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Original scientific paper 

Abstract: The paper deals with the queueing system for customers with Poisson’s 
arrival process with the intensity  and two service modes: in the regular service 
regime of the intensity control ,, customers are served with a probability of p1, and in 
the special service regime provided to special customers, they are served with the 
intensity . Special customers access REQS with a complementary probability of 
(1−p)0. A special customer service is analogous to a rare event. The standard 
methodology has developed analytical patterns for stationary REQS with one service 
channel and an infinite number of positions in the queue. The analysis of the work of 
REQS indicates that, when favorable metering parameters =/>2 are concerned, the 
queueing system is resistant to collapse when an occurrence comes up. However, the 
regular time losses of regular customers in REQS are extremely high. For this reason, 
this is the first time that the system stabilization period is being promoted, representing 
the time interval for the completion of a special customer service before REQS. The 
analytical apparatus of the queueing system has shown an excellent adaptability to the 
heterogeneous demands for services  and special customers, with a low service 
intensity , where >. The system can be applied to checkpoint calculations, traffic cuts 
due to accidents, incidents in industrial systems, i.e. in the case of the occurrence of rare 
events happening due to anthropogenic and technical factors in the intervals ranging 
from 10-4 to 10-6. The model is not intended for natural hazards. 

Key words: collapse, special service, critical probability, stabilization time 

1. Introduction 

The development of rare events theory began in the 1970s and was above all 
aimed at predicting natural hazards (earthquakes) (Cornell, 1968). After the quickly 
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obtained results, the importance of the new theory and the application possibilities 
for the calculation of the hazards induced by anthropogenic factors (e.g. by 
terrorism) and industrial hazards increased. Since then, rare events theory has 
become a research field intended to improve the reliability and security of the 
system (Der Kiureghian, & Liu, 1986; Yang et al., 2015). 

From the point of view of systems theory, rare events are characterized by a low 
frequency of the implementation of the usually uncovered range. The unpredictable 
and undesirable jargon recognizes rare events caused by the system’s current 
operating regimes as a “black Swan” or a “gray Swan”. 

The low frequency of rare events makes it impossible to form the necessary 
statistical set (large datasets) for the significant verification of the distribution of 
their occurrences. Therefore, it is common to assign an exponential distribution to 
the distribution of rare events (Zweimuller, 2018; Garnier and Moral, 2006; 

Jacquemart & Morio, 2016; Ruijters et al., 2019). Such an approach is theoretically 
justified because of the memoryless properties of the exponential distribution, which 
completely eliminates the functional relationships between consecutive rare events. 
Due to the unpredictability and the low probability of their occurrence, the 
simulation of rare events is a specific analytical task (Morio et al., 2014; Au & Patelli, 
2016; Agarwal & De Marco, 2018). 

In order to investigate the extreme working conditions caused by the realization 
of rare events, there are standards in technical systems that, under a rare event, 
adopt a frequency within the interval ranging from 10−4 to 10−6 during the lifetime of 
the system, or as low as 10−8, during the one hour of the operation of the system 
(Paté-Cornell, 1994).  

In this paper, the single-channel REQS model analyzed is the Markovian, which 
implies the exponential structure of each parameter. Rare events are substituted 
with a customer with a specific request, who accesses REQS and who is likely to be a 
rare event (1−p). A special customer requires to be described by the crucial 
parameter – the time of the special customer service incomparably greater than the 
time of the regular customer service. Basically, REQS is a heterogeneous system. The 
analytical apparatus of the queueing system in the stationary mode of operation 
shows an exceptional adaptability to the introduction of a special customer. Thanks 
to analytical elasticity, the REQS limitation modes are easily calculated, and the 
regular capacity of the system and the special customer service regions prevent the 
system from collapsing. 

2. The Birth-Death Process in REQS. Single-Channel REQS 

Allow us now to consider the birth-death process in a system with the 
homogeneous birth process of the intensity . Let the dying process be 
heterogeneous, with the standard mortality intensity  of the probability of p1. The 
mandatory working condition is <, with the complementary probability of 
(1−p)0, which represents the special dying process occurring after the regular 
dying process. The intensity of the special dying process has the intensity of , 
where >. Keeping this in mind, the mean death time represents a special case of 
the complementary probability of (1−p)0, which is incomparably longer than the 
regular one. The graph of the elementary states of this process is presented in Figure 
1. 
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Figure 1. The elementary states of the single-channel REQS 

The average dying time is equal to, as in Equation (1): 
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The implications of this process for queueing systems are considered under the 
conditions of the limited value of the probability of the distribution of customers p in 
the case when the p→1 system is reduced to the standards of the Markovian system 
with one channel of services(i.e. in a system without customers with special 
requests), which is expressed by Kendall’s notation M()/M()/1/0, Equation (2): 
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In the case where p→0 (all customers are special customers), the average time of 
the service described in Raikov’s theorems is obtained. The stability of the Poisson 
stream creates the second boundary result, as in Equation (3). In the boundary 
conditions of Equation (3), the queueing system is again the standard Markovian 
queueing system, which is expressed by Kendall’s notation M()/M(−1+−1)/1/0, 
Equation (3):   
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The boundary conditions determine the mean time of the services of the single-
channel queueing system in the regular operation mode 0p1, Equation (4):  
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3. Single-Channel REQS with an Infinite Queue 

If the system of the homogeneous birth and heterogeneous dying processes is 
projected with an infinite number of points in the queue, the reciprocal value 
obtained from Equation (4) or Equation (5) is the intensity of the customer services 
in the queue (Figure 2): 
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Figure 2. The single-channel REQS with an infinite number in the queue 

This system’s solution starts from setting balanced equations in the stationary 
operation mode. The probability of the states X0, X1a, X1b, X1+i is indicated by the 
protocol: P(X0)=x0, P(X1a)=x1a, P(X1b)=x1b, and the probability of the state of the queue 
system for i(1, ) with P(X1+i)=x1+i , Equation (6), reads as follows: 
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In the sequel, all the three probabilities from Equation (6) are shown through the 
probability of the state  x0, Equation (7): 
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Allow us now to proceed with solving the probability in the order of X1+i, Equation 
(8): 
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Furthermore, for the probability of all the states in the induction queue, a 
recurrent form is obtained for the purpose of conducting the probability analysis of 
the state in the queue of x1+i, Equation (9): 
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The normative condition is as follows, Equation (10): 
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Since >>0p1, it follows that the input condition is required of the input 
intensity  and the basic intensity of the service >, the sum of Equation (10) being 
the required geometric order only under the conditions of Equation (11). 
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Otherwise, if the condition of Equation (11) is not met, the average time of the −1 
special customer service is extremely long, and the number of the customers in the 
queue diverges, i.e. REQS enters into collapse. 

With the above-mentioned condition, the value of the geometric order of 
Equation (10) is equal to that of Equation (12), namely as follows: 

)p(

)p(

)p(

)p(

i

i

−−−

−+
=−








 −+
−

=




















 −+



=
1

1
1

1
1

11

1












  (12) 

From the normative condition expressed in Equation (9), the geometric order of 
Equation (12) gives the probability from x0, Equation (13): 
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and all the probabilities of the system from Equations (7) and (9). The average 
number of the customers in the queue for the fulfilled condition of Equation (11) in 
the system is equal to that of Equation (14): 
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The average time that the customers spend in the queue is as expressed in 
Equation (15): 
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4. The Limits of Collapse and Stabilization Time Tst in REQS 

As in most queueing systems, the basic relationship in Equation (15) determines 
the operation of the system: 


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For the values of the probability of the findings of special customers “(1−p)” and 
the anticipated average time of special customers −1, the minimum intensity of the 
regular customer min in Equation (17) can be calculated, which guarantees the 
sustainability of the system: 
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On the contrary, if the conditions from Equation (17) are not satisfied, REQS goes 
into collapse by diverging the number of the customers in the queue. If the condition 
for the operation of a single-channel system in Equation (17) is not satisfied, the 
service intensity may increase (if there is a variable capacity or capacity reserves) or 
the service additional channels may be introduced into the system.  

For the maximum industrial probability of the occurrence of rare events of 10−4, 
i.e. p=0.9999, the boundary conditions of REQS are presented in Figure 3. The 
collapse limits are as follows for the different values of : 
• =1.5=0.75, min0.00030, or for the relative relation of the intensity of the 

ordinary and special customer services/min=5000, REQS very quickly enters 
into collapse, and the number of the customers in the queue rapidly diverges. The 
occurrence of a rare event, i.e. a rare customer with special requests, quickly 
destabilizes REQS. 
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• =2.0=0.50, min0.00020, or for the relative relation of the intensity of the 

ordinary and special customer services/min=10000, REQS relates well to the 

appearance of a rare customer. The system is hardly introduced into collapse, but 

such collapse is a consequence of a high burden placed on the regular customers 

forming a queue, its slow customer service in the queue, and the big losses of time 

on the part of the customers in the queue. 

• =3.0=0.33, min0.000150, or for the relative relation of the intensity of 
ordinary and special customer services /min=20000, REQS is hardly introduced 
into collapse, remains stable for a long time with the low accumulation of the 
customers in the queue. 

• =4.0=0.25, min0.000133, or for the relative relation of the intensity of 
ordinary and special customer services /min=30000, REQS behaves similarly to 
the previous case. 

 

Figure 3. The average number of the customers in the queue for p=0.9999 

and the different parameter values of  and  

If REQS provides special customer service protocols, it does not have to be 
specifically tailored to rare events. REQS points out the optimization issue regarding 
the relationship boundary, namely as follows in Equation (18): 

pmin −

1

1




 (18) 

which theoretically results in a relative relation =2.0, i.e. =0.50. One-channel 
REQS can be optimized. If the inverse value of the parameter of the service −1 is 
accepted for the independent variable (i.e. how many times the intensity of the 
regular customer service  is greater than the intensity of incoming customers ), 
and if the product (min)−1 (i.e. the relative parameter of the engagement of the 
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regular and special customer service) is accepted for the dependent variable, then 
the function shown in Figure 4 is obtained. 

 

Figure 4. The boundary of the collapse of REQS for the maximum 

engagement of the service channel 

For p=0.9999, the maximum ratio −1=f(−1) is obtained for =2. In these 
circumstances, the maximum time of the special customer service (min)−1 is 
equivalent to the time required for the arrival of 5000 regular customers, i.e. the 
services of 2500 regular customers. For min=0.00020 as per Equation (17), the 
system is on the edge of collapse. 

If the customer service time is reduced by 25%, i.e. if the intensity of special 
customer services increases to =0.00025 (which is an equivalent to the arrival time 
of 4000 regular customers, or the service of 2000 customers), the average number of 
the customers in the queue during the lifecycle of the system without special 
customers is kq=7.50. Comparatively, for the queueing system without special 
customers M()/M()/1/, at a ratio =2, the average number of the customers in 
the system is kq=0.5, i.e. 15 times smaller than in REQS. It is possible to conclude that 
the relations =2.0 the REQS are resistant to collapse, but the average number of 
the customers in the queue during the lifecycle of the system, i.e. the resulting time 
losses due to the appearance of special customers with the probability of p=0.9999, 
is/are extremely high. 

If the intensity of the services increases to =3, with the same intensity of 
special customer services =0.00025, the average number of the customers in the 
queue is 1.527, and for =4 at =0.00025, the average number of the customers in 
the queue is 0.773. 

A standard example of the application of REQS is a survey of traffic accidents. The 
basis of the numerical example lies in the calculation of the road capacity 
(Bogdanović et al., 2013) and the application of the queueing system in the 
calculation of the road capacity (Tanackov et al., 2019). For the mean intensity of the 
traffic flow of the main roads in the peak period of =900 vehicle/h and the 
maximum throughput of the traffic lane of 2200 vehicle/h, a special customer 
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service is analogous to the closing of the traffic lane in order to protect the injured, 
perform surveys and undertake the other operations necessary for the remediation 
of the accident. A special customer service (i.e. the service of such a customer as a 
participant in a traffic accident) lasts incomparably longer than the regular customer 
service. For the likelihood of the occurrence of regular customers from p=0.99995, 
i.e. the occurrence of an accident on every 20000 vehicles, REQS collapses if the 
closing time of the traffic lane (the special customer service) is greater than (min)−1 
13.13h. 

However, in the conditions of urban peak periods with twice the intensity of 
=1800 vehicle/h, the collapse limit is the closing of the traffic lane of (min)−1 2.02h, 
i.e. for a traffic flow twice as intense, under the same conditions of the regular 
customer service, the time to collapse is 6.5 times lesser. 

Except for the collapse limit of REQS, another important parameter not evaluated 
in the literature until now is the stabilization time of REQS, which is marked with the 
tag Tst. The users of REQS subjectively and usually negatively react to a loss of the 
service quality over time Tst.    

During special customer services, there is an intensive accumulation of regular 
customers equal to the product of the input stream and the average time of a special 
customer service, i.e. −1. At the end of the accumulation of regular customers, the 
regular operation of the system begins with the intensity  to service to accumulated 
clusters −1 and new regular customers, who arrive with the intensity . Therefore, 
the difference expressed in Equation (19) must be greater than , i.e. the regular 
regime of REQS:  

)(
TT)( stst






−

−
−−

−
−

1
1

  (19) 

For the average time, the special customer services (closing the traffic lane) from 
−1=2h in the first numerical example (=900 vehicle/h) of the system stabilization 
time are equal to Tst=1.285 h, whereas in the second (=1800 vehicle/h) 
Tst=8.997h9h. The vehicle total cumulative time losses in the second numerical 
case (for the system stabilization period Tst9h) are equal to 84000 vehicleh, or 
3500 vehicledays. In the first numerical example, the time losses are about 7.5 times 
smaller. 

For a well-designed intensity, REQS resistance to collapse is certain. However, the 
appearance of the first “strike” of rare events and the stabilization period Tst are a 
risky REQS time interval. If another special customer appears in the stabilization 
period, the risks of the collapse of REQS are incomparably larger. If tcr  is indicated as 
the critical time elapsed since the beginning of the stabilization period tcr(0, Tst), 
the critical probability Pcr of the occurrence of special-customer rare events in the 
period passed since the beginning of the stabilization is equal to that of Equation 
(20). Although this probability is lesser than the probability of the appearance of the 
first special customer, it should not be neglected. 
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In addition to the specified case in road traffic, REQS can analogously be applied 
to the disruptions of the schedule of railways caused by accidents, in river traffic in 
the case of the malfunctioning of ship locks, in the case of the suspension of air traffic 
due to bad weather conditions, etc. 

REQS can also be applied in indirect cases, without the arrival of special 
customers. For example, in all systems that serve customers through the application 
of information systems, a “failure” of the information system can be considered as a 
phenomenon of a rare event with the probability of (1−p), and the system 
“rebooting” time can be considered as the intensity of special customer services. 

The principle to be followed refers to the classification of the system states that 
can be either stable (the regular mode), or metastable, or unstable. The arrival of 
customers with special requests always introduces the queueing system into a 
metastable state, and the appearance of customers with special requests at a critical 
time tcr(0, Tst) introduces the system into an unstable state. 

5. Conclusion 

REQS modeling and analyzing indicate that the resistance of the system to the 
occurrence of rare events (special customers) is based on the capacity of the regular 
operation mode. If the intensity of the services  in the conditions of the usual 
occurrences of rare events from 10−4 to 10−6, and when a special customer service 
lasts incomparably longer than a regular customer service, namely several thousand 
times (up to 10,000 times) as long, for the relative relationships of 2, the 
boundary collapse of REQS are “so far”. The quantity of services can be maintained 
even in the conditions of disorder. This fact is encouraging for REQS managers. 

However, for regular users of REQS, the collapse limit, i.e. the system’s capacity, is 
not the primary parameter. In the implementation of rare events, REQS regularly 
operates in the destabilization mode. The new parameter of queueing theory, the 
stabilization time of the Tst system, is the key parameter of the quality of the service 
that special customers (rare events) degrade primarily through regular customers’ 
intensive cumulative time losses. Therefore, the REQS modes can be justified in 
exceptional, imperative, and most often unwelcome cases.  
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