHM) operator. 
Based on the defined settings of the PA and WHM operators, Eqs. (19) and (21), in 

the following part a hybrid Interval Rough Weighted Power Heronian Aggregation 
(IRWPHA) operator was developed. 

Definition 4: Set ( )' ', , ,L U L U

i i i i i       =      (i = 1,2,..,n) as a collection of IRNs in  ; 

then the IRWPHA can be defined as follows: 
1

,

1 2

1,
1 1

2
( , ,..., )

( 1)

p q p q
n

ii jp q i

n i jn n
i j i t tt tt t

nw wnw w
IRNWPHA n n

n n w w w w
    

+

= =
= =

     
     =      +        


 

 (22) 

where 
( )

( )
1

1 ( )

1 ( )

i
t

n

i

i

T
w

T




=

+
=

+
, ( )

1,

( , )
n

i i j

j j i

T Sup  
= 

=   and  
1

1
n

i

i

w
=

=  ,   

where ( , )i jSup    denote the degree of the support that i  received from j , where 

( , )i jSup    satisfies the following axioms (Đorđević et al., 2019): 

1) ( ( ), ( )) ( ( ), ( ))i j j iSup f f Sup f f   = ; 

2)  ( ( ), ( )) 0,1i jSup f f  = ; 

3) ( ( ), ( )) ( ( ), ( )),     ( , ) ( , )i j i k i j i kSup f f Sup f f if d d         , where 

( , )i jd    represents the distance between the numbers i  and j . 

Then ,p qIRNWPHA represents the IRN weight power Heronian aggregation 
operator. 

Theorem 1: Set ( )' ', , ,L U L U

i i i i i       =      as a collection of IRNs in  ; then, 

according to Eq. (22), aggregation results are obtained for IRNs, and the following 
aggregation formula can be developed: 
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1

,

1 2

1,
1 1

1,
1 1

2
( , ,..., )

( 1)

2

( 1)

p q p q
n

ii jp q i

n i jn n
i j i t tt tt t

p q

n
ii jL Li

i jn n
i j i t tt tt t

nw wnw w
IRNWPHA n n

n n w w w w

nw wnw w
n n

n n w w w w

    

 

+

= =
= =

= =
= =

     
     =      +        

    
    
    +      

=


 


 

1

1

1,
1 1

' '

1 1

,

,

2

( 1)

2

( 1)

p q

p q p q
n

ii jU Ui

i jn n
i j i t tt tt t

p q

ii jL Li

i jn n

t tt tt t

nw wnw w
n n

n n w w w w

nw wnw w
n n

n n w w w w

 

 

+

+

= =
= =

= =

 
  
  
   
  
 
      
            +          

   
   
   +
   


 

 

1

1,

1

' '

1,
1 1

,

2

( 1)

p q
n

i j i

p q p q
n

ii jU Ui

i jn n
i j i t tt tt t

nw wnw w
n n

n n w w w w
 

+

= =

+

= =
= =

 
 
 
 
 
 
 
 
 
 
 
  
   
   
         

  
                     +            




 

 (23) 

Proof: 

The proof for Theorem 1 is presented in the following section. Based on the 
equations (19) and (22), the following is obtained: 

a) 

1

i i

i i in

t tt

nw w
nw n

w w
 

=

=


 and 

1

i j

j j jn

t tt

nw w
nw n

w w
 

=

=


; 

b) 
1 1

1 ' '

1 1

, ,

,

p

i iL Ui i
p i in n

t tt ti t ti

in

t t i it L Ui i

i in n

t tt tt t

nw w nw w
n n

w w w wnw w
n

w w nw w nw w
n n

w w w w

 



 

= =

=

= =

  
  
   
    =
    

    
  
  

 



 

; 

c)
1 1

1 ' '

1 1

, ,

,

q

i ij jL U

q j jn n

t tt ti t tj

jn

t t i it j jL U

j jn n

t tt tt t

nw w nw w
n n

w w w wnw w
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Finally, the equation for IRN is obtained by means of the weight power Heronian 

operator ( ,p qIRNWPHA ) for aggregation, as follows: 
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So, Theorem 1 is true.  

Theorem 2 (Idempotency): Set ( )' ', , ,L U L U

i i i i i       =      as a collection of IRNs in 

 ; if i = , then , ,

1 2( , ,.., ) ( , ,.., )p q p q
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Proof:  

Since i = , i.e. L L

i = , U U

i = , ' 'L L
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The Theorem 2 proof is completed. 

Theorem 3 (Boundedness): Set ( )' ', , ,L U L U

i i i i i       =      as a collection of RNs in 
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According to the above-shown inequalities, it can be concluded that 
,

1 2( , ,.., )p q

nIRNWPHA    − +   holds.  

Theorem 4 (Commutativity): Let the interval rough set ' ' '

1 2( , ,..., )n    be any 

permutation of 1 2( , ,.., ).n    Then, 
, , ' ' '

1 2 1 2( , ,.., ) ( , ,.., )p q p q

n nIRNWPHA IRNWPHA     = . Proof: This property is obvious.  

4. The IRNWPHA Model for Multi-Criteria Decision-Making 

Based on the IRNWPHA operator, a model for the group multi-criteria evaluation 
of alternatives that includes the following steps can be defined: 
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Step 1. The formation of the initial decision matrix. Defining a set of the experts eE  

(1 e t  , t represents the number of the experts) who evaluate alternatives and form 

expert correspondent matrices ;e e e

ij ij m n
X x x


 =    (1 e t  ). The aggregation of the 

expert matrices ij
m n

X x


 =    into the initial decision matrix was performed by using 

the IRN power Heronian aggregator (Đorđević et al., 2019). 
Step 2. The initial decision matrix normalization. The normalization of the initial 

decision matrix is performed by applying the equation (24). Thus, the normalized 

matrix ( )ij m n
N IRN n


 =   is formed. 

1

1

/              

1 /         

n

ij ij
i

ij
n

ij ij
i

x x if j B
n

x x if j C

=

=

 
= 

− 




   (24) 

Step 3. The determination of the criterion function alternatives. By using IRNWPHA 

(23), the score function values ( )1 2

, ,( ) ( ), ( ),..., ( )p q r

i mH n IRNWPHA IRN n IRN n IRN n=

are obtained, representing the final values of the preferences by the alternatives.  

Step 4. Ranking alternatives. The ranking of the alternatives  1 1, ,..., mA A A  is done 

based upon the value of the criterion function ( )iH n , where the alternative that has a 

higher value ( )iH n is preferable. 

5. Case Study 

In the following section, the application of the IRNWPHA multi-criteria model for 
solving real-world problems is discussed. The IRNWPHA model was applied to 
evaluate the work of the advisors in dangerous goods transport. The criteria 
accounted for in Table 1 were taken from a study by Pamucar et al. (2019), in which 
the application of a linguistic neutrosophic methodology in order to evaluate advisors’ 
work was considered. 

Table 1. The criteria for the evaluation of advisors’ work (Pamucar et al. 2019) 

Number Criteria Type 

1. 
The knowledge of regulations and 

professional development 
Benefit 

2. 
The analytical processing of the 

established requirements 
Benefit 

3. The quality of the proposed measures Benefit 

4. 
The level of implementation of the 

proposed measures 
Benefit 

5. 
The quality of the professional training of 

the employees 
Benefit 

6. A response to situations of emergency Benefit 
7. The preparation of documents Benefit 

8. 
The method for solving professional 

questions 
Benefit 

9. Activity in professional bodies Benefit 
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A total of eight experts participated in the research ( ,  1, 2,...,8ie i = ). The experts 

used the following nine-point scale to evaluate the work of the ten advisors (
,  1, 2,...,10iA i = ): 1 – Very low (VL); 2 – Medium low (ML); 3 – Low (L); ... ; 8 – High 

(H); 9 – Very high (VH). The weighting coefficients of the criteria were taken from the 
Pamucar et al. (2019) study:  

( )0.1178,0.0875,0.1020,0.1087,0.1302,0.0904,0.0838,0.1163,0.1632
T

jw = . 

In the following section, the application of the IRNWPHA is presented through the 
steps defined in the previous section of the paper: 

Step 1 - The formation of the initial decision matrix: 
Eight experts evaluated the advisors using a nine-point scale. Expert 

correspondent matrices with evaluation of advisors are shown in Table 2.  

Table 2. The expert correspondent matrices 

Expert 1 
Alt. C1 C2 C3 C4 C5 C6 C7 C8 
A1 (3;3) (5;6) (7;8) (1;2) (5;6) (3;4) (3;4) (5;6) 
A2 (8;9) (7;8) (5;6) (9;9) (5;6) (5;6) (7;8) (5;6) 
A3 (6;5) (3;4) (1;2) (3;4) (3;3) (5;6) (9;9) (5;6) 
A4 (4;5) (3;3) (3;4) (7;8) (5;5) (5;6) (9;9) (5;6) 
A5 (7;7) (7;8) (9;9) (5;6) (7;7) (5;6) (5;6) (5;6) 
A6 (5;5) (3;4) (5;6) (1;2) (3;3) (3;4) (3;4) (5;6) 
A7 (5;5) (5;5) (3;4) (1;1) (7;7) (5;6) (1;1) (3;4) 
A8 (6;7) (9;9) (5;6) (1;1) (7;8) (5;6) (5;6) (5;5) 
A9 (5;5) (3;4) (3;4) (1;2) (3;4) (5;6) (3;4) (5;6) 

A10 (4;5) (5;5) (5;6) (3;3) (5;5) (3;4) (5;6) (7;7) 
… 

Expert 8 
Alt. C1 C2 C3 C4 C5 C6 C7 C8 
A1 (5;6) (9;9) (7;8) (7;8) (1;2) (3;3) (8;9) (7;8) 
A2 (9;9) (9;9) (9;9) (8;9) (9;9) (9;9) (9;9) (7;7) 
A3 (7;8) (3;4) (5;6) (7;8) (8;9) (8;9) (7;8) (7;8) 
A4 (9;9) (8;9) (8;9) (9;9) (8;9) (8;9) (9;9) (5;6) 
A5 (7;8) (7;8) (5;6) (7;8) (8;9) (5;6) (7;8) (5;6) 
A6 (7;8) (3;4) (5;5) (7;8) (8;9) (5;5) (8;9) (8;9) 
A7 (7;8) (5;6) (5;5) (1;1) (8;9) (8;9) (8;9) (8;9) 
A8 (7;8) (7;8) (5;6) (1;2) (9;9) (9;9) (7;8) (9;9) 
A9 (5;6) (1;2) (1;1) (7;8) (3;4) (5;6) (7;7) (8;9) 

A10 (5;5) (5;6) (5;6) (7;8) (1;2) (7;8) (7;8) (5;6) 
The dilemmas and uncertainties that exist during the expert evaluation of the 

advisors are shown by using the values given in Table 2. Thus, for example, for the 
expert E8 in the position A1-C1, the value is (5;6). This means that, during the 
evaluation of the advisor A1 (for the criterion C1), the E8 expert had a dilemma 
between the two values from the nine-point scale, i.e. there was a dilemma between 
the values 5 and 6 from the scale. Also, with the expert E8 in the position A1-C2, it is 



 Pamučar and Janković/Oper. Res. Eng. Sci. Theor. Appl. 3 (2) (2020) 54-73  
 

66 
 

possible to notice that there was no dilemma about the choice of the values from the 
composition, so the value (9;9) was assigned. 

In the next part, the transformation of uncertainty into an IRN was performed by 
using the equations (1) – (13). After the aggregation of the IRN expert correspondence 
matrices, an aggregated IRN initial decision matrix was obtained, as in Table 3. The 
aggregation was performed by using the equation (21). 
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Step 2 – The initial decision matrix normalization: 
The normalization of the elements of the initial decision matrix is a logical step in 

the multi-criteria models in which criteria are represented by the different units of 
measurement and/or in which there are two types of criteria (Benefit and Cost). In 
this paper, the normalization of the value of the initial decision matrix is omitted 
because: 1) a nine-point scale was used to evaluate all the alternatives, i.e., all the 
criteria are presented by the same units, and 2) all the criteria belong to the group of 
the benefit criteria, i.e. there are no two types of the criteria. 

Steps 3 and 4 - The determination of the criterion function ( )iH n  of alternatives and 

the ranking of alternatives  
By using the IRNWPHA, Equation (23), the alternatives of the criterion functions 

are obtained as in Table 4. 

Table 4. The ranking of the alternatives 

Alt. IRN ( )iH n  Crisp ( )iH n  Rank 

A1 ([4.12,6.18],[4.96,7.05]) 5.58 9 
A2 ([6.52,8.04],[7.13,8.54]) 7.57 1 
A3 ([5.46,7.34],[6.38,8.03]) 6.83 4 
A4 ([6.38,8.12],[7.04,8.59]) 7.55 2 
A5 ([6.16,7.52],[6.93,8.22]) 7.22 3 
A6 ([4.43,6.7],[5.19,7.54]) 5.96 8 
A7 ([4.97,6.93],[5.55,7.6]) 6.26 7 
A8 ([5.15,7.2],[5.8,7.84]) 6.50 6 
A9 ([3.91,6.1],[4.67,6.93]) 5.40 10 

A10 ([5.21,7.39],[5.73,7.97]) 6.57 5 
The calculation of the IRN value from Table 4 is shown in the next section. Table 5 

shows the values of the alternative A1 according to the criteria C1-C9. 

Table 5. The values of the alternative A1 

Criterion IRN value 
C1 ([4.00,6.00],[4.63,6.70]) 
C2 ([5.63,7.41],[6.58,8.06]) 
C3 ([3.87,6.60],[4.86,7.33]) 
C4 ([2.04,4.96],[3.04,5.96]) 
C5 ([3.07,5.13],[4.07,6.13]) 
C6 ([2.87,4.93],[3.50,5.90]) 
C7 ([5.32,7.03],[6.32,8.03]) 
C8 ([3.63,5.51],[4.36,6.57]) 
C9 ([5.85,7.50],[6.58,8.28]) 

Since ( )' '

1 1 1 1 1 ( ) , , ,L U L UIRN H n n n n n   =      consists of the four segments, 1 ( )IRN H n  

aggregation will be performed separately for each of the segments, i.e. 

( )1,1

1 1 1( 1); ( 2),..., ( 9)L L Ln C nIRNWP nH CA C , ( )1,1

1 1 1( 1); ( 2),..., ( 9)U U Un C nIRNWP nH CA C , 

( )1,1 ' ' '

1 1 1( 1); ( 2),..., ( 9)L L LI n C n CNWPHA CR n  and 
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( )1,1 ' ' '

1 1 1( 1); ( 2),..., ( 9)U U UI n C n CNWPHA CR n . The segment calculation 

( )1,1

1 1 1( 1); ( 2),..., ( 9)L L Ln C nIRNWP nH CA C  is shown in detail in the next section: 

Step 1: Normalized number functions are calculated: 

( )1

4
( 1) 0.11

4 5.63 ... 5.85

Lf n C = =
+ + +

; ( )1

5.63
( 2) 0.16

4 5.63 ... 5.85

Lf n C = =
+ + +

, …,

( )1

5.85
( 9) 0.16

4 5.63 ... 5.85

Lf n C = =
+ + +

. 

Step 2: The calculation of the degree of support for numbers: 

1 1( ( ( 1)), ( ( 1))) 0.045L LSup f n C f n C = , 1 1( ( ( 1)), ( ( 3))) 0.003L LSup f n C f n C = , 

1 1( ( ( 1)), ( ( 4))) 0.054L LSup f n C f n C = , …, 1 1( ( ( 8)), ( ( 9))) 0.061L LSup f n C f n C =  

Step 3: By applying Equation (23), ( )1, 1

1 1 1( 1); ( 2),..., ( 9)p q L L LIRNWPHA n C n C n C= = is 

calculated as follows: 
( )

( )

( )

1, 1

1

0.118 1 0.257
9 4.00

0.118(1 0.257) 0.088 (1 0.409) 0.102 (1 0.254)

0.109 (1 0.495) ... 0.163 (1 0.450)

0.118 1 0.257
9

0.

4.00;5.63;3.87;2.04;3.07;2.87;5

2

.32;3.63; 8

9(9

5. 5

1)

p qIRNWPHA = = =

 
 

 +   
 + +  + +  + +
 

 + + +  + 

 +


=
+

( )

1

4.00
118(1 0.257) 0.088 (1 0.409) 0.102 (1 0.254)

0.109 (1 0.495) ... 0.163 (1 0.450)

0.088 1 0.409
9 5.6

0.118(1 0.257) 0.088 (1 0.409) 0.102 (1 0.254)

0.109 (1 0.495) ... 0.163 (1 0.450)

 
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The remaining segments are calculated in the same manner: 

( )1,1

1 1 1( 1); ( 2),..., ( 9)U U Un C nIRNWP nH CA C , ( )1,1 ' ' '

1 1 1( 1); ( 2),..., ( 9)L L LI n C n CNWPHA CR n  
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and ( )1,1 ' ' '

1 1 1( 1); ( 2),..., ( 9)U U UI n C n CNWPHA CR n , so    ( )1 4.12,6.18 , 4.96,7.05 ( )IRN H n = is 

obtained. Thus, the remaining values  ( )iIRN H n  from Table 4 are obtained. For an 

easier ranking of the alternatives, the IRN values  ( )iIRN H n  were transformed into 

crisp ( )iH n  values, and the following rank of the advisors was defined: A2> A4> A5> 

A3> A10> A8> A7> A6> A1> A9. 
The previous research (Pamucar et al., 2018) showed that changes in the p and q 

parameters had led to changes in the structure of the Heronian function, which further 
led to changes in the values of the decision model. Since it is inevitable that there is an 
influence of the parameters p and q on the results of the functions, it is necessary to 
check their influence on the results of the model. The initial rank shown in Table 4 was 
obtained based upon the values of the parameters p=q=1. In the next part, two 
scenarios were formed. In the first scenario, the influence of changing the parameter 
p in the interval [1,  100]p  was considered, while the value of the parameter q did 

not change (q=1), see Figure 1. 
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Figure 1. The influence of the parameter p on the ranking results 

In the second scenario, the influence of changing the parameter q in the interval 
[1,  100]q  was considered, while the value of the parameter p did not change (p=1), 

see Figure 2. 
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Figure 2. The influence of the parameter q on the ranking results 

Both scenarios confirmed the expectations that a change in the values of the 
parameters p and q leads to a change in the values of criterion functions. Also, with a 
change in parameter values, the calculation of criterion functions becomes more 
complicated, since a larger number of mutual connections between criteria are 
simultaneously considered. Both scenarios showed that, when the values of the 
parameters p and q changed, there were minor changes in the ranks of the considered 
alternatives. According to Figures 1 and 2, it is also clear that there are no changes in 
the ranks of the first four ranked alternatives (A2, A4, A5 and A3). From this, it can be 
concluded that there is a satisfactory advantage between the considered alternatives, 
and that the alternatives A2 and A4 stand out as dominant from the considered set. 
Based on all the above-said, it is possible to conclude that the obtained rank A2> A4> 
A5> A3> A10> A8> A7> A6> A1> A9 is both confirmed and credible. 

6. Conclusions 

The application of the original IRNWPHA multi-criteria model for the evaluation of 
advisors in dangerous goods transport is presented. The model modified the weighted 
Heronian aggregator by using a power aggregator in an interval rough environment. 
The IRNWPHA multi-criteria model enables objective decision-making in the case of 
uncertain and imprecise input parameters in the initial decision matrix. Also, the 
IRNWPHA model allows flexible decision-making and the verification of the 
robustness of the results through the variation of p and q parameters. The IRNWPHA 
combines the advantages of the PA and WHM operators, and is a powerful decision-
making tool characterized by the following features: 1) it eliminates the impact of 
unreasonable arguments; 2) it takes into account the degree of support between input 
arguments. and 3) it takes into account the interconnectedness of input arguments. 

Since this is a new multi-criteria model, whose application has successfully been 
demonstrated in real research, it can be concluded that there is justification for the 
development of the presented methodology. Future research may be based upon 
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combining the IRNWPHA methodology with other MCDM techniques so as to improve 
the characteristics of the traditional MCMD methods. Future research may also focus 
on integrating IRNs with D numbers, which would allow for the creation of reasoning 
algorithms in uncertainty conditions. At the same time, an approach based upon IRN 
and D numbers would be a concept for the intelligent management of decision-making 
processes. In addition, improving the model by using neutrosophic fuzzy values might 
be an option for further research work. 
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