Oklahoma Native Plant Record

Journal of the Oklahoma Native Plant Society Volume 11, December 2011

Oklahoma Native Plant Record

Journal of the Oklahoma Native Plant Society 2435 South Peoria Tulsa, Oklahoma 74114 Volume 11, December 2011

> ISSN 1536-7738 http://ojs.library.okstate.edu/osu/

Managing Editor: Sheila Strawn Production Editor: Paula Shryock Electronic Production Editor: Sandy Graue Technical Advisor: Bruce Hoagland Editorial Assistants: Patricia Folley, Kristi Rice

The purpose of ONPS is to encourage the study, protection, propagation, appreciation and use of the native plants of Oklahoma. Membership in ONPS is open to any person who supports the aims of the Society. ONPS offers individual, student, family, and life memberships.

2011 Officers and Board Members

President: Lynn Michael Vice-President: Marilyn Stewart Secretary: Sandy Graue Treasurer: Mary Korthase Membership Coordinator: Tina Julich Historian: Sharon McCain Past President: Kim Shannon Board Members: Clare Miller Buddy Miller Marilyn Stewart Ron Tyrl Brooke Bonner Janette Steets Central Chapter Chair: Joe Roberts Cross-Timbers Chapter Chair: Ron Tyrl Mycology Chapter Chair: Steve Marek Northeast Chapter Chair: Alicia Nelson Color Oklahoma Chair: Tina Julich Conservation Chair: Chadwick Cox

Gaillardia Editor: Chadwick Cox Website Manager: Chadwick Cox http://projects.usao.edu/~onps/index.html Harriet Barclay Award Chair: Rahmona Thompson Anne Long Award Chair: Gloria Caddell ONPS Service Award Chair: Sue Amstutz Photo Poster Curators: Sue Amstutz & Marilyn Stewart Photography Contest Chair: Kim Shannon Nominations Chair: Sheila Strawn Librarian: Karen Haworth Mailings Chair: Karen Haworth Publicity Chairs: Kim Shannon & Marilyn Stewart Wildflower Workshop Chair: Lynn Michael Cover photo by Carolyn Lilly "Fritillary and Thistle", 1st place Photo Contest Winner, Special Category: Flora and Fauna, 2011.

Articles (c) The Authors

Journal compilation (c) Oklahoma Native Plant Society

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike4.0 International License, https://creativecommons.org/licenses/by-ncsa/4.0/, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly attributed, not used for commercial purposes, and, if transformed, the resulting work is redistributed under the same or similar license to this one. https://doi.org/10.22488/okstate.17.100079

Oklahoma Native Plant Record Volume 11

Table of Contents

Foreword	3
Survey of the Vascular Flora of the Boehler Seeps and Sandhills Preserve, Ph.D. dissertation Dr. Linda Gatti Clark	4
Schoenoplectus hallii, S. saximontanus, and the Putative S. hallii ×S. saximontanus Hybrid: Observations from the Wichita Mountains Wildlife Refuge and the Fort Sill Military Reservation 2002 – 2010 Dr. Marian Smith and Dr. Paul M. McKenzie	22
 Spatial Genetic Structure of the Tallgrass Prairie Grass <i>Dichanthelium</i> oligosanthes (Scribner's panicum) Ms. Molly J. Parkhurst, Dr. Andrew Doust, Dr. Margarita Mauro-Herrera, Dr. Janette A. Steets, and Dr. Jeffrey M. Byrnes 	. 33
The Effects of Removal of <i>Juniperus virginiana</i> L. Trees and Litter from a Central Oklahoma Grassland Mr. Jerad S. Linneman, Dr. Matthew S. Allen, and Dr. Michael W. Palmer	43
The Changing Forests of Central Oklahoma: A Look at the Composition of the Cross Timbers Prior to Euro-American Settlement, in the 1950s, and Today Dr. Richard E. Thomas and Dr. Bruce W. Hoagland	. 61
<i>Critic's Choice Essay:</i> Some Thoughts on Oklahoma Plants and Summer 2011's Exceptional Drought Leslie E. Cole, D.V.M.	. 75
Editorial Policies and Procedures	. 77
Five Year Index to Oklahoma Native Plant Record inside back c	over

Foreword

Looking back over the last 10 years of publishing the Oklahoma Native Plant Record gives us an honest sense of accomplishment. It has been an uphill struggle to establish our journal, but with the turning of the decade, the *Record* has also turned the corner. As of this year all volumes are available online through Oklahoma State University's Edmon Low Library as an e-journal publication. It can be accessed globally at **http://ojs.library.okstate.edu/osu/**.

This year the historic paper is one of the chapters of Linda Gatti Clark's 1997 Ph.D. dissertation for Oklahoma State University (OSU). We will have to wait for an update to this flora of Boehler Seeps from another source, but it should provide an important comparison of changes in species over time in this unique habitat.

Marian Smith is from Southern Illinois University and Paul McKenzie is Endangered Species Biologist and Coordinator for the US Fish and Wildlife Service. Their paper on hybridization of two local species of sedges is the first to be submitted entirely online, a good sign that we are finally getting established. Incorporating online submission and publishing seems to be one of the most effective ways to connect with out-of-state scientists. Yet, this article is also a link to the past, being inspired by Dr. Larry Magrath, late member of Oklahoma Native Plant Society.

Molly Parkhurst, Andrew Doust, Margarita Mauro-Herrera, Jeffrey Byrnes, and Janette Steets from OSU have introduced a brand new topic for the *Record*; a population genetics study of Scribner's panicum, one of our native grasses. This up-to-date molecular research paper is likely to be cited in larger journals and is yet another sign of our progress.

Jerad Linneman, one of Michael Palmer's former students, addressed some of the redcedar controversies in his M.S. thesis from OSU, but was hired by the U.S. government before he could publish it. Matthew Allen, also from OSU, was recruited to update and co-author it for our journal. We appreciate Michael Palmer's initiative and assistance in acquiring the manuscript. It is very timely, considering the redcedar controversies and their role in recent wildfires. This paper discusses the effects of removing redcedar from old field grasslands.

Richard Thomas's paper is also a "hot" topic. It is an interdisciplinary study based on climate change and biogeographic interaction. This article can be used by local botanists and teachers to relate environmental science and climate change to local consequences. It is a comparison of the composition of the Cross Timbers before Euro-American settlement.

Remember and tell everyone you know that the *Record* is now available online. If you want a printed copy of any of our future volumes, get your order in early. Only 50 copies will be printed each year.

Sheila Strawn Managing Editor

SURVEY OF THE VASCULAR FLORA OF THE BOEHLER SEEPS AND SANDHILLS PRESERVE

Submitted to the Department of Botany of Oklahoma State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy July 1997

Linda Gatti Clark E-mail: gatti.clark@gmail.com

Located in Atoka County of southcentral Oklahoma, The Nature Conservancy's Boehler Seeps and Sandhills Preserve comprises sandhills, acidic hillside seeps, marshes, intermittent and permanent streams, and shallow lakes. The sandhills are the site of the highest quality, old-growth vegetation of the Western Gulf Coastal Plains (S. Orzell, pers. comm. to Ian Butler). The flora is a unique assemblage of plants that is present nowhere else in the state and considered globally rare. Approximately 400 species are believed to be present (Jones 1993). More than 20 rare species have been reported to occur in the area, including some that are globally rare (Oklahoma Natural Heritage Inventory 1997). Eriocaulon kornickianum, for example, is designated G2 and S1. Other rare species in the preserve include Penstemon murrayanus (G4, S1S3), Polygonella americana (G5, S1S2), and Paronychia drummondii (G4G5, S1S2).

Prior to this study, our knowledge of the vascular plant species in the preserve was incomplete. Although several partial lists of its flora had been compiled, a systematic survey of the area to inventory all of the plants had not been conducted. Such information is essential for understanding the ecology of the site and making decisions about its management. This study was undertaken to provide this information. Specific objectives were to: (1) compile a list of the terrestrial and aquatic vascular plant species present and (2) prepare a set of herbarium specimens to document the preserve's flora. This note summarizes my findings and provides a reference to the information compiled in Gatti Clark (1997).

BOEHLER SEEPS AND SANDHILLS PRESERVE

The preserve is a 235 ha site located in southern Atoka County, Oklahoma, approximately 11 miles north of Boswell (S25 & 26, T4S, R13W; Boswell NW Quad). It comprises two tracts bisected by a paved country road and is located in the watersheds of Muddy Boggy and Clear Boggy Creeks. Situated in the Dissected Coastal Plain Geomorphic Province and Western Coastal Plain Land Resource Area (Johnson et al. 1979, USDA Natural Resources Conservation Service 1992), its underlying strata are Cretaceous in age. Also underlying the preserve is the Antlers Sandstone Aquifer that is composed primarily of non-marine sand and clay, and marine limestone and clay up to 915 m thick and is saturated with water that has a moderate to high mineral content (Johnson et al. 1979). The water table is generally within 1-1.3 m of the surface, with seeps occurring where it reaches the surface (Jones 1993, pers. comm.). Soil series of the site are the Bernow-Romia complex, 8-12% slopes; Boggy fine sandy loam; and Larue loamy fine sand, 0-8% slopes (Shingleton and Watterson 1979). All are susceptible to erosion by both water and wind. Precipitation in the area of the preserve

occurs primarily in the spring and summer, and averages 119 cm per year (Ruffner 1980). The average growing season is 255 days; mean maximum annual temperature is 24.5° C and mean minimum is 11° C; the average number of days below 0° C is 52 (Ruffner 1980).

Vegetation of the area is Oak-Hickory Forest (Duck and Fletcher 1943) with several communities present. Quercus stellata, Carya texana, and Sideroxylon lanuginosum spp. Lanuginosum (=Bumelia lanuginose) dominate and form an almost continuous canopy in the drier areas. Typically a thick leaf layer is present on the ground, and understory vegetation is sparse. Juniperus virginiana and Pinus echinata, while not dominant, can be found scattered throughout the preserve. Common woody understory species are Nyssa sylvatica, Vaccinium arboreum, Berchemia scandens, and Vitis rotundifolia. Herbaceous understory taxa include Galium arkansanum, G. obtusum, Tephrosia virginia, Carex spp., Cyperus spp., and Juncus spp. Scattered throughout the preserve and most conspicuous are glades dominated by Aristida desmantha and Selaginella rupestris. Other glades are present and are dominated by various grasses, such as Panicum spp., mosses, and forbs, such as Gaillardia aestivalis and Hieracium longipilum. At the glade edges, trees other than the forest dominants are encountered, in particular *Quercus incana*. Its saplings are occasionally found in the centers of the glades.

Hassel and Boehler Lakes are small, shallow bodies of water maintained by beaver dams. Both have dense stands of emergent and floating-leaved species at their edges and open water in their centers. Dominant taxa include *Typha angustifolia*, *Nuphar lutea*, and *Nymphaea odorata*. Often quite abundant, free-floating species are *Azolla caroliniana* and *Utricularia biflora*. Two types of seeps are present in the preserve. One has water percolating slowly to the surface and accumulating in one area because of the topography. The ground surface has a spongy feel because of the thick carpet of vegetation, primarily mosses; Sphagnum lescurii and Polytrichum commune in particular dominate. Occupying natural drainage ways, the second type is characterized by water flowing away from the seepage point. Ferns, sedges, and rushes typically are in abundance along these watercourses. Between the lakes and the seeps are marshes dominated by Osmunda regalis, O. cinnamonea, Cephalanthus occidentalis, Scirpus spp., Rhynchospora spp., and Cyperus spp. Associated with Boehler Lake are rather deep drainages that resemble sloughs. They have less vegetation and are often banked by large trees such as *Quercus falcata*, Q. nigra, and Q. phellos.

METHOD OF SURVEY

A systematic collection of the terrestrial and aquatic vascular plants occurring in the preserve was conducted during the 1994 and 1995 growing seasons. The area was divided into three survey units using roads and fences as boundaries. Each unit was traversed on foot several times during the growing season. Plants were collected in both the flowering and fruiting stages, and prepared using standard herbarium techniques (Radford et al. 1974). One set of 440 voucher herbarium specimens (Appendix H) was prepared and deposited in the Oklahoma State University Herbarium (OKLA). Specimens previously collected by Conservancy personnel were identified and included in the inventory (Gatti Clark 1997, Appendices I and J). Identification was accomplished using the resources of the herbarium. Nomenclature used was based primarily on that of Waterfall (1969), Correll and Johnston (1979), and Gray's Manual of Botany (Fernald 1950). Common names were taken from Correll and Johnston (1979) and Taylor and Taylor (1994).

FLORA OF THE PRESERVE

Three hundred forty-five species in 225 genera and 84 families were encountered in this survey or by previous workers (Gatti Clark 1997, Appendices H, I, and J). Three families, Asteraceae (56 taxa), Poaceae (41 taxa), and Cyperaceae (35 taxa), composed 38% of the preserve's vascular flora. Other large families were the Fabaceae (21 taxa), Apiaceae (11 taxa), Lamiaceae (10 taxa), and Scrophulariaceae (10 taxa). The largest genera present were *Carex*, represented by 17 species, and *Panicum*, represented by 12 species.

Species designated by the U.S. Fish and Wildlife Service (1996) as endangered, threatened, or candidate (formally category 1) were not encountered. Species ranked by the ONHI (1997) as S1 or S2 and present in the preserve included the previously mentioned *Eriocaulon kornickianum* (G2, S1), *Penstemon murrayanus* (G4, S1S3), *Polygonella americana* (G5, S1S2), and *Paronychia drummondii* (G4G5, S1S2). Other rare species are listed in the table.

Although demonstrably secure globally and ranked G4 or G5 by ONHI, several species of interest were found in the preserve. The insectivorous *Drosera brevifolia* and the mycotrophic/parasitic *Monotropa hypopithys* were encountered. *Lycopodiella appressa* (=Lycopodium appressum) is reported for the site but was not seen in this study or in collections of The Nature Conservancy personnel (L. K. Magrath, pers. comm.).

With 22 rare taxa reported for the site, monitoring of the Bluejack Oak sandhills and seep communities should continue. The communities and its assemblage of plants at Boehler Seeps and Sandhills Preserve are rare within the state and deserve continued study.

LITERATURE CITED

- Correll, D. S. and M. S. Johnston. 1970. Manual of the Vascular Plants of Texas. Texas Research Foundation, Renner, TX.
- Duck, L. G. and J. B. Fletcher. 1943. A Game Type Map of Oklahoma. State of Oklahoma Game and Fish Department, Division of Wildlife Restoration. Oklahoma Biological Survey, Norman, OK.
- Fernald, M. L. 1950. *Gray's Manual of Botany*. 8th ed. American Book Company, New York.
- Gatti Clark, L. C. 1997. Floristic and Biosystematic Investigations in Plant Taxonomy. Ph.D. dissertation. Oklahoma State University, Stillwater, OK.
- Jones, N. 1993. A baseline study of the water quality, vegetative gradients, and hydrology of Boehler Seeps and Sandhills Preserve. Report. The Nature Conservancy, Tulsa, OK.
- Johnston, K. S., C. C. Branson, N. M. Curtis, Jr., W. E. Ham, W. E. Harrison, M. V. Marcher, and J. F. Roberts. 1979. Geology and Earth Resources of Oklahoma. Educational Publication 1. Oklahoma Geological Survey, Norman, OK.
- Oklahoma Natural Heritage Inventory. 1997. Short Working List of Rare Plants. Version of 22 January 1997. Oklahoma Biological Survey, Norman, OK.
- Radford, A. E., W. C. Dickison, J. R. Massey, and C. R. Bell. 1974. Vascular Plant Systematics. Harper and Row, New York.
- Ruffner, J. A. 1980. Climate of the United States: National Oceanic and Atmospheric Administration Narrative Summaries, Tables, and Maps for Each State with Overview of State Climatologist Programs. 2nd ed. Volume 2. Gale Research Company, Detroit, MI.

- Shingleton, L. C. and A. Watterson, Jr. 1979. Soil Survey of Atoka County, Oklahoma. USDA Soil Conservation Service, Stillwater, OK.
- Taylor, R. J. and C. E. S. Taylor. 1994. An Annotated List of the Ferns, Fern Allies, Gymnosperms, and Flowering Plants of Oklahoma. 3rd ed. Published by authors, Durant, OK.
- USDA Natural Resources Conservation Service. 1992. Map of Major Land

Resource Areas of Oklahoma. Stillwater, OK.

- US Fish and Wildlife Service. 1996. Endangered and Threatened Wildlife and Plants. October 31, 1996. 50 CFR 17.11-17.12. Washington, D. C.
- Waterfall, U. T. 1969. *Keys to the Flora of Oklahoma*. 4th ed. Published by author, Stillwater, OK.

		ONHI R	ankings*
Scientific Name	Common Name	Global	State
Agalinis tenuifolia (Vahl.) Raf.	slender leaved agalinis	G5	S2S3
Aristolochia reticulata Jacq.	netleaved snakeroot	G4	S2
Azolla caroliniana Willd.	mosquito fern	G5	S2
Brasenia schreberi J. F. Gmel.	water-shield	G5	S1
Carex hyalina Boott	whitesheath sedge	G5	S1
Carex swanii (Fernald) Mack.	swan sedge	G5	S1
Carya myristiciformis (Michx. f.) Nutt.	nutmeg hickory	G5	S2S3
Drosera brevifolia Pursh	sundew	G5	S2S3
Dulichium arundinaceum (L.) Britton	threeway sedge	G5	S1
Eriocaulon kornickianum van Heurch and Müll.Arg.	small pipewort	G2	S1
Galium arkansanum A. Gray	Arkansas bedstraw	G5	S1S2
<i>Houstonia micrantha</i> (Shinners) Terrell (=Hedyotis australis W.H. Lewis & D.M. Moore)	bluet	G4G5	S1S2
Iris virginica L.	southern blue flag	G5	S2?
Monotropa hypopithys L.	pinesap	G5	S1
Paronychia drummondii Torr. & A. Gray	Drummond's nailwort	G4G5	S1S2
Penstemon murrayanus Hook.	cupleaf beardtongue	G4	S1S3
<i>Platanthera flava</i> (L.) Lindl.	pale green orchid	G4	S1
Polygonella americana (Fisch. & C.A. Mey.) Small	southern jointweed	G5	S1S2
Quercus incana Bartram	bluejack oak	G5	S1S2
Rhynchospora caduca Elliott	anglestem beakrush	G5	S1
Saccharum giganteum (Walter) Pers. (=Erianthus giganteus (Walter) P. Beauv.)	giant plumegrass	G5	S1S2
Sacciolepis striata (L.) Nash	American cupscale	G5	S2

Table Taxa of Boehler Seeps and Sandhills Preserve that are ranked as rare by the Oklahoma Natural Heritage Inventory (ONHI)

*ONHI Global Rankings:

G2 - Imperiled globally because of its rarity (6 to 20 occurrences or few remaining individuals or acres) or because of other factors demonstrably making it vulnerable to extinction throughout its range.

G4 - Apparently secure globally, though it may be quite rare in parts of its range, especially at the periphery.

G5 - Demonstrably secure globally though it may be quite rare in parts of its range, especially at the periphery.

S1 - Critically imperiled in Oklahoma because of extreme rarity (5 or fewer occurrences or very few remaining individuals or acres) or because of some factor of its biology making it especially vulnerable to extinction.

S2 - Imperiled in Oklahoma because of extreme rarity (6 to 20 occurrences or few remaining individuals or acres) or because of other factors making it very vulnerable to extinction throughout its range.

S3 - Rare and local in Oklahoma (thought it may be abundant at some of its locations); in the range of 21-100 occurrences.

APPENDIX

Vascular Plant Collections from Boehler Seeps and Sandhills Preserve arranged by family. Collections of L. C. Gatti Clark and The Nature Conservancy personnel.

[Ed. Notes: All plants are collected by L. Gatti Clark, unless indicated by an asterisk * for the Nature Conservancy or a tilde ~ for plants collected by both. Nomenclature has been updated using the PLANTS Database (plants.usda.gov/plants).]

FERN ALLIES

FERN ALLIES Selaginellaceae – Spikemoss Family Selaginella rupestris (L.) Spring	rock spikemoss
FERNS Azollaceae – Azolla Family <i>Azolla caroliniana</i> Willd.	mosquito fern
Dryopteridaceae – Wood Fern Family Onoclea sensibilis L. Woodsia obtusa (Spreng.) Torr.	sensitive fern blunt-lobed cliff fern
Ophioglossaceae – Adder's-Tongue Family <i>Botrychium virginianum</i> (L.) Sw.	rattlesnake fern
Osmundaceae – Royal Fern Family Osmunda cinnamomea L. ~ Osmunda regalis L. var. spectabilis (Willd.) A. Gray	cinnamon fern royal fern
GYMNOSPERMS Cupressaceae – Cypress Family Juniperus virginiana L.	eastern redcedar
Pinaceae – Pine Family ~ <i>Pinus echinata</i> Mill.	shortleaf pine
ANGIOSPERMS <u>Liliopsida – Monocots</u> Alismataceae – Water Plantain Family <i>Alisma subcordatum</i> Raf. <i>Echinodorus tenellus</i> (Mart.ex Schult. f.) Buchenau <i>Sagittaria latifolia</i> Willd.	water plaintain lanceleaf burweed wapato, duck potato
Commelinaceae – Spiderwort Family Commelina erecta L. <i>Tradescantia ohiensis</i> Raf.	erect day flower Ohio spiderwort

Cyperaceae – Sedge Family ~ Carex bicknellii Britton Carex blanda Dewey Carex cherokeensis Schwein. * Carex complanata Torr. & Hook. Carex crinita Lam. ~ Carex digitalis Willd. * Carex frankii Kunth Carex granularis Muhl. ex Willd. Carex gravida L.H. Bailey Carex hyalina Boott Carex Iupulina Muhl. Ex Willd. * Carex muehlenbergii Schkuhr ex Willd. Carex normalis Mack. Carex retroflexa Muhl. ex Willd. * Carex squarrosa L. Carex swanii (Fernald) Mack. Carex vulpinoidea Michx. ~ Cyperus echinatus (L.) Alph. Wood (=C. ovularis (Michx.) Torr.) Cyperus retroflexus Buckley (=C. uniflorus Torr. & Hook., non Thunb. * Cyperus strigosus L. Cyperus virens Michx. Dulichium arundinaceum (L.) Britton Eleocharis acicularis var. acicularis (L.) Roem. & Schult. (=E. acicularis (L.) Roem. & Schult. var. gracilescens) ~ Eleocharis compressa Sull. Eleocharis engelmannii Steud. ~ Eleocharis lanceolata Fernald (=E. obtusa (Willd.) Schultes var. lanceolata (Fernald) Gilly Eleocharis parvula (Roem. & Schult.) Link ex Bluff, Nees. & Schauer (=E. parvula (Roem. & Schult.) Link var. anachaeta (Torr.) Svens. Eleocharis tenuis (Willd.) Schult. var. verrucosa (Svens.) Svens. ~ Isolepis carinata Hook. & Arn. ex Torr. (=Scirpus koilolepis (Steud.) Gleason * Lipocarpha aristulata (Coville) G. Tucker (=Hemicarpha aristulata (Coville) Smyth Rhynchospora caduca Elliott ~ Rhynchospora capitellata (Michx.) Vahl Rhynchospora glomerata (L.) Vahl Scleria ciliata Michx. Scleria triglomerata Michx.

Bicknell's sedge loose flowered sedge Cherokee sedge sedge fringed sedge sedge Frank's sedge meadow sedge heavy sedge whitesheath sedge hop sedge Muhlenberg's sedge sedge reflexed sedge sedge swan sedge fox sedge globe flatsedge one-flower flatsedge false nutgrass green flatsedge threeway sedge needle spikesedge flatstem spikesedge Engleman's spikesedge blunt spikesedge dwarf spikesedge slender spikesedge bulrush hemicarpa anglestem beakrush false bogrush clustered beakrush

fringed nutrush

whip nutrush

Eriocaulaceae – Pipewort Family ~ <i>Eriocaulon kornickianum</i> van Heurch & Müll. Arg.	small pipewort
Iridaceae – Iris Family Iris virginica L. Sisyrinchium angustifolium Mill.	southern blue flag blue-eyed grass
 Juncaceae – Rush Family Juncus acuminatus Michx. Juncus coriaceus Mack. Juncus effusus L. Juncus marginatus Rostk. Juncus scirpoides Lam. Juncus tenuis Willd. Luzula bulbosa (Alph. Wood) Smyth & Smyth 	jointed rush leathery rush bog rush grassleaf rush needlepod rush tender rush bulb woodrush
Lemnaceae – Duckweed Family Spirodela polyrrhiza (L.) Schleid.	duck meat
Liliaceae – Lily Family ~ <i>Allium canadense</i> L. ~ <i>Hypoxis hirsuta</i> (L.) Coville	wild onion yellow stargrass
Orchidaceae – Orchid Family * <i>Platanthera flava</i> (L.) Lindl.	pale green orchid
 Poaceae – Grass Family Agrostis perennans (Walter) Tuck. * Andropogon gerardii Vitman Andropogon ternarius Michx. Aira elegans Willd. ex Kunth Aristida desmantha Trin. & Rupr. Bouteloua hirsuta Lag. Bromus arvensis L. (=B. japonicus Thunb.) Bromus catharticus Vahl * Bromus hordeaceus L. ~ Cenchrus spinifex Cav. (=C. incertus M. A. Curtis) ~ Chasmanthium latifolium (Michx.) Yates ~ Chasmanthium sessiliflorum (Poir.) Yates (=C. laxum (L.) Yates spp. sessiliflorum (Poir.) L. Clark) Danthonia spicata (L.) P. Beauv. ex Roem. & Schult. ~ Dichanthelium acuminatum (Sw.) Gould & C.A. Clark var. fasciculatum (Torr.) Freckmann (=Panicum lanuginosum Eliott, non Bosc ex Spreng.) 	autumn bentgrass big bluestem splitbeard bluestem annual silver hairgrass curly threeawn hairy grama Japanese brome rescue grass soft chess sandbur inland seaoats spike-inland seaoats poverty oatgrass wooly panicum
Dichanthelium boscii (Poir.) Gould & C.A. Clark (=Panicum boscii Poir.)	Bosc panicum

Dichanthelium depauperatum (Muhl.) Gould	slimleaf panicum
(=Panicum depauperatum Muhl.) Dichanthelium dichotomum (L.) Gould var. dichotomum	forked panicum
(=Panicum dichotomum L.) Dichanthelium linearifolium (Scribn. ex Nash) Gould	slimleaf panicum
(=Panicum linearifolium Scribn.) ~ <i>Dichanthelium oligosanthes</i> (Schult.) Gould var. <i>oligosanthes</i> (=Panicum oligosanthes Schult.)	small panicgrass
(=Panicum oligosanthes Schult.) <i>Dichanthelium ravenelli</i> (Scribn. & Merr.) Gould (=Panicum ravenelii Scribn. & Merr.)	panicum
Dichanthelium sphaerocarpon (Elliott) Gould var. sphaerocarpon (=Panicum sphaerocarpon Elliott)	leafy panicum
~ Elymus virginicus L.	Virginia wildrye
* Eragrostis capillaris (L.) Nees	lacegrass
* Eragrostis hirsuta (Michx.) Nees	bigtop lovegrass
Eragrostis secundiflora J. Presl	red lovegrass
Eragrostis spectabilis (Pursh) Steud.	purple lovegrass
<i>Gymnopogon ambiguus</i> (Michx.) Britton, Sterns & Poggenb.	broadleaf skeletongrass
Leersia oryzoides (L.) Sw.	Swartz cutgrass
~ Panicum anceps Michx.	beaked panicum
Panicum dichotomiflorum Michx.	fall panicum
* Paspalum laeve Michx.	field paspalum
~ Paspalum setaceum Michx.	thin paspalum
* Saccharum giganteum (Walter) Pers.	giant plumegrass
	giant plumegrass
(=Erianthus giganteus (Walter) P. Beauv.)	American gungada
Sacciolepis striata (L.) Nash	American cupscale
Setaria parviflora (Poir.) Kerguélen	knotroot bristlegrass
(=S. geniculata (Willd.) P. Beauv., nom. illeg.)	
~ Sorghum halepense (L.) Pers.	Johnsongrass
Sphenopholis obtusata (Michx.) Scribn.	prairie wedgescale
~ Steinchisma hians (Elliott) Nash (=Panicum hians Elliott)	gaping panicum
~ <i>Tridens flavus</i> (L.) Hitchc.	purpletop
Vulpia octoflora (Walter) Rydb.	sixweeks fescue
Zizaniopsis miliacea (Michx.) Döll. & Asch.	southern wildrice
Potemogetonaceae – Pondweed Family	
Potamogeton pulcher Tuck.	spotted pondweed
Smilacaceae – Catbriar Family	
Smilax bona-nox L.	greenbrier
Smilax rotundifolia L.	common greenbrier
Typhaceae – Cattail Family	
Typha angustifolia L.	narrow-leaved cattail

Magnoliopsida - Dicots Acanthaceae – Acanthus Family Ruellia humilis Nutt. fringed leaf ruellia Amaranthaceae – Amaranth Family Froelichia floridana (Nutt.) Moq. snake cotton Anacardiaceae – Sumac Family Rhus aromatica Aiton lemon sumac Rhus copallinum L. (=R. copallina L., orth. var.) winged sumac Toxicodendron radicans (L.) Kuntze poison ivy Apiaceae – Carrot Family * Chaerophyllum tainturieri Hook. hairy fruit wild chervil ~ Daucus pusillus Michx. southwestern carrot Eryngium prostratum Nutt. ex DC. creeping eryngo * Hydrocotyle verticillata Thunb. whorled pennywort ~ Ptilimnium capillaceum (Michx.) Raf. threadleaf mockbishopweed ~ Sanicula canadensis L. black snakeroot Sanicula odorata (Raf.) K.M. Pryer & L.R. Phillippe cluster snakeroot (=S. gregaria E.P. Bicknell) Spermolepis divaricata (Walter) Raf. ex Ser. forked scaleseed Spermolepis echinata (Nutt. ex DC.) A. Heller bristly scaleseed Spermolepis inermis (Nutt. ex DC.) Mathias & Constance spreading scaleseed Torilis arvensis (Huds.) Link hedge parsley Apocynaceae – Dogbane Family Apocynum cannabinum L. Indianhemp Aquifoliaceae – Holly Family Ilex decidua Walter deciduous holly Aristolochiaceae – Birthwort Family netleaved snakeroot ~ Aristolochia reticulata Jacq. Asclepiadaceae – Milkweed Family Asclepias tuberosa L. butterfly milkweed whorled milkweed Asclepias verticillata L. green milkweed Asclepias viridis Walter Matelea biflora (Raf.) Woodson twoflower milkvine Asteraceae – Sunflower Family * Achillea millefolium L. yarrow * Ambrosia artemisiifolia L. common ragweed ~ Ambrosia bidentata Michx. lanceleaf ragweed * Ambrosia trifida L. giant ragweed ~ Antennaria parlinii Fernald plainleaf pussytoes

Astranthium integrifolium (Michx.) Nutt. * Bidens aristosa (Michx.) Britton Centaurea americana Nutt. * Chaetopappa asteroides Nutt. ex DC. ~ Chrysopsis pilosa Nutt. * Cirsium altissimum (L.) Hill Cirsium horridulum Michx. * Conoclinium coelestinum (L.) DC. (=Eupatorium coelestinum L.) ~ Conyza canadensis (L.) Cronquist ~ Coreopsis grandiflora Hogg ex Sweet ~ Croptilon divaricatum (Nutt.) Raf. (=Haplopappus divaricatus (Nutt.) A. Gray) ~ Echinacea pallida (Nutt.) Nutt. ~ Elephantopus carolinianus Raeusch. * Erechtites hieracifolia (L.) Raf. ex DC. ~ Erigeron strigosus Muhl. ex Willd. * Eupatorium perfoliatum L. Evax prolifera Nutt. ex DC. Evax verna Raf. var. verna (=E. multicaulis DC.) Gaillardia aestivalis (Walter) H. Rock ~ Gamochaeta purpurea (L.) Cabrera (=Gnaphalium purpureum L.) * Helenium amarum (Raf.) H. Rock * Helianthus angustifolius L. ~ Helianthus hirsutus Raf. Heterotheca villosa (Pursh) Shinners var. villosa (=Chrysopsis villosa (Pursh.) Nutt. ex DC.) ~ Hieracium gronovii L. Hieracium longipilum Torr. Hymenopappus scabiosaeus L'Her. ~ Krigia cespitosa (Raf.) K. L. Chambers ~ Krigia dandelion (L.) Nutt. Krigia virginica (L.) Willd. Lactuca canadensis L. * Lactuca sativa L. Liatris aspera Michx. * Liatris elegans (Walter) Michx. Liatris squarrosa (L.) Michx. * Mikania scandens (L.) Willd. Packera obovata (Muhl. ex Willd.) W.A. Weber & A. Love (=Senecio obovatus Muhl. ex Willd. var. rotundus Britton) * Pluchea camphorata (L.) DC. Pseudognaphalium obtusifolium (L.) Hilliard & B.L. Burtt ssp. obtusifolium (=Gnaphalium obtusifolium L.)

- ~ Pyrrhopappus carolinianus (Walter) DC.
- * Rudbeckia grandiflora (D. Don) J.F. Gmel. ex DC.
- ~ Rudbeckia hirta L.

western daisv tickseed sunflower American basket flower least daisy softhair golden aster tall thistle bull thistle blue boneset horseweed bigflowered tickseed scratch daisy pale coneflower elephant's foot fireweed daisy fleabane boneset rabbit's tobacco rabbit's tobacco prairie gaillardia purple cudweed sneezeweed narrow-leaf sunflower hairy sunflower roughhair golden aster hawkweed longbeard hawkweed old plainsman common dwarf dandelion potato dandelion dwarf dandelion wild lettuce prickly lettuce tall gayfeather beautiful gayfeather gayfeather climbing hempweed roundleaf groundsel

camphorweed sweet everlasting

false dandelion Mexican hat blackeyed Susan

Solidago canadensis L. Solidago missouriensis Nutt. * Solidago odora Aiton * Solidago rugosa Mill. ~ Solidago ulmifolia Muhl. ex Willd. * Symphyotrichum patens (Aiton) G.L. Nesom var. patens (=Aster patens Aiton)	common prairie goldenrod Missouri goldenrod fragrant goldenrod rough-leaved goldenrod elmleaf goldenrod late purple aster
 * Symphyotrichum subulatum (Michx) G.L. Nesom (=Aster subulatus Michx.) ~ Verbesina helianthoides Michx. 	salt marsh aster yellow crownbeard
* Vernonia baldwinii Torr.	western ironweed
Balsaminaceae – Touch-Me-Not Family Impatiens capensis Meerb.	spotted touch-me-not
Berberidaceae – Barberry Family Podophyllum peltatum L.	May apple
Bignoniaceae – Trumpet Creeper Family Campsis radicans (L.) Seem. ex Bureau	trumpet creeper
Boraginaceae – Borage Family ~ <i>Lithospermum caroliniense</i> (Walter ex J.F. Gmel.) MacMill. <i>Myosotis verna</i> Nutt.	plains pucoon early scorpiongrass
Brassicaceae – Mustard Family Cardamine pensylvanica Muhl. ex Willd. ~ Lepidium virginicum L.	bitter cress poorman's peppergrass
Buddlejaceae – Butterfly-Bush Family Polypremum procumbens L.	juniperleaf
Cabombaceae – Water Shield Family Brasenia schreberi J. F. Gmel.	water shield
Callitrichaceae – Water-Starwort Family Callitriche heterophylla Pursh	water-starwort
Campanulaceae – Bellflower Family ~ <i>Triodanis perfoliata</i> (L.) Nieuwl.	clasping Venus looking-glass
Caprifoliaceae – Honeysuckle Family Lonicera japonica Thunb. Symphoricarpos orbiculatus Moench Viburnum rufidulum Raf.	Japanese honeysuckle buckbrush rusty blackhaw

Caryophyllaceae – Pink Family Arenaria serpyllifolia L. Paronychia drummondii Torr. & A. Gray Stellaria media (L.) Vill.	thyme-leaved sandword Drummond's nailwort chickweed
Ceratophyllaceae – Hornwort Family Ceratophyllum demersum L.	coontail
Cistaceae – Rockrose Family Lechea villosa Elliott	pinweed
Clusiaceae – Mangosteen Family ~ <i>Hypericum drummondii</i> (Grev. & Hook.) Torr. & A. Gray ~ <i>Hypericum hypericoides</i> (L.) Crantz ~ <i>Hypericum prolificum</i> L. (=H. spathulatum (Spach.) Steud.	nits-and-lice St. Andrew's cross St. John's wort
Convolvulaceae – Morning Glory Family ~ <i>Ipomoea pandurata</i> (L.) G. Mey. ~ <i>Stylisma pickeringii</i> (Torr. ex M.A. Curtis) A. Gray	wild potatovine stylisma
Cornaceae – Dogwood Family <i>Cornus florida</i> L. <i>Nyssa sylvatica</i> Marsh.	flowering dogwood black gum
Droseraceae – Sundew Family ~ <i>Drosera brevifolia</i> Pursh	sundew
Ericaceae – Heath Family ~ <i>Vaccinium arboreum</i> Marsh.	farkleberry
Euphorbiaceae – Spurge Family Acalypha rhomboidea Raf. Acalypha virginica L. Chamaesyce serpens (Kunth) Small (=Euphorbia serpens Kunth) Cnidoscolus texanus (Müll. Arg.) Small Croton capitatus Michx. Croton glandulosus L. Croton willdenowii G.L. Webster (=Crotonopsis elliptica Willd.) ~ Stillingia sylvatica L.	rhombic copperleaf three seeded Mercury round-leaved spurge Texas bullnettle woolly croton sand croton rush-foil queen's delight
Fabaceae – Pea Family <i>Apios americana</i> Medik. <i>Astragalus distortus</i> Torr. & A. Gray * <i>Baptisia bracteata</i> Muhl. ex Elliott <i>Baptisia leucophaea</i> Nutt. var. <i>leucophaea</i> (Nutt.) Kartesz & Gandhi (=B. leucophaea Nutt.) <i>Cercis canadensis</i> L.	ground nut bentpod milkvetch plains wild indigo white wild indigo redbud

Chamaecrista fasciculata (Michx.) Greene var. fasciculata (=Cassia fasciculata Michx.)	partridge pea
Chamaecrista nictitans (L.) Moench ssp. nictitans var. nictitans (=Cassia nictitans (L.)	sensitive pea
Clitoria mariana L.	butterfly pea
Dalea phleoides (Torr. & A. Gray) Shinners var. phleoides	longbract prairie clover
(=Petalostemon phleoides Torr. & A. Gray)	
Desmodium paniculatum (L.) DC. var. paniculatum	tall tickclover
Desmodium sessilifolium (Torr.) Torr. & A. Gray	sessile-leaved tickclover
Desmodium viridiflorum (L.) DC.	velvetleaf tickclover
Galactia regularis (L.) Britton, Sterns & Poggenb.	downey milkpea
<i>Gleditsia triacanthos</i> L. (=Caesalpiniaceae Family)	honey locust
Lespedeza stuevei Nutt.	
1	tall lespedeza sensitive briar
Mimosa nutallii (DC. ex Britton & Rose) B.L. Turner (=Schrankia nuttallii (DC. ex Britton & Rose) Standl.)	Sensitive bildi
Mimosa microphylla Dryand. (=Schrankia ucinata Willd.)	catclaw briar
~ Orbexilum pendunculatum (Mill.) Rydb. var. psoralioides	Sampson's snakeroot
(Walter) Isely (=Psoralea psoraloides (Walt.) Cory)	Sampson S Shakeroot
* Orbexilum simplex (Nutt. ex Torr. & A. Gray) Rydb.	singlestem scurf pea
(=Psoralea simplex (Nutt. ex Torr. & A. Gray) Rydb.)	Singlestern sourt ped
Pediomelum digitatum (Nutt. ex Torr. & A. Gray) Isely	palm-leaved scurf pea
(=Psoralea digitata Nutt. ex Torr. & A. Gray)	
* <i>Pediomelum hypogaeum</i> (Nutt. ex Torr. & A. Gray) Rydb.	Sara scurf pea
var. <i>subulatu</i> m (Bush) J. Grimes (=Psoralea subulata Bush)	ouru oouri pou
Rhynchosia latifolia Nutt. ex Torr. & A. Gray	broadleaf snoutbean
Strophostyles helvola (L.) Elliott	wild bean
Stylosanthes biflora (L.) Britton, Sterns & Poggenb.	pencil-flower
~ Tephrosia virginiana (L.) Pers.	goat's rue
~ <i>Trifolium campestre</i> Schreb.	low hop clover
Vicia sativa L.	common vetch
Fagaceae – Beech Family	
Quercus falcata Michx.	southern red oak
Quercus falcata Michx	southern red oak
(=Q. falcata Michx. var. triloba (Michx.) Nutt)	
* Quercus incana Bartram	bluejack oak
~ Quercus nigra L.	water oak
* Quercus phellos L.	willow oak
Quercus stellata Wangenh.	post oak
<i>Quercus velutina</i> Lam.	black oak
Fumariaceae – Fumitory Family	
Corydalis micrantha (Engelm. ex A. Gray) A. Gray	slender fumewort
Geraniaceae – Geranium Family	
Geranium carolinianum L.	Carolina cranesbill

Hydrophyllaceae – Waterleaf Family * <i>Hydrolea ovata</i> Nutt. ex Choisy ~ <i>Phacelia strictiflora</i> (Engelm. & A. Gray) A. Gray var. <i>robbinsii</i> Constance	hairy hydrolea prairie blue curls
Juglandaceae – Walnut Family <i>Carya myristiciformis</i> (Michx. f.) Nutt. <i>Carya texana</i> Buckley	nutmeg hickory black hickory
 Lamiaceae – Mint Family * Lycopus virginicus L. ~ Monarda punctata L. Monarda russeliana Nutt. ex Sims. ~ Prunella vulgaris L. ~ Pycnanthemum albescens Torr. & A. Gray * Pycnanthemum tenuifolium Schrad. ~ Salvia lyrata L. Scutellaria elliptica Muhl. ex Spreng. * Scutellaria laterifolia L. Scutellaria parvula Michx. var. missouriensis (Torr.) Goodman & C.A. Lawson (=S. parvula Michx. var. leonardii (Epling) Fernald) 	Virginia bugleweed horsemint red spotted horsemint heal-all whiteleaf mountainmint narrowleaf mountainmint lyreleaf age hairy skullcap sideflowering skullcap skullcap
Lauraceae – Laurel Family <i>Sassafras albidum</i> (Nutt.) Nees (=S. albidium (Nutt.) Nees var. molle (Raf.) Fernald	sassafras
Lentibulariaceae – Bladderwort Family <i>Utricularia gibba</i> L. (=U. biflora Lam.)	twoflower bladderwort
Lythraceae – Loosestrife Family <i>Rotala ramosior</i> (L.) Koehne	toothcup
Melastomaceae – Melastome Family Rhexia mariana L.	meadow beauty
Menyanthaceae – Buckbean Famiy Nymphoides peltata (S.G. Gmel.) Kuntze	yellow floating heart
Monotropaceae – Indian Pipe Family ~ <i>Monotropa hypopithys</i> L.	pinesap
Nymphaeaceae – Water Lily Family <i>Nuphar lutea</i> (L.) Sm. <i>Nymphaea odorata</i> Aiton	yellow pond lily American water lily

Onagraceae – Evening Primrose Family <i>Ludwigia alternifolia</i> L. <i>Oenothera laciniata</i> Hill
Oxalidaceae – Wood Sorrel Family Oxalis stricta L. Oxalis violaceae L.
Plantaginaceae – Plantain Family Plantago lanceolata L. Plantago patagonica Jacq. Plantago virginica L. Plantago wrightiana Decne.
Polemoniaceae – Phlox Family Phlox glaberrima L. Phlox pilosa L.
Polygalaceae – Milkwort Family * <i>Polygala sanguinea</i> L.
 Polygonaceae – Buckwheat Family <i>Eriogonum longifolium</i> Nutt. <i>Eriogonum multiflorum</i> Benth. <i>Polygonella americana</i> (Fisch. & C.A. Mey.) Small <i>Polygonum hydropiperoides</i> Michx. <i>Polygonum persicaria</i> L. <i>Polygonum sagittatum</i> L. <i>Rumex hastatulus</i> Baldw.
Primulaceae – Primrose Family ~ <i>Hottonia inflata</i> Elliott * <i>Lysimachia lanceolata</i> Walter
Ranunculaceae – Buttercup Family <i>Delphinium carolinianum</i> Walter <i>Ranunculus laxicaulis</i> (Torr. & A. Gray) Darby
Rhamnaceae – Buckthorn Family Berchemia scandens (Hill.) K. Koch Ceanothus americanus L. Frangula caroliniana (Walter) A. Gray (=Rhamnus caroliniana Walter)
Rosaceae – Rose Family <i>Crataegus spathulata</i> Michx. <i>Potentilla simplex</i> Michx.

bushy seedbox cutleaf evening primrose

yellow wood sorrel violet wood sorrel

buckhorn plantain wooly plantain paleseed plantain Wright's plantain

smooth phlox prairie phlox

blood polygala

longleaf eriogonum heartsepal wild buckwheat southern jointweed mild water pepper lady's thumb arrowvine heartwing sorrel

American featherfoil lanceleaf loosestrife

prairie larkspur spearwort

rattan vine New Jersey tea buckthorn

littlehip hawthorn old-field cinquefoil

Prunus serotina Ehrh. Rubus occidentalis L. Rubus ostryifolius Rydb.

Rubiaceae – Madder Family Cephalanthus occidentalis L. Diodia teres Walter

- ~ Galium arkansanum A. Gray Galium circaezans Michx.
- Galium obtusum Bigelow
 Galium pilosum Aiton
 Houstonia micrantha (Shinners) Terrell
 (=Hedyotis australis W.H. Lewis & D.M. Moore)

Sapotaceae – Sapodilla Family Sideroxylon lanuginosum Michx. ssp. lanuginosum (=Bumelia lanuginosa (Michx.) Pers.)

Scrophulariaceae – Figwort family

* Agalinis tenuifolia (Vahl.) Raf.
* Castilleja coccinea (L.) Spreng. Castilleja indivisa Engelm. Collinsia violacea Nutt. Gratiola virginiana L. Nuttallanthus canadensis (L.) D.A. Sutton (=Linaria canadensis (L.) Chaz.) Lindernia dubia (L.) Pennell Pedicularis canadensis L. ssp. canadensis (=P. canadensis L. var. dobbsii Fernald)
* Penstemon laxiflorus Pennell Penstemon murrayanus Hook.

Solanaceae – Potato Family Physalis heterophylla Nees. Solanum carolinense L.

Ulmaceae – Elm Family Celtis tenuifolia Nutt.

Urticaceae – Nettle Family ~ Boehmeria cylindrica (L.) Sw.

Valerianaceae – Valerian Family ~ Valerianella radiata (L.) Dufr.

Verbenaceae – Verbena Family Callicarpa americana L. black cherry blackberry highbush blackberry

buttonbush rough buttonweed Arkansas bedstraw woods bedstraw bluntleaf bedstraw hairy bedstraw bluet

chittamwood

slenderleaf agalinus Indian paintbrush Indian paintbrush violet collinsia Virginia hedgehyssop blue toadflax

yellowseed false pimpernell common lousewort

loose flower penstemon cupleaf penstemon

clammy ground cherry Carolina horsenettle

dwarf hackberry

false nettle

common beaked cornsalad

American beautyberry

Phryma leptostachya L. * Verbena simplex Lehm.

Violaceae – Violet Family Viola villosa Walter

Vitaceae – Grape Family *Ampelopsis arborea* (L.) Koehne *Parthenocissus quinquefolia* (L.) Planch. *Vitis aestivalis* Michx. *Vitis rotundifolia* Michx. lopseed narrow-leaved verbena

wooly violet

peppervine Virginia creeper pigeon grape muscadine

SCHOENOPLECTUS HALLII, S. SAXIMONTANUS, AND THE PUTATIVE S. HALLII × S. SAXIMONTANUS HYBRID: OBSERVATIONS FROM THE WICHITA MOUNTAINS WILDLIFE REFUGE AND THE FORT SILL MILITARY RESERVATION 2002 – 2010

Marian Smith Southern Illinois State University Edwardsville, IL 62025 msmith@siue.edu Paul M. McKenzie U.S. Fish and Wildlife Service 101 Park DeVille Drive, Suite A Columbia, MO 65203

Keywords: Schoenoplectus, hybridization, management

ABSTRACT

Schoenoplectus hallii, S. saximontanus, and the putative S. hallii × S. saximontanus hybrid are obligate wetland sedges that occur in the sparsely vegetated margins of ponds, ditches or swales with fluctuating water levels. The species are amphicarpic and have easily identified differences between spikelet and basal achenes. We surveyed selected sites at the refuge in 2001, 2002, and 2007 – 2010, surveyed 4 sites on the Fort Sill Military Reservation in 2009 and 2010, and collected voucher specimens from all populations. Scanning Electron Microsope (SEM) photographs of spikelet and basal achenes indicate distinct morphological differences between species and the presence of "winged" ridges on S. saximontanus. Field observations indicated that populations at all sites vary in size and species distribution annually, and that both parental species appeared to be declining in number. We concluded that in populations where S. hallii and S. saximontanus co-occur, hybridization may be a threat to one or both parental species. The distribution of achenes by waterfowl and ungulates indicates that management to prevent establishment of mixed populations, and therefore hybridization, is not practical. We recommend that S. hallii be evaluated for federal listing under the Endangered Species Act, a range-wide assessment be completed for S. saximontanus, and that all sites with mixed populations should be examined for the presence of hybrids.

INTRODUCTION

Schoenoplectus hallii (A. Gray) S. G. Sm. and S. saximontanus (Fernald) Raynal are sedge species that were once thought to be separated geographically, with S. hallii present in the Midwest and eastern U. S. and S. saximontanus largely confined to the West (Gleason and Cronquist 1991, Beatty et al. 2004). Schoenoplectus hallii has a global ranking of G2 (imperiled). It is listed as "critically imperiled" in eight of the 12 states in which it occurs (NatureServe 2010) and as "imperiled" or "vulnerable" in three other states. Herbarium records indicate that it had been reported from Georgia and Massachusetts prior to 1981 (McKenzie et al. 2007), but those populations are thought to have been extirpated (NatureServe 2010, McKenzie et al. 2007). *Schoenoplectus saximontanus* has a global ranking of G5 (secure) (NatureServe 2010), but it is listed as "critically imperiled" in British Columbia as well as in seven of the 12 states where it occurs. It has been reported from two states in Mexico (Flora of North America 2002). Throughout its range, *S. saximontanus* is considered to be an uncommon species whose distribution is scattered (Flora of North America 2002).

Schoenoplectus hallii and S. saximontanus are obligate wetland species that have similar habitat requirements: most often sandy, rocky, or gravelly soil, occasionally clay, around the margins of ponds, ditches and swales with fluctuating water levels, and a scarcity of other plants as competitors (Flora of North America 2002, McKenzie et al. 2007). They most commonly complete their life cycle as annuals, but short-lived perennials have been reported from Texas (O'Kennon and McLemore 2004). Both species have 2-3 small basal leaves and tufted stems \sim 4-40 cm long with small, inconspicuous rhizomes. The species are amphicarpic (having two distinct types of achenes), with numerous inflorescences on aerial stems containing perfect flowers and occasional, pistillate flowers enclosed in a leaf sheath at the plant base. It is difficult to distinguish between the species from vegetative characteristics alone. Achenes of S. hallii are 2-sided, and flowers have 2lobed styles; whereas, achenes of *S*. saximontanus are distinctly 3-sided, and flowers have 3-lobed styles (Flora of North America 2002). Achenes of both species have transverse ridging, and Magrath (2002) reported that the ridges on S. saximontanus were "winged;" whereas, those on S. hallii were smooth. This character had not been reported prior to his 2002 publication.

Both species have been reported from five states (KS, MO, NE, OK, and TX) (O'Kennon and McLemore 2004, McKenzie et al. 2007, NatureServe 2010); however, only Oklahoma (Magrath 2002), Kansas (C. Freeman, pers. comm. 2006), and Texas (Bob O'Kennon, pers. comm. 2007) have sites with mixed populations (Magrath 2002, Smith et al. 2004). Although *S. saximontanus* occurs in eight counties in OK, it only co-occurs with *S. hallii* in Comanche County (Oklahoma Vascular Plant Database 2006). In 2000, 134 sites at the Wichita Mountains Wildlife Refuge (WMWR) in Comanche County were surveyed for *S. hallii* and *S. saximontanus* by Dr. Larry Magrath and personnel from the refuge (Magrath 2002). In August 2001, M. Smith and P. Mettler-Cherry re-examined the population sites surveyed by Magrath in 2000, and in subsequent years, 2002 and 2007 – 2010, the authors conducted surveys of selected sites at the refuge and Fort Sill Military Reservation (FSMR).

During the 2001 survey, M. Smith noted what appeared to be plants containing achenes that were intermediate between the two species, i.e., some appeared to be 2sided like those of S. hallii, except the usually flat or convex side contained a conspicuous bulge, and the achenes often had the "winged" appearance reported by Magrath (2002). Some plants had both 2and 3-sided achenes, some with, and some without "winged ridges." Other individuals produced only a few viable-looking achenes, with the majority of inflorescences bearing a preponderance of aborted achenes. Smith interpreted these anomalies as suggestive of hybridization between S. hallii and S. saximontanus.

The objectives of this report are to discuss the results of a seed bank study for three sites conducted in 2001; to provide photographic documentation of the wingedridge appearance of *S. saximontanus* achenes reported by Magrath (2002); to summarize field observations made during visits to WMWR in 2002 and 2007 – 2010 and FSMR in 2009 and 2010; and to discuss the presence of putative hybrids of *S. hallii* and *S. saximontanus* and potential conservation concerns associated with hybridization among rare species.

Botanical nomenclature listed in this report follows Yatskievych and Turner (1990) except for *Marsilea vestita* which follows Diggs et al. (1999), *Eleocharis coloradoensis* which follows Smith (Flora of North America 2002), and *Eleocharis ovata* which follows Yatskievych (1999).

CHARACTERISTICS OF SPIKELET AND BASAL ACHENES

In July 2001, spikelet and basal achenes were collected from individuals of *S. hallii* and *S. saximontanus* for Scanning Electron Microscopy (SEM) examination of achene surfaces and cross-sectional shape. Seeds were mounted onto aluminum stubs using double-stick transfer tabs (Electron Microscopy Sciences) and examined with a Hitachi S2460N variable pressure SEM at 30 kV and 20 Pa pressure. Images were digitally recorded using a Noran Voyager III interface. For achene cross-sectional views, plastic blocks containing embedded specimens were sectioned until a transverse median section was obtained.

Both species exhibit transverse ridges (Figure 1 a - h) as described in Flora of North America (Flora of North America 2002) and Flora of the Great Plains (Great Plains Flora Association 1986), except that the distinct difference between ridge morphology in S. hallii compared to S. saximontanus (see Figure 1 a - h) is not discussed in either account. In Flora of the Great Plains (1986), the achenes of both species were described simply as having "transverse ridges," and no description of the amphicarpic (basal) achenes was provided. In Flora of North America (2002), spikelet achenes of both species were described as having "mostly sharp ridges." The basal achenes of S. hallii were described as "rugose with rounded edges," and this is confirmed by the SEMs in this article, but basal achenes of S. saximontanus were characterized in Flora of North America (2002) as "with obscure to evident horizontal ridges." The SEMs portrayed in Figure 1 (a - h) illustrate a distinctive species-difference in ridge shape on spikelet achenes and depict the basal achenes in S. saximontanus as having distinct, sharp ridges (see Figure 1 f, h). Ridges on spikelet achenes in S. saximontanus, compared to S. hallii, are sharper and more elaborate in

design, resulting in the "winged" appearance described by Magrath (2002). Ridges on basal achenes are subtle and incomplete in *S. hallii* (see Figure 1 e, g), but prominent, more complete, and "winged" in *S. saximontanus* (see Figure 1 f, h).

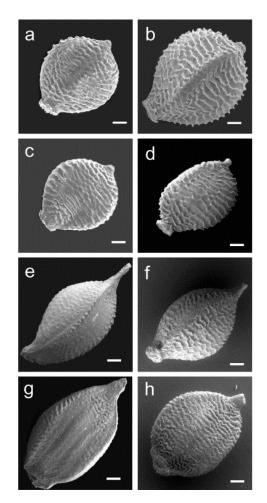


Figure 1 Surface views of front (a) and opposite (c) sides of spikelet achene of *S*. *hallii* and front (b) and opposite (d) sides of spikelet achene of *S*. *saximontanus*. Front (e) and opposite (g) sides of basal achene of *S*. *hallii* and front (f) and opposite (h) sides of basal achene of *S*. *saximontanus*. Bars = 130 μ m

Figure 2 (a - b) illustrates the often described cross-sectional shape of spikelet achenes: "plano-convex" (Flora of North America 2002) for *S. hallii* (see Figure 2 a) and "equilaterally, sharply trigonous," (Flora of North America 2002) for *S. saximontanus* (see Figure 2 b). Magnified views of surface features (Figure 2 e – h) in both types of achenes reinforce the differences in surface ridges between the two species shown in Figure 1. Ridges in *S. hallii* spikelet achenes (see Figure 2 e) are not sharp compared to the elaborate, sharp-tipped wings of *S. saximontanus* (see Figure 2 f). Surfaces of the basal achene of *S. hallii* (see Figure 2 g) are mostly absent of ridges, but those of *S. saximontanus* (see Figure 2 h) are prominent and elaborate, although not quite as sharp as in the spikelet achene.

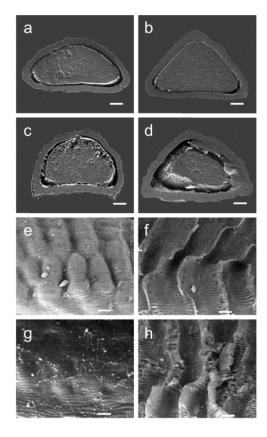


Figure 2 Cross-sectional views of spikelet (a) and basal (c) achenes of *Schoenoplectus hallii* and spikelet (b) and basal achenes (d) of *S. saximontanus*. Bars = 100 μ m. Surface views of ridges of spikelet (e) and basal (g) achenes of *S. hallii*. Surface views of ridges of spikelet (f) and basal (h) achenes of *S. saximontanus*. Bars = 20 μ m

SOIL SEED BANK STUDY OF 2001

In 2001, 15 plants were selected at each of three sites that had been included in Magrath's 2002 report (Boggy Flat, Quanah Parker Lake, and Hollis Lake at WMWR), and soil cores (1.75 cm \times 8 cm) were collected and separated into 2 cm sections. Achenes were recovered, counted, and separated by species and soil depth. Achenes were tested for viability as in Malone (1967); all achenes were viable. Eighty-six percent of the achenes were contained within the first 2 cm of the soil. All three sites had achenes of both species present in the soil; however, at the time of the site visit, extant populations at Boggy Flats appeared to have only S. saximontanus and Hollis Lake had only S. hallii. Both species were present in the extant population at Quanah Parker. The presence of viable achenes of S. hallii and S. saximontanus in the soil at all three sites indicates either the undetected presence of both species during the site visit or the existence of both species at each site in previous years. As achenes of these species may remain dormant and viable for extended periods (McClain et al. 1997), their presence in the above-ground population might have occurred many years in the past and the current extant population may reflect an increase in one species and a decline or elimination of the other.

FIELD OBSERVATIONS 2002, 2007 – 2010

In 2002, the authors visited selected sites at WMWR (Table) and specimens of *Schoenoplectus* were collected from five sites where *S. hallii* or *S. saximontanus* had been previously collected or reported (Magrath 2002). Field and laboratory observations indicated that the achenes of most spikelets of *S. hallii* and *S. saximontanus* were mature and exhibited characteristics typical for the species as described in the introduction; however, some achenes of the presumed S. hallii and S. saximontanus hybrids appeared to be abortive or malformed, while other putative hybrids produced both fully developed 2- and 3-sided achenes. Individuals of the putative hybrids were noticeably taller with longer inflorescences than either parent, and the spikelet scales were conspicuously brownish-orange (Smith et al. 2004). Specimens were sent to Dr. Alfred Schuyler, Dr. S. Galen Smith, and Dr. Anton Rezniceik for verification. The presence of a putative hybrid (McKenzie #2028) was independently confirmed by each scientist based on morphological characters (Smith et al. 2004). Subsequent visits to WMWR and FSMR were made to collect material for a future genetic analysis.

The only site to be visited every year from 2007 – 2010 was Medicine Tank at WMWR; therefore, we will discuss some apparent trends in population size and species distribution at that site. In 2002, S. hallii was abundant and concentrated on the west shore of the pond while S. saximontanus was abundant on the south and east shore (see Table). The putative hybrid was scattered but present in various locations. In contrast, populations of all three species were abundant and widely distributed along the shore in 2007. In 2008, populations of S. hallii and S. saximontanus, although present at the site (see Table), appeared to be smaller and more restricted than in 2002 and 2007. As in 2007, S. hallii and S. saximontanus were scattered along the entire pond margin without any noticeable concentration at different shore edges; however, the putative S. hallii \times S. saximontanus hybrids were more abundant and concentrated along the northwest shore (see Table).

In 2009, the water level at Medicine Tank was lower than had been observed on previous visits, and there was a noticeable reduction in population size of *S. hallii* and *S. saximontanus*, especially the latter which was scattered and extremely rare. The putative hybrid was common and the population had expanded beyond the northwest shore (see Table). *Schoenoplectus hallii* was rare at Medicine Tank in 2010, and *S. saximontanus*, which had been present in previous years, was notably absent. Conversely, the putative hybrid was abundant (see Table) and had apparently overtaken habitat around the pond that had been previously occupied by *S. hallii* or *S. saximontanus*.

In addition to Medicine Tank, we visited three other sites in 2009 at WMWR, and water levels were lower at all of them than in previous years. Ponds that were composed mostly of hardened clay were lacking, or had very few, Schoenoplectus individuals (Ingram Pond and Rock Dam), but ponds that had rocks, cobble, and/or sand had healthy flowering and fruiting plants (Medicine Tank, Quanah Parker Lake), although in reduced numbers compared to 2007 and 2008 (see Table). No bulrushes were observed at two sites where S. saximontanus was found in 2007 (Boggy Flat and unnamed pond ~1.5 mi east, see Table). In 2010, we collected S. saximontanus from Grama Lake, which was the only time we documented any bulrush at this site during our visits between 2001 and 2010. Other sites were visited and vouchers were collected at WMWR from 2007 - 2010 as noted in the table.

We visited four sites at FSMR in 2009 and two sites in 2010 and documented the presence of *S. hallii*, *S. saximontanus*, and putative *S. hallii* × *S. saximontanus* hybrids at the reservation in both years. In 2009, *S. hallii* was found at all four sites, and *S. saximontanus* and the putative hybrid were present at two (see Table). In 2010 *S. hallii* and *S. saximontanus* had disappeared from Pottawatomie Pond and the putative hybrid had increased in number (see Table). *Schoenoplectus* spp. observed at FSMR were all at ponds that had a sandy or gravelly shoreline. Our collections constitute the first documented records of *S. hallii, S.* *saximontanus*, and the putative hybrids from FSMR and confirm the predictions of Magrath (2002) that the two parent species would likely be discovered at Fort Sill.

HABITAT AND PLANT ASSOCIATES

Schoenoplectus hallii, S. saximontanus, and putative S. hallii × S. saximontanus hybrids occurred along the edges of ponds and lakes at WMWR and at FSMR that had receding shorelines. Very little vegetation competed with the Schoenoplectus spp. in the narrow marginal areas along the water's edge. Although the majority of populations of Schoenoplectus occurred in sandy or gravelly/rocky soil, a few were found on clay substrates. Many sites were heavily grazed by elk, bison, or longhorn cattle, and the soil was significantly trampled by ungulates or disturbed by foraging feral hogs.

Plant associates varied widely from site to site and included the following species: Ammannia coccinea Rottb., Bacopa rotundifolia (Michx.) Wettst., Bergia texana (Hook.) Seub. ex Walp., Cyperus acuminatus Torr. & Hook. ex Torr., C. difformis L., C. setigerus Torr. & Hook., C. squarrosus L., Eclipta prostrata (L.) L., Eleocharis acicularis (L.) Roem. & Schult., E. atropurpurea (Retz.) J. Presl. & C. Presl., E. coloradoensis (Britt.) Gilly, E. ovata (Roth) Roem. & Schult., E. parvula (Roem. & Schult.) Link ex Bluff, Nees & Schauer, Juncus spp., Justicia americana (L.) Vahl, Lindernia dubia (L.) Pennell, Marsilea vestita Hook. & Grev., Panicum scoparium Lam., Paspalidium geminatum (Forssk.) Stapf., var. geminatum, Phyla nodiflora (L.) Greene, Pilularia americana A. Braun, Tribulus terrestris L., and *Xanthium strumarium* L.

DISCUSSION

We observed culms of *S. saximontanus*, *S. hallii*, and the putative hybrid flowering and producing viable fruit from July through mid-October, indicating that they are able to

do so anytime during the growing season when conditions for germination and growth are favorable (Baskin et al. 2003). At all four sites where S. hallii and S. saximontanus occur in mixed populations, the putative hybrid was present (Medicine Tank, Quanah Parker Lake, Zania Pond, and Pottawatomie Pond) (see Table), suggesting that hybridization is a definite possibility in any mixed population. Soil cores collected in 2001 from Boggy Flat and Hollis Lake appeared to contain achenes of both S. hallii and S. saximontanus, but as hybrids had not been verified at the time the cores were processed, it is possible that hybrid seed might have been present. In any case, it is likely that in some years individuals of both species (and possibly those of the putative hybrid) may emerge at those sites in the future.

Schoenoplectus hallii and S. saximontanus cooccur at Rhodes Lake, TX where they are on opposite ends of the reservoir (Robert O'Kennon, pers. comm. Oct. 2007); however, the ease with which waterfowl may transport achenes for long distances (deVlaming and Proctor 1968; Powers et al. 1978) suggests that the species may form a mixed population in the near future. Historically, S. hallii and S. saximontanus were apparently allopatric and likely came in contact with one another via the muddy feet of migrating waterfowl, as suggested by McClain et al. (1997) and Beatty et al. (2004). It was postulated by Magrath (2002) that large herbivores such as bison and other animals were dispersal agents for achenes of S. hallii and S. saximontanus at WMWR. Our observations support the possibility of elk and bison as dispersal agents, as hoofprints of both were evident at every site. As neither elk nor bison are common at FSMR, we propose that achenes of the two species at the reservation are more likely to have been transported among ponds via waterfowl, white-tail deer, and feral hogs. Toni Hodgkins, naturalist at FSMR, reported that feral hogs equipped

with radio transmitters were documented moving to and from the reservation and noted that 1200 pigs had been captured in less than a year (Toni Hodgkins, pers. comm. 2010).

There is an historical site in Kansas where *S. hallii* and *S. saximontanus* were known to be sympatric in 1997, but Craig Freeman at the University of Kansas examined the voucher specimens from the site in 2006 and did not note any evidence of hybridization (Craig Freeman, pers. comm. 2006). Nevertheless, it would be advisable to continue to monitor these areas in KS and TX to further assess the incidence of hybridization in mixed populations.

We suggest that when viewing live material in the field, or when examining dried voucher specimens, a thorough evaluation of multiple spikelets from different plants is necessary for reliable identification of plants collected from populations where S. hallii and S. saximontanus co-occur. Spikelets should be carefully examined for the presence of mixed style numbers, abortive achenes, or abnormally shaped, 2- or 3-sided achenes. Some spikelets that have achenes characteristic of one species may have an achene that would be better identified as the other species. Thus, the failure to examine multiple spikelets from different plants may result in a premature determination of specimens collected from mixed populations.

The presence of *S. hallii* × *S. saximontanus* hybrids at WMWR and FSMR may threaten the long term persistence of *S. hallii* and *S. saximontanus* in OK and constitute a threat to the conservation of the species in North America. According to conservation geneticists, the possible dangers of hybridization are numerous and pose a serious threat to the survival of rare species that hybridize with a closely related congener (Levin et al. 1996). Although the extinction of rare species typically is

attributed to environmental change that renders the habitat unsuitable (Harrison 1991; National Research Council 1995), hybridization may have a profound effect on the persistence of a species (Rieseberg 1991; Ellstrand 1992; Rieseberg and Linder 1999). Hybrids compete for space and resources with parental species and reduce the potential for plants to replace themselves, thereby inhibiting the growth of their populations – the lower the rate of population growth, the greater the potential for extinction in a variable environment (Menges 1992). The numerical disadvantage of a rare species is compounded by the proliferation of fertile hybrids (Rhymer and Symberloff 1996). If one of the species is rarer than the other, the addition of hybrids to a population containing congeners decreases the proportional representation of the less abundant parent. In time, backcrossing can result in the assimilation of the rare species whose genetic identity will become extinct, and, over evolutionary time, the DNA of the former rare species may be lost from the gene pool altogether (Rieseberg et al. 1996). In the case of S. hallii and S. saximontanus in OK, both of which appear to be rare, it is possible that although much of the DNA of both species may survive, the two species may be subsumed into a new species with a new genetic identity.

FUTURE ACTIONS

Because of the impossibility of controlling achene dispersal-agents at WMWR and FSMR, it is unlikely that management to prevent hybridization is possible. We recommend, however, that monitoring of the populations of *Schoenoplectus* at WMWR and FSMR be continued to confirm or dismiss the importance of hybridization as a threat in the area.

Given the documented hybridization between *S. hallii* and *S. saximontanus* in

Oklahoma and the identification of new threats to S. hallii in Illinois (McKenzie et al. 2010), the species should be re-evaluated as a possible candidate for federal listing under the Endangered Species Act. No range-wide status assessment exists for S. saximontanus, and as noted in the introduction, the species is critically imperiled in seven of the 12 states where it has been documented. We recommend that a thorough analysis of the distribution and size of populations of S. saximontanus be made, and that potential threats to the species be assessed. Further studies may provide evidence that this species may also warrant protection under the Endangered Species Act.

ACKNOWLEDGMENTS

The observations reported in this paper could not have been made without the help of a large number of friends and colleagues. We thank Dr. Paige Mettler-Cherry and Dr. Nancy Parker for their company during our many trips to Oklahoma, their help in the field, and their advice on Schoenoplectus issues in general. Sam Waldstein, former refuge manager, was essential to our project and, without his help during our first visit in 2001 our work at WMWR would not have been possible. Dr. Larry Magrath served as our inspiration to undertake this work, generously shared his observations from 2000, and allowed us to view the voucher specimens at the USAO herbarium. Robert O'Kennon of BRIT spent a day with us in pouring rain, cheerfully taking us to the Schoenoplectus sites he had recently discovered in north central Texas. Volunteer Donna Phillips took the time during our subsequent visits to WMWR to help us locate small ponds in the research area. At Fort Sill, FSMR biologist Toni Hodgkins enabled us to visit ponds and search for Schoenoplectus during our 2009 and 2010 visits to the Lawton area.

LITERATURE CITED

- Baskin, C. C., J. M. Baskin, E. W. Chester, and M. Smith. 2003. Ethylene as a possible cue for seed germination of *Schoenoplectus hallii* (CYPERACEAE), a rare summer annual of occasionally flooded sites. *American Journal of Botany* 90:620-627.
- Beatty, B. L., W. F. Jennings, and R. C.
 Rawlinson. 2004. *Schoenoplectus hallii* (Gray) S.G. Sm. (Hall's bulrush): a technical conservation assessment.
 Prepared for the USDA Forest Service, Rocky Mountain Region, Species
 Conservation Report. Peer review administered by Center for Plant
 Conservation, St. Louis, Missouri.
- deVlaming, V. and V. W. Proctor. 1968. Dispersal of aquatic organisms: Viability of seeds recovered from the droppings of captive killdeer and mallard ducks. *American Journal of Botany* 55:20-26.
- Diggs, G. M. Jr., B. L. Lipscomb, M. D.
 Reed, and R. J. O'Kennon. 1999.
 Illustrated flora of north central Texas. *Sida*, *Botanical Miscellany* 16:1-1626.
- Elstrand, N. C. 1992. Gene flow by pollen: Implications for plant conservation genetics. *Oikos* 63:77-93.
- Flora of North America Editorial Committee, eds. 2002. Vol. 2. Magnoliophyta: Commelinidae (in part): Cyperaceae. Oxford University Press, New York.
- Gleason, H. A. and A. Cronquist. 1991.
 Manual of Vascular Plants of Northeastern United States and Adjacent Canada, Ed. 2.
 New York Botanical Garden, Bronx.
- Great Plains Flora Association. 1986. R. L.McGregor, Coordinator; T. M. Barkley,R. E. Brooks, and E. K. Schofield (eds.)*Flora of the Great Plains*. University Press of Kansas, Lawrence.
- Harrison, S. 1991. Local extinction in a metapopulation context: An empirical evaluation. *Biological Journal of Linnean Society* 3-88.

- Levin, D. A., J. Francisco-Ortega, and R. K. Jansen. 1996. Hybridization and the extinction of rare plant species. *Conservation Biology* 10:10-16.
- Magrath, L. K. 2002. *Schoenoplectus hallii* and *S. saximontanus*. 2000 Wichita Mountain Wildlife Refuge survey. *Oklahoma Native Plant Record* 2:54-62.
- Malone, C. R. 1967. A rapid method for enumeration of viable seeds in soil. *Weeds* 15:381-382.
- McClain, W. E., R. D. McClain, and J. E. Ebinger. 1997. Flora of temporary sand ponds in Cass and Mason counties, Illinois. *Castanea* 62:65-73.
- McKenzie, P. M., S. G. Smith, and M. Smith. 2007. Status of *Schoenoplectus hallii* (Hall's bulrush) (Cyperaceae) in the United States. *Journal Botanical Research Institute of Texas* 1:457-481.
- McKenzie, P. M., M. Smith, and T. Kelley. 2010. Observations of Hall's bulrush (*Schoenoplectus hallii*) (Cyperaceae) in Mason County Illinois in 2009. *Transactions of Illinois State Academy of Science* 103:97-108.
- Menges, E. S. 1992. Stochastic modeling of extinction in plant populations. In: Fiedler and Jain, eds. *Conservation Biology*, pp. 253-275. Chapman and Hall, New York.
- National Research Council. 1995. Science and the endangered species act. National Academy Press, Washington, DC.
- NatureServe. 2010. NatureServe Explorer: An online encyclopedia of life [web application]. Version 5.0 NatureServe, Arlington, Virginia. Available at: http://www.natureserve.org/explorer. (accessed: Feb 2010)
- O'Kennon, R. J. and C. McLemore. 2004. Schoenoplectus hallii (CYPERACEAE), a

globally threatened species new for Texas. *Sida* 21:1201-1204.

- Oklahoma Vascular Plant Database. 2006. http://www.coordinatesolutions.com/o vpd/ovpd.aspx. (accessed: Feb 2010)
- Powers, K. D., R. E. Noble, and R. H. Chabreck. 1978. Seed distribution by waterfowl in southwestern Louisiana. *Journal of Wildlife Management* 42:598-605.
- Rhymer, J. M. and D. Simberloff. 1996. Extinction by hybridization and introgression. *Annual Review of Ecological Systems* 27:83-109.
- Rieseberg, L. H. 1991. Hybridization in rare plants: Insights from case studies in *Cerocarpus* and *Helianthus*. D. A. Falk and K. E. Holsinger, eds. In: *Genetics and Conservation of Rare Plants*, pp. 171-181. Oxford University Press, New York.
- Rieseberg, L. H. and C. R. Linder. 1999. Hybrid classification: insights from genetic map-based studies of experimental hybrids. *Ecology* 80:361-370.
- Rieseberg, L. H., B. Sinervo, C. R. Linder, M. C. Ungerer, and D. M. Arias. 1996. Role of gene interactions in hybrid speciation: Evidence from ancient and experimental hybrids. *Science* 272:741-645.
- Smith, M., P. McKenzie, P. Mettler-Cherry, and S. G. Smith. 2004. A putative hybrid of *Schoenoplectus saximontanus* and *S. hallii* (CYPERACEAE) from Oklahoma. *Sida* 21:475-479.
- Yatskievych, G. 1999. *Steyermark's Flora of Missouri* – Volume 1 – Revised ed. Missouri Department of Conservation, Jefferson City.
- Yatskievych, G. and J. Turner. 1990. Catalogue of the Flora of Missouri. Monograph Systematic Botany, Missouri Botanical Garden 37:1-345.

Oklahoma Native Plant Record Volume 11, December 2011

-			Species		
Date	Area	Site	collected	*Collection #	Abundance
July 2002	WMWR	HP	Sh	2023	~100 flowering and fruiting culms
		MT	Sh	2029	Abundant on W shore
			Ss	2027	Abundant on S & E shore
			Ну	2028	Scattered
		IP	Sh	2031	~ 200 plants scattered
		ET	Sh	2035	~ 200 plants scattered
		BF	Ss	2026	Abundant- 100,000s of plants
Oct 2007	WMWR	MT	Sh	2315	Common, widely distributed
			Ss	2316	Common, widely distributed
			Ну	2317	Common, scattered
		BF	Ss	2313	~ 100 plants scattered
		RD	Ss	2318	\sim 10,000s plants
		Pond E of RD	Ss	2314	~ 100 plants scattered
Sep 008	WMWR	MT	Sh	2349	Thinly scattered
			Ss	2350	Thinly scattered
			Ну	2351	Concentrated along NW corner of pond
Aug 2009	WMWR	MT	Sh	2391	Uncommon, scattered
			Ss	2392	Rare
			Ну	2393	Common
		IP	Sh	2395	Uncommon, scattered
		QPL	Sh	2406	Rare
			Ss	2407	Rare, scattered
			Ну	2408	Uncommon, scattered
		RD	Ss	2390	Rare

TableSchoenoplectus hallii (Sh), S. saximontanus (Ss), and putative hybrid (Hy) at Wichita Mountain Wildlife Refuge (WMWR) and Fort SillMilitary Reservation (FSMR) at selected sites: 2002, 2007-2010; Boggy Flat (BF), Elmer Thomas (ET), Engineer Pond (EP), Grama Lake (GL),Hollis Pond (HL), Ingram Pond (IP), Medicine Tank (MT), Pottawatomie Pond (PP), Quanah Parker Lake (QPL), Rock Dam (RD), Zania Pond (ZP)

			Species		
Date	Area	Site	collected	*Collection #	Abundance
Aug 2009	FSMR	ET	Sh	2397	30 plants, scattered
		EP	Sh	2399	50 plants, scattered
		ZP	Sh	2400	Rare
			Ss	2401	Rare
			Hy	2402	Common
		PP	Sh	2403	Abundant
			Ss	2404	Uncommon, scattered
			Hy	2405	Abundant
Sep 2010	WMWR	MT	Sh	2459	Rare
			Ну	2406	Common Uncommon, scattered; heavily
		RD	Ss	2457	grazed
		GL	Ss	2464	Uncommon, scattered
Sep 2010	FSMR	ET	Sh	2462	Uncommon, scattered
		РР	Hy	2461	$\sim 10,000$ s plants

Table continued

*Collections were sent to one or more of the following herbaria: BRIT, MICH, MO, OKL, WISC, UMO

SPATIAL GENETIC STRUCTURE OF THE TALLGRASS PRAIRIE GRASS *DICHANTHELIUM OLIGOSANTHES* (SCRIBNER'S PANICUM)

Molly J. Parkhurst¹ Andrew Doust¹ Margarita Mauro-Herrera¹ Jeffrey M. Byrnes² Janette A. Steets¹ janette.steets@okstate.edu ¹Oklahoma State University Department of Botany 301 Physical Sciences Stillwater, OK 74078

²Oklahoma State University Boone Pickens School of Geology 105 Noble Research Center Stillwater, OK 74078

Keywords: Mixed-mating system, population differentiation, population genetic structure

ABSTRACT

The spatial genetic structure within plant populations and genetic differentiation among populations can vary in strength due to the forces of natural selection, gene flow and genetic drift. In this study, we investigate the level of genetic structure and differentiation present in Oklahoma populations of *Dichanthelium oligosanthes* (Schult.) Gould (Scribner's panicum), a C₃ grass native to the United States and a frequent member of the tallgrass prairie. To examine fine-scale spatial genetic structure of *D. oligosanthes*, we collected leaves from 48 spatially separated plants in a population in Stillwater, OK. To examine genetic differentiation among adjacent populations, we sampled leaf tissue from eight individuals at each of three populations in Stillwater, OK. DNA was extracted from these samples and Inter-Simple Sequence Repeats (ISSR) markers were amplified. Within a single population of *D. oligosanthes*, we found a weak and non-significant negative relationship between genetic similarity and geographical distance. In contrast, we found evidence for moderate and significant genetic differentiation among populations.

INTRODUCTION

Genetic variation is the sum total of all genetically based variation within and among species and represents an important component of biodiversity. Maintaining genetic variation within and among native plant populations is a central goal of conservation biology, as genetic variation provides the raw material for plants to evolve in response to environmental change and contributes to population fitness (Leimu et al. 2006, Reed and Frankham 2003, Wagner et al. 2011). Given the importance of genetic variation for the maintenance and evolution of plant populations, it is critical to understand the levels of genetic diversity within species and determine how this variation is organized spatially, both within and between populations.

The way in which genetic variation is organized within plant populations (spatial genetic structure) is affected by many factors, including selection pressures within a population, mating system (relative production of selfed to outcrossed individuals), and whether gene flow is restricted (Loiselle et al. 1995, Loveless and Hamrick 1984, Miyazaki and Isagi 2000, Perry and Knowles 1991). Plants are sessile organisms and gene flow can only occur through pollen and seed movement. Restricted dispersal of seed or pollen can occur due to the dispersal mechanism utilized by the plant, the presence of physical barriers, and when rates of inbreeding are high. Under these conditions, population genetic structure is predicted to develop, with a clustering of genetically related individuals among plants within a population and a high level of genetic differentiation among geographically separated populations (Epperson and Li 1997, Hamrick and Nason 1996).

Dichanthelium oligosanthes is a short, C_3 perennial grass native to the United States that is commonly found in open prairies, meadows, and disturbed areas (Kansas State University Libraries 2011). Although it is not a dominant species of the tallgrass prairie, it is a highly consistent member of this community (Adams and Wallace 1985).

The mating system and ecology of D. oligosanthes are likely to affect population genetic structure. First, D. oligosanthes has a mixed mating system resulting from the production of two types of flowers within a single individual: closed, self-fertilizing cleistogamous flowers and open, potentially outcrossing chasmogamous flowers. The chasmogamous flowers form on a terminal panicle in May – June, are open-pollinated for a short time, then close and self-fertilize in the absence of pollination (Bell and Quinn 1985, Freckmann and Lelong 2003). The cleistogamous flowers extend from within the sheath and appear from June - November (Bell and Quinn 1985, Freckmann and Lelong 2003). Grasses in the genus Dichanthelium tend to reproduce proportionately more through cleistogamy than through chasmogamy (Bell and Quinn 1985, Bell and Quinn 1987). This high rate of self-fertilization should lead to significant spatial genetic structure within populations and genetic differentiation among populations. Second, as an element of the tallgrass prairies, D. oligosanthes has a relatively short stature of less than 45 cm. In tallgrass prairies, D. oligosanthes is imbedded within a matrix of the dominant grass species (Andropogon gerardii, Panicum virgatum, Sorgastrum nutans, and Schizachyrium scoparium). These

dominant grasses can reach heights of up to 2 m (USDA, NRCS 2011) and thus may serve as a physical barrier to *D. oligosanthes* pollen and seed dispersal, further contributing to spatial genetic structure within populations. In contrast to the first two factors, which would tend to increase fine-scale spatial genetic structure within *D. oligosanthes* populations, one aspect of *D. oligosanthes* fruit dispersal could lead to reduced genetic structure. In particular, the fruits of *D. oligosanthes* can disperse great distances when the inflorescence breaks off of the plant, leading to a "tumbleweed" dispersal mechanism (Campbell et al. 1983).

We examined spatial genetic structure and population differentiation of D. oligosanthes in Stillwater, OK. Through our study we aimed to answer the following questions: (1) How is genetic diversity distributed spatially within a population of D. oligosanthes? (2) Are populations of D. oligosanthes genetically differentiated? To address these questions, we examined genetic diversity in Inter-Simple Sequence Repeats (ISSR)markers in three D. oligosanthes populations. Within a single population of *D. oligosanthes*, we expected genetically related individuals to be aggregated spatially, and thus we expected to find a negative correlation between genetic similarity and geographical distance. Among populations of *D. oligosanthes*, we expected to find a significant degree of genetic differentiation.

MATERIALS AND METHODS

How is genetic diversity distributed spatially within a population of *D. oligosanthes*?

We collected leaf samples from 48 representatives of *D. oligosanthes* from the southern portion of the Oklahoma State University (OSU) Cross Country Field South in Stillwater, OK (CCS population: 36°08'12.0"N, 97°04'36.6"W; Figure 1). Thirty-eight of these samples were located across three approximately parallel transects, each approximately 36 m in length and five to ten m apart. Material from an additional ten plants was collected at increasing distances from these transects. Locations of all plants were recorded using a Trimble 2008 GeoXH handheld GPS with an external Zephyr antenna and were differentially corrected relative to a stationary base station to increase the accuracy of the GPS data. The locations of each of the 48 plant samples were mapped on an aerial photograph of the site (see Figure 1).

We extracted DNA from each individual following the procedure of Junghans and Metzlaff (1990). For each sample, genomic DNA concentrations were quantified using NanoDrop spectrophotometry and 1% agarose gel electrophoresis. We tested 12 ISSR markers (Zietkiewicz et al. 1994) from the UBC primer set #9 (University of British Columbia Nucleic Acid-Protein Service Unit) and successfully amplified five of these via polymerase chain reaction (PCR) (Table 1). We ran 10 μ L PCRs using 1 μ L of diluted genomic DNA (from a 1:30 dilution corresponding to 10 to 20 ng of genomic DNA), dNTPs at 100 µM each, ISSR primer at 0.5 µM, 1X Green GoTaq® Flexi Buffer (Promega, Madison, WI), MgCl₂ at 1.5 mM, and 0.6 units of Promega Go Taq polymerase (Promega, Madison, WI) Amplifications were performed in an Eppendorf Mastercycler Pro thermal cycler using the following touchdown conditions: single initial denaturation step at 95° C for two minutes; followed by 32 cycles each with three steps: a denaturation step at 94° C for 40 seconds, followed by an annealing touchdown step (starting at 56° C or 58° C, depending on the primer, for two cycles; then 54° C or 56° C for two cycles to reach 52° C or 54° C for 28 cycles) for 40 seconds, and an extension step at 72° C for 50 seconds; and a final extension at 72° C for eight minutes. PCR products were resolved electrophoretically on 1% agarose gels run at 150 V in TBE buffer, visualized by staining with ethidium bromide, and photographed under UV illumination. Fragment sizes were

estimated using Hyper Ladder II (Bioline, Tauton, MA). ISSR bands were scored as present or absent for each plant sample. Bands were scored and compared by two different people to reduce subjectivity in the scoring procedure. Twelve individuals showed poor amplification of some of the ISSR markers, resulting in missing data in the dataset. As the statistical analyses described below do not allow for missing data, we eliminated these individuals from further analysis. Thus, the analysis of genetic structure in the CCS population used a total of 36 individuals.

Geographical distances between plants were estimated using Euclidean distances. Genetic similarities between plants were estimated using a matrix of Dice genetic similarity coefficients created with the PAST program (Hammer et al. 2001). The Dice coefficient, which weighs positive matches between plant samples and ignores negative matches, was used because ISSRs are dominant markers, and therefore only the presence of a PCR product is meaningful. A Mantel test was performed to determine whether there was a relationship between geographical distance and genetic similarity with both the PAST program and the *zt* program (Bonnet and Van der Peer 2009), using 10,000 permutations of the data. Finally, to examine hierarchal clustering in the samples, we generated an Unweighted Pair Group Method with Arithmetic mean (UPGMA) tree of the genetic distance data using the PAST program (Hammer et al. 2001). A bootstrap analysis using 1000 replications was performed to determine the support for the hierarchical clustering.

Are populations of *D. oligosanthes* genetically differentiated?

To determine whether nearby populations of *D. oligosanthes* in Stillwater, OK are genetically differentiated from one another, we examined the diversity of six ISSR markers (see Table 1) in three populations (Figure 2): OSU Cross Country Field South (CCS; 36°08'12.0"N, 97°04'36.6"W), OSU Cross Country Field North (CCN; 36°08'20.8"N, 97°04'39.9"W), and Lakeview Road West (LW; 36°08'42.6"N, 97°05'38.9"W). Populations CCS and CCN were separated from one another by 0.3 km, CCN and LW by 1.6 km and CCS and LW by 1.8 km. Within each of the three populations, we collected leaf material from eight randomly chosen individuals. We extracted DNA, amplified ISSR markers via PCR, and visualized PCR products via gel electrophoresis as described above.

We used the program Hickory version 1.1 (Holsinger and Lewis 2003, Holsinger et al. 2002) to estimate genetic differentiation among populations of *D. oligosanthes*. Hickory allows for estimation of heterozygosity within populations and genetic differentiation among populations using dominant markers without assuming Hardy-Weinberg equilibrium (Holsinger and Lewis 2003, Holsinger et al. 2002). This program uses Bayesian methods to estimate the average heterozygosity within subpopulations (hs; an analog of the expected heterozygosity) and test for genetic differentiation among populations through the unbiased estimate θ^{I} , which is analogous to Weir and Cockerham's (1984) F_{ST} (Holsinger and Lewis 2003). θ^{II} measures the amount of genetic differentiation among contemporaneous populations (Holsinger and Lewis 2003); values close to 0 suggest little genetic differentiation between populations (i.e., complete panmixia), whereas values close to one suggest genetic isolation between populations.

The D. oligosanthes ISSR data were fitted to four models: (1) full (uses non-informative priors for f), (2) f = 0 (assumes no inbreeding; *f* is analogous to the inbreeding coefficient F_{IS} , (3) $\theta^{II} = 0$ (assumes no population differentiation), and (4) f-free (decouples the estimation of θ^{II} from the estimation of f). In each model run, the default parameters were used (burn-in = 5,000; number of samples =25,000; thinning = 5). The models were compared to one another based on the deviance information criterion (DIC) of Spiegelhalter et al. (2002) implemented in Hickory. The full model best fit our dataset as it provided the lowest DIC value; thus, we present the results of the full model in the Results section.

RESULTS

How is genetic diversity distributed spatially within a population of *D. oligosanthes*?

The five ISSR primers produced a total of 21 loci that could be reliably scored in the CCS population, of which 13 were polymorphic (Table 2).

The Mantel test revealed a non-significant negative relationship between genetic similarity and geographic distances, with a negative correlation between geographical distance and similarity (r = -0.042, P = 0.755). The UPGMA analysis revealed weak hierarchical clustering among the plant samples, consistent with the results of the Mantel test (data not shown). Thus, we find no evidence for significant spatial genetic structure in the CCS population of *D. oligosanthes.*

100 m

Figure 1 Map of the Oklahoma State University Cross Country Field South (CCS) *Dichanthelium oligosanthes* population in Stillwater, OK. Yellow points indicate the location of *D. oligosanthes* plants sampled; base image is an aerial photograph acquired by the USDA Farm Service Agency.

500 m

Figure 2 Map of *Dichanthelium oligosanthes* populations in Stillwater, OK; base image from Google Earth. CCS = Oklahoma State University (OSU) Cross Country Field South, CCN = OSU Cross Country Field North, LW = Lakeview Road West.

Table 1 ISSR primers used for DNA amplification from UBC primer set #9 (University of British Columbia Nucleic Acid-Protein Service Unit). The right-most column indicates whether the given primer was used in the study of genetic diversity in the Oklahoma State University Cross Country Field South population of *D. oligosanthes* (A) and/or the study of genetic differentiation among three Stillwater, OK populations of *D. oligosanthes* (B).

Primer	Sequence (5' - 3')	Study using primer
UBC - 808	AGA GAG AGA GAG AGA GC	В
UBC - 809	AGA GAG AGA GAG AGA GG	A and B
UBC - 810	GAG AGA GAG AGA GAG AT	A and B
UBC - 816	CAC ACA CAC ACA CAC AT	A and B
UBC - 817	CAC ACA CAC ACA CAC AA	A and B
UBC - 818	CAC ACA CAC ACA CAC AG	A and B

Table 2 Numbers of loci reliably scored, numbers of polymorphic loci, and percentage of polymorphic loci for each of the five ISSR primers used in the study of genetic diversity in the Oklahoma State University Cross Country Field South (CCS) population of *D. oligosanthes*.

Primer	Number of loci reliably scored ¹	Number of reliably scored polymorphic loci	Percentage polymorphic loci ²
UBC - 809	6	3	50.0
UBC - 810	4	2	50.0
UBC - 816	5	2	40.0
UBC – 817	3	3	100.0
UBC - 818	3	3	100.0
Total	21	13	61.9

¹ For all primers, additional bands were present but could not be reliably scored (i.e., band was weak or too close to adjacent band). The number of loci reliably scored does not include these additional unscored bands.

 2 Given that bands that could not be reliably scored were excluded from this calculation, this is an approximate percentage of polymorphic loci.

Table 3 Number of loci reliably scored, number of polymorphic loci, and percentage of polymorphic loci for each of the six ISSR primers used in the study of genetic differentiation among three *D. oligosanthes* populations in Stillwater, OK.

Primer	Number of loci reliably scored ¹	Number of reliably scored polymorphic loci	Percentage polymorphic loci ²
UBC - 808	13	4	30.8
UBC - 809	6	3	50.0
UBC - 810	7	5	71.4
UBC - 816	8	5	62.5
UBC - 817	4	4	100.0
UBC - 818	3	3	100.0
Total	41	24	58.5

Are populations of *D. oligosanthes* genetically differentiated?

The six ISSR primers produced a total of 41 loci that could be reliably scored, of which 24 were polymorphic across the three populations (Table 3). In the CCS and LW populations 51.2% of the 41 ISSR loci were polymorphic and in the CCN population 53.7% were polymorphic. The average heterozygosities (*hs*) within each of the three populations were similar (mean \pm s.d.; CCS: 0.36 \pm 0.022, CCN: 0.35 \pm 0.023, LW: 0.37 \pm 0.020), indicating that genetic diversity does not differ drastically among the populations. On average, *hs* was 0.36 \pm 0.016 across the three populations.

In the Bayesian analysis of population genetic differentiation using the full model, θ^{II} (analogous to Weir and Cockerham's (1984) F_{ST}) was estimated to be 0.134 (s.d. = 0.0428), indicating a moderate proportion of differentiation among populations.

DISCUSSION

Given the central role of genetic diversity in the evolutionary process, it is critical to understand how genetic diversity is distributed within and among populations. In this study, we found no evidence for fine-scale spatial genetic structure within a single population of *D. oligosanthes*. However, we found significant levels of genetic differentiation among three *D. oligosanthes* populations. Below we expand on these findings and discuss potential factors contributing to the patterns of genetic structure and differentiation observed in *D. oligosanthes*.

In the CCS population of *D. oligosanthes*, we found a negative but non-significant relationship between genetic similarity and geographic separation of plants. The lack of significance is contrary to our expectations, although the trend fits our hypothesis that plants in close spatial proximity to one another were more genetically similar than plants that were more spatially separated.

Such findings can be contrasted with those of other plant species, such as the selfcompatible annual herb Polygonum thunbergii. In this species, Konuma and Terauchi (2001) found a significant negative correlation between genetic similarity and geographic distance (r = -0.64). The difference in finescale spatial genetic structure of these plant species may be due to differences in seed dispersal. Grasses in the genus Dichanthelium may disperse fruits over greater distances as the inflorescence breaks off of the plant, leading to a "tumbleweed" dispersal of the fruits (Campbell et al. 1983). In contrast, P. thunbergii shows restricted seed dispersal, with seeds being dispersed in close proximity to the maternal plant (Konuma and Terauchi 2001). An additional factor that may contribute to the non-significant relationship found between genetic similarity and geographic distance in the CCS population of D. oligosanthes is low germination and recruitment of selfed (i.e., cleistogamous) individuals. However, in a related Dichanthelium species, D. clandestinum, Bell and Quinn (1985) found that cleistogamous seeds germinated and emerged, both in the greenhouse and in the field, at a higher rate than chasmogamous seeds. Future work is needed in D. oligosanthes to determine whether differences in cleistogamous and chasmogamous germination and recruitment may contribute to the observed patterns in spatial genetic structure.

We found significant levels of genetic differentiation among three *D. oligosanthes* populations. This pattern of genetic differentiation could be due to the cleistogamous mating system of *D. oligosanthes*. Grasses in the genus *Dichanthelium* tend to reproduce proportionately more through cleistogamy than through chasmogamy (Bell and Quinn 1985, Bell and Quinn 1987). With elevated levels of inbreeding, genetic differentiation between populations is expected. The differentiation we observed amongst three neighboring populations of *D. oligosanthes* indicates that it is necessary to conserve multiple populations of this species to maintain genetic diversity.

ACKNOWLEDGEMENTS

Funding for this study was provided by National Science Foundation through Oklahoma Louis Stokes Alliance for Minority Participation and Oklahoma State University. Special thanks to Theresa Henley for the aerial photograph used as the base for Figure 1.

LITERATURE CITED

- Adams, D. E. and L. L. Wallace. 1985. Nutrient and biomass allocation in five grass species in the Oklahoma tallgrass prairie. *American Midland Naturalist* 113:170-181.
- Bell, T. J. and J. A. Quinn. 1985. Relative importance of chasmogamously and cleistogamously derived seeds of *Dichanthelium clandestinum* (L.) Gould. *Botanical Gazette* 146:252-258.
- Bell, T. J. and J. A. Quinn. 1987. Effects of soil moisture and light intensity on the chasmogamous and cleistogamous components of reproductive effort of *Dichanthelium clandestinum* populations. *Canadian Journal of Botany* 65:2243-2249.
- Bonnet, E. and Y. Van der Peer. 2009. zt: a software tool for simple and partial Mantel tests. (http://www.psb.ugent.be/ ~erbon/mantel/).
- Campbell, C. S., J. A. Quinn, G. P. Cheplick, and T. J. Bell. 1983. Cleistogamy in grasses. *Annual Review of Ecology and Systematics* 14:411-441.
- Epperson, B. K. and T. Li. 1997. Gene dispersal and spatial genetic structure. *Evolution* 51:672-681.
- Freckmann, R. W. and M. G. Lelong. 2003. Dichanthelium. M. E. Barkworth, K. M. Capels, S. Long, and M. B. Piep (eds.). Flora of North America North of Mexico, Vol. 25. New York.

Hammer, O., D. A. T. Harper, and P. D. Ryan. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. *Paleontologia Electronica* 4:9. (http://palaeo-electronica.org/2001 _1/past/issue1_01.htm).

- Hamrick, J. L. and J. D. Nason. 1996.
 Consequences of dispersal in plants. In:
 O. E. Rhodes, R. K. Chesser, and M. H.
 Smith (eds.). *Population Dynamics in Ecological Space and Time.* The University of Chicago Press, Chicago, Illinois.
- Holsinger, K. E. and P. O. Lewis. 2003. *Hickory: A Package for Analysis of Population Genetic Data, version 1.1.* Department of Ecology and Evolutionary Biology, University of Connecticut Storrs, Connecticut. (http://darwin.eeb.uconn.edu/ hickory/hickory.html).
- Holsinger, K. E., P. O. Lewis, and D. K. Dey. 2002. A Bayesian approach to inferring population structure from dominant markers. *Molecular Ecology* 11:1157-1164.
- Junghans, H. and M. Metzlaff. 1990. A simple and rapid method for the preparation of total plant DNA. *Biotechniques* 8:176.
- Kansas State University Libraries. 2011. Scribner Dichanthelium. (M. Haddock, Editor) Retrieved June 29, 2011, from Kansas Wildflowers and Grasses: www.kswildflowers.org.
- Konuma, A. and R. Terauchi. 2001.
 Population genetic structure of the self-compatible annual herb; *Polygonum thunbergii* (Polygonaceae) detected by multilocus DNA fingerprinting. *American Midland* Naturalist 146:22-127.
- Leimu, R., P. Mutikainen, J. Koricheva, and M. Fischer. 2006. How general are positive relationships between plant population size, fitness, and genetic variation. *Journal of Ecology* 94:942-952.
- Loiselle, B. A., V. L. Sork, J. Nason, C. Graham. 1995. Spatial genetic structure of a tropical understory shrub, *Psychotria* officinalis (Rubiaceae). *American Journal of Botany* 82:1420-1425.
- Loveless, M. D. and J. L. Hamrick. 1984. Ecological determinants of genetic

structure of plant populations. *Annual Review of Ecology and Systematics* 15:65-95.

- Miyazaki, Y. and Y. Isagi. 2000. Pollen flow and the intrapopulation genetic structure of *Heloniopsis orientalis* on the forest floor as determined using microsatellite markers. *Theoretical Applied Genetics* 101:718-723.
- Perry, D. J. and P. Knowles. 1991. Spatial genetic structure within three sugar maple (*Acer saccharum* Marsh.) stands. *Heredity* 66:137-142.
- Reed, D. H. and R. Frankham. 2003. Correlation between fitness and genetic diversity. *Conservation Biology* 17:230-237.
- Spiegelhalter, D. J., N. G. Best, B. R. Carlin, and A. van der Linde. 2002. Bayesian measures of model complexity and fit. *Journal of the Royal Statistical Society, B, Methodological* 64:583-616.

- USDA, NRCS. 2011. The PLANTS Database (http://plants.usda.gov, 23 June 2011). National Plant Data Center, Baton Rouge, LA.
- Wagner, V., W. Durka, and I. Hensen. 2011. Increased genetic differentiation but no reduced genetic diversity in peripheral vs. central populations of a steppe grass. *American Journal of Botany* 98:1173-1179.
- Weir, B. S. and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. *Evolution* 38:1358-1370.
- Zietkiewicz, E., A. Rafalski, and D. Labuda. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. *Genomics* 20:176–183.

THE EFFECTS OF REMOVAL OF *JUNIPERUS VIRGINIANA* L. TREES AND LITTER FROM A CENTRAL OKLAHOMA GRASSLAND

Jerad S. Linneman¹ Matthew S. Allen² Michael W. Palmer² mike.palmer@okstate.edu ¹USDA

Animal & Plant Health Inspection Service 4700 River Rd., Unit 153, 5D-06G Riverdale, MD 20737-1228

²Oklahoma State University Department of Botany 301 Physical Sciences Stillwater, OK 74078-3013

Keywords: biodiversity, experiment, invasion, ordination

ABSTRACT

We studied species composition after *Juniperus virginiana* tree and litter removal in a central Oklahoma grassland. Tree removal had the most significant effect on stems per quadrat and vegetation cover. Litter removal effects were not as strong. However, stems per quadrat and vegetation cover in litter removal treatments were higher than in litter intact treatments. Species richness increased for all treatments in the first year post-treatment, after which species richness declined at every sampling period and in every treatment for the duration of the study. Absolute cover of typical prairie species increased in the cut with no litter treatment whereas cover of woody forest species increased in the no cut with no litter treatment. We suggest that even without prescribed fire, redcedar tree removal may result in a return of prairie vegetation. However, additional efforts besides tree removal may be required to restore some invaded grasslands.

INTRODUCTION

For the last several decades, there has been a growing interest in management techniques required to maintain and/or restore vegetation. The two most common problems faced in grassland restoration are habitat destruction and the loss of native species diversity due to the encroachment of woody species. Concerns about decreased diversity and the invasion of exotic woody species have spurred extensive study throughout the world including Argentina (Ghersa et al. 2002), Australia (Costello et al. 2000, Whiteman and Brown 1998), Canada (Peltzer and Köchy 2001), French Prealps (Barbaro et al. 2001), South Africa (Holmes et al. 2000, Holmes and Marais 2000) and the United States (Petranka and

McPherson 1979, Callaway and Aschehoug 2000, Fitch et al. 2001, Briggs et al. 2002b, van Els et al. 2010).

In the United States, two examples of fire adapted vegetation types that have received much attention regarding restoration are the longleaf pine sandhill vegetation of northwestern Florida (Kush et al. 1999, Provencher et al. 2000, Provencher et al. 2001) and the tallgrass prairie of the eastern Great Plains (Axmann and Knapp 1993, Briggs et al. 2002a, Briggs et al. 2002b). In both instances the elimination of fire has caused a decrease in species richness and facilitated their conversion into forests. Tallgrass prairie researchers have suggested that reductions in abundance and altered community composition are related to a multitude of environmental factors associated with woody invasion. Examples of such altered environmental factors include soil moisture (Engle et al. 1987, Facelli and Pickett 1991b), solar radiation (Smith and Stubbendieck 1990, Facelli and Pickett 1991a & b) and soil temperature (Weaver and Rowland 1952, Hulbert 1969). In addition, leaf litter from woody species may alter grassland litter dynamics (Facelli and Pickett 1991b).

Within the tallgrass prairie region, eastern redcedar (Juniperus virginiana L.) has increased dramatically, converting millions of hectares of grassland to woodland or closed canopy forest (Schmidt and Leatherberry 1995, Briggs et al. 2002a). Redcedar invasion is not restricted to impacted or degraded sites and exhibits high survivorship in diverse native grasslands (Ganguli et al. 2008). Typical control methods include mechanical felling via chainsaws, large cutting machinery, or cabling and prescribed fire. Although felling and prescribed fire are effective in reducing redcedar abundance in prairies, the continuous application of this management technique has left a significant gap in our understanding about the role redcedar litter plays in tallgrass prairie restoration. In particular, we do not understand the role of the overstory tree versus the leaf litter in determining species composition.

We conducted this study to disentangle the effects of redcedar overstory canopy and accumulated litter on prairie species richness and composition. Elucidating these effects will allow for a more informed approach to redcedar removal and prairie restorations.

METHODS

Study Site

We conducted this experiment at the James K. McPherson Botanical Preserve located 16 km west of Stillwater, Oklahoma (36°06'00"N, 97°12'30"W). After a brief period of row crop agriculture, the site was converted into pastureland and grazed until the 1960's. Oklahoma State University (OSU) purchased the land and managerial control was turned over to the Department of Botany. In 1995, the Department of Botany introduced a burning regime, consisting of a three to five year return interval, to the northwestern half of the preserve with the goal of stimulating the return of a native tallgrass prairie community.

Tree Selection and Classification

We selected 47 potential study trees based on several criteria including tree isolation, minimization of surrounding tree effects, the existence of an intact litter layer underneath the tree, and tree size. We recorded canopy diameter in the northsouth and east-west direction, height, stem diameter at both 10 cm and diameter-atbreast-height (DBH), and gender. For those trees with multiple stems, we recorded separate diameter measurements for each primary stem, which we later converted into basal area (BA) at 10 cm and DBH, respectively. We randomly assigned all trees into two groups (cut and no cut); ten study trees were then randomly selected from each group.

Sampling Design

Sampling design was based on a two by two factorial design of tree removal and litter removal. Underneath each study tree, we positioned two 50 cm × 50 cm quadrats so that each quadrat was completely under the canopy of the overstory redcedar. In addition, we positioned the two quadrats in such a way to maintain homogenous litter cover between quadrats and to minimize inter-quadrat variation in vegetation. After permanently marking each quadrat, we randomly assigned a litter removal treatment to one of the two quadrats under each tree. We conducted an initial vegetation sampling in May 2001, prior to treatment application. All subsequent sampling occurred biennially in May and September of 2002 – 2003.

Sampling of species composition consisted of identifying each plant species rooted inside the quadrat and estimating its percent cover to the nearest percent for any cover less than 5% and to the nearest 5% for any cover over 5%. We marked unknown species for later identification. Species nomenclature and code symbols follow that of the USDA PLANTS database (USDA 2004). In addition, at several locations within this paper we refer to the response of *J. virginiana* redcedar seedlings and not the study tree or any of its structures.

Experimental Treatments

The tree removal treatment was applied using a chainsaw and pruning shears between 17 and 19 May, 2001. We removed crowns and branches from the top down, with the aid of rigging equipment, to minimize the amount of disturbance to the litter layer and vegetation in the quadrats. We removed litter from litter removal quadrats by hand, taking care to minimize disturbance to vegetation. However, plants that had germinated in the litter layer and had not reached the soil surface were removed along with the litter during the initial treatment. The litter removal treatment was applied between 21 and 24 May, 2001. Treatment acronyms for tree and litter removal are: cut with no litter (CN), cut with litter (CL), no cut with no litter (NN), and no cut with litter (NL); i.e. the control.

At each post-treatment sampling, we removed newly accumulated litter from the litter removal quadrats after observing vegetation. On a few occasions we removed branches from surrounding trees that started to grow over the tree removal quadrats.

Statistical Analyses

Statistical analysis included the use of both ANOVA and ordination techniques.

We performed repeated measures ANOVA using PROC MIXED for each environmental variable recorded using SAS (Version 8). For each environmental variable, initial (pre-treatment) observations were used as a baseline for all subsequent samplings (post-treatment). Preliminary analyses included tree gender as an explanatory variable. However, because gender showed no significant main or interaction effects, we removed gender and re-ran all ANOVAs.

We analyzed compositional data using direct gradient analysis. Direct gradient analysis uses species data and directly relates it to measured environmental variables, in this case dummy variables representing the treatments. We selected partial Redundancy Analysis (pRDA) because it is generally considered more appropriate in short-term experimental studies where species responses are believed to be linear and over relatively short gradients. All ordinations were conducted using CANOCO FOR WINDOWS 4.5 (ter Braak and Šmilauer 2002) on absolute cover of each species within a sample.

We developed *a priori* hypotheses about the potential affect of treatment application on species cover. We hypothesized that tree removal and litter removal would have a positive effect on stems per quadrat, vegetation cover and species richness. In addition, the combination of tree removal with litter removal, conditions most similar to open prairie (CN), would have the largest effect; whereas, the combination of no tree removal and no litter removal, the control condition (NL), would have no effect or the least positive effect on species. We have not included any correction factors for statistical problems associated with multiple comparisons (Legendre and Legendre 1998, Hallgren et al. 1999).

RESULTS

Density and Richness

There were significant differences in stem density (p < 0.001) between all quadrats prior to treatment application. However, the difference between the means of the densest and sparsest treatments was only 2.5 stems per quadrat. Both the cut with litter (CL) and cut with no litter (CN) treatments had the lowest stems per quadrat prior to treatment application. Stem density increased for all treatments except no cut with litter (NL) treatment by the second sampling. This increase was roughly 2-2.5 fold thus resulting in an increase of 10-13 stems per treatment (Figure 1). Significant differences (p=0.0052) in density between NL & NN (no cut-no litter) only occurred in May 2002. On the other hand, there were significant differences in stems density between litter treatments within the cut treatment, CL and CN, in September 2002 (p=0.0366) and 2003 (p=0.0483). The cut treatment had a much more pronounced effect on density regardless of litter treatment. In September and May 2002 -2003, there were significant differences between both CN and NN (p=0.006, 0.004,0.001 respectively) and CL and NL (p=0.0052, 0.003, 0.0159 respectively).

As with density, there were significant differences in initial species richness (p < 0.001) between all quadrats prior to treatment application. Again, the magnitude of the mean difference was quite small, fewer than 1.0 species per treatment. Additionally, the CL and CN treatments again had the lowest richness. The increase in species richness by the second sampling was not as dramatic as that observed in stems per quadrat by the same sampling. Generally increases in mean species richness were in the order of 0.4-1.25 species per quadrat (Figure 2). Significant differences in species richness between NL and NN only occurred in September 2002 (p=0.0244); however May 2002 was marginally

insignificant (p=0.0533). Conversely, significant differences in species richness between CL and CN occurred in both May 2002 (p=0.0381) and September 2002 (p=0.0026). The cut treatment had a slightly weaker influence on species richness as compared to stems per quadrat. Significant differences in species richness were observed between CN and NN in September 2002 (p=0.0055) and 2004 (p=0.0007). Significant differences in species richness were also observed between CL and NL in September 2002 (p=0.0457) and September 2003 (p=0.0358).

Vegetation Cover

There was no significant difference in total vegetation cover prior to treatment application. There was a substantial increase in total cover through samplings two and three in both the CL and CN treatments (Figure 3). This increase in total cover was in the order of 8.75-11.25%. On the other hand, total cover in both the NN and NL treatments only increased by $\sim 2\%$. No significant differences in total cover were observed between the NL and NN treatments at any sampling. On the other hand, there was a significant difference between the CL and CN treatments in September 2003 (p=0.0024). Although litter removal did not have a major effect on total cover, tree removal did. Significant differences between CN and NN were observed in September and May 2002-2003 (p=0.001, 0.0023, <0.001 respectively). In addition, significant differences between CL and NL were also observed in September and May 2002-2003 (p=0.0071, 0.0075, 0.0318 respectively).

Unlike total vegetation cover, there were significant differences (p<0.001) in initial mean forb cover between treatments; however these differences were only 0.125%. Forb cover in both of the cut treatments, CL and CN, increased over the duration of the study although both no cut treatments, NL and NN, were relatively

static throughout the study (Figure 4). There were no significant differences in forb cover for NL or NN treatments at any time, whereas a significance difference between CL and CN only occurred in September 2002 (p=0.0056). The tree removal treatment yielded a significant difference between CN and NN in May 2002 (p<0.0001) and September 2002 (p=0.0486), whereas a significant difference between CL and NL occurred only in May 2003 (p=0.0131).

Graminoid cover responded similarly to forb cover with significant differences in initial mean graminoid cover between treatments (p=0.0164). Once again, the differences between treatments were small (0.15%). Graminoid cover increased over the first post-treatment sampling for all treatments (Figure 5). Graminoid cover was not significantly affected by litter in NL or NN treatments. However, litter had a significant effect in September 2003 (p=0.0012) in the CL and CN treatment. The tree removal treatment had a stronger affect with significant differences in graminoid cover between CN and NN in September and May 2002-2003 (*p*=0.0253, 0.0092, <0.0001 respectively) and between CL and NL in September 2002 (p=0.0133). Marginal insignificance was also observed between CL and NL in May, 2003 (p=0.052).

Significant differences in woody cover (p=0.0197) were also present at the onset of this study. However, differences in mean woody cover between treatments were once again small (0.15%). Woody cover increased in all treatments over the duration of this study although these increases were only in the 0.5-2.0% range (Figure 6). In fact, no significant differences were found between any combination of litter removal and/or tree removal treatments at any sampling.

Direct Gradient Analysis

Partial Redundancy Analysis (pRDA) was conducted to test a priori hypotheses regarding the effects of tree removal, litter removal and their interaction at each sampling. Results of pRDA only showed significant differences in absolute species cover between litter removal treatments in May, 2002 and September, 2002 (*p*<0.001). Conversely, pRDA showed significant differences (p < 0.001) in absolute species cover between tree removal treatments at every post-treatment sampling period. The litter removal with tree removal interaction effect was only significant in September $2002 \ (p=0.029)$. Therefore, it appears that tree removal does have a stronger effect on species composition over time than litter removal. When treatment centroids by sampling period are plotted in ordination space three items become apparent: First, tree removal results in an increased magnitude of movement of treatment centroids over time (Figure 7 a, b). Second, litter removal also results in an increased magnitude of movement of treatment centroids over time (see Figure 7 a, b). Finally, the overall amount of compositional change of cut treatments was greater than litter removal treatments.

A pRDA scatter plot of absolute species cover, treatment centroids and passive environmental variables based on all posttreatment samplings is displayed in Figure 8. The four dummy treatment variables accounted for 5.4% of the total explained species variance. Although woody cover was not significantly affected by tree removal or litter removal treatments at any sampling, woody forest species such as Cercis canadensis, Celtis occidentalis, Parthenocissus quinquefolia, Quercus stellata, Juniperus virginiana seedlings, and Ulmus rubra all dominated the no cut treatments with a slightly higher cover in the litter treatment (NL). Alternatively, grasses typical of the open prairie such as Tridens flavus, Eragrostis

spectabilis, Dicanthelium oligosanthes, Sorghastrum nutans, Bothriochloa saccharoides, and Sporobolus compositus dominated the tree removal treatments. In addition, each one of these graminoids (with the exception of *T. flavus*) also had higher absolute cover in the litter removal treatment (CL). Sedges such as *Carex festucacea* and *C. bushii* both dominated the NN treatment. On the other hand, forb species typically associated with pastures such as *Ambrosia* sp., *A. psilostachya*, *Amphiachyris dracunculoides, Acalypha gracilens*, and *Croton monanthogynus* dominated the CN treatment.

DISCUSSION

Increases in stem density and species richness were expected as a result of litter removal and tree removal treatments. Our results are similar to those of Monk and Gabrielson (1985) who observed a stronger influence of overstory cover compared to litter cover on old field vegetation. For all manipulated quadrats (CL, CN, and NN) increased stems per quadrat is more likely to be due to increased perennial graminoid stems than woody or forb stems. Reductions in stems per quadrat in NL and NN treatments after September 2002 are likely the result of continued overstory tree presence and its associated reductions in solar radiation. Studies by Monk and Gabrielson (1985), Yager and Smeins (1999), and Joy and Young (2002) have all suggested that reductions in light similar to those observed in this study resulted in significant decreases in plant density and cover. On the other hand, we believe that reductions in stems per quadrat in September 2003 for CL and only the slight increase for CN were caused by relatively little precipitation received in 2002 - 2003. Total precipitation recorded at the Marena Mesonet Station, located approximately 4 km from the study site, was 63.0 cm from October 2002 to September 2003. This precipitation total is only 64-69% of annual

precipitation for the site of 91.4-99.1 cm (Oklahoma Mesonet, Oklahoma Climatological Survey).

By comparison, the decreases in species richness over the course of this study suggest relatively little recruitment of new species occurred regardless of treatment. Provencher et al. (2000) found that species richness also decreased after the application of felling and slash burning in Florida's sandhill vegetation. However, Provencher et al. (2000) observed an increase in species richness two years after treatment application. Results from pRDA (see Figure 8) suggest a transition from pretreatment species composition dominated by mesic or forest species to post-treatment tallgrass prairie species. It is possible that during this transition, forest species were lost faster than prairie species were added; therefore, we observe a decrease in species richness. However, the majority of species present in each treatment's cumulative species pool were, on average, not present in each quadrat. Generally only 10-20% of each treatment's cumulative species pool was observed in each quadrat (see Figure 2). It should be noted that species richness may be strongly linked to density (i.e. rarefaction effect) and thus the richness-per-quadrat should not be interpreted independently of stem counts (Palmer et al. 2000). This suggests that given more time species richness may increase as these rare species become more universally distributed into cut quadrats.

Linneman and Palmer (2006) suggested that species composition underneath redcedar trees may be a random subset of the species from the surrounding matrix. The results from this study suggest that this subset of species is nonrandom and comprised of two main types. The first group appears to be remnant prairie grasses, and the second is disturbance-tolerant forbs. The absolute cover of almost all graminoid species increased as a result of tree removal. Of particular interest is that the most

abundant graminoid species were native tallgrass prairie species such as Sorghastrum nutans and Sporobolus compositus. Conversely, the positive response of disturbance favoring forb species like Amphiachyris dracunculoides, Ambrosia psilostachya and Croton monanthogynus may lead to further reductions in species richness if they become dominant. Several researchers, including Clary (1971), Clary and Jameson (1981), Brockway et al. (1998), and Provencher (2000), have all observed increases in graminoid and forb cover following overstory tree removal. In this study, annual species increased in cut treatments; however, few annuals dominated cover in any treatment. Although the increase of disturbance-tolerant forbs may be inhibitive in the short term, the observed increases in absolute cover of native tallgrass prairie species suggest that even without subsequent prescribed fire treatments, community composition may return to its pre-invasion condition with time.

The long-term effects of eastern redcedar in grasslands are unclear. The results from this study suggest the continued presence of eastern redcedar in grasslands may (1) facilitate the forestation of grasslands or at least (2) continue to reduce the tallgrass prairie species pool in invaded grasslands. Briggs et al. (2002a) determined that species present in the prairie were not consistently different from those found in a closed canopy redcedar forest. However, both this study and Linneman and Palmer (2006) show an apparent shift in community composition away from tallgrass prairie species toward forest tree species such as Cercis canadensis, Celtis occidentalis, Juniperus virginiana, Quercus stellata and Ulmus rubra. These same tree species frequently occur under redcedar canopies in nearby Cross Timbers forest environments as well (van Els et al. 2010) and, it should be noted, the cedars studied here were in relatively close proximity to Cross Timbers stands. Additionally, it is

possible that the dynamics of cedar invasion may differ in old fields (studied here) from those in previously undisturbed prairie.

Although complete extirpation of native tallgrass prairie species is not likely in the short term, areas with extensive invasion and subsequent tree removal may require seeding of prairie species to encourage the return of characteristic prairie vegetation. This will inevitably increase the cost of restoration beyond the already high cost of tree removal (Bidwell et al. 2002). Areas with less than 75% cover of redcedar, however, have greater potential for recovery, as most tallgrass prairie species persist in inter-tree spaces until this point (Limb et al. 2010).

Continued invasion by eastern redcedar in the Great Plains has serious implications not only for the existence of native grasslands but also for biodiversity and potential future restorations. As shown here, removal of redcedar, even in the absence of subsequent prescribed fire, has the potential to increase the number of stems per quadrat and increase species richness for several years post-treatment. Litter removal, either by mechanical means or prescribed fire, should further benefit and accelerate the return of tallgrass prairie vegetation. Without tree removal, these grasslands will continue to lose native prairie species in favor of mesic and/or forest species. In the absence of broad-scale control efforts, redcedar will continue to fragment and replace native grasslands, perhaps to the extent that future prairie restoration efforts may require seed inputs beyond what is available from surrounding sources via natural dispersal.

ACKNOWLEDGMENTS

We thank Sam Fuhlendorf for his editorial comments. In addition, Jared Laufenberg aided with tree removal. Mark Payton's help with SAS analyses and programming was greatly appreciated. The Payne County Audubon Society and the James K. McPherson Fund, administered by the Department of Botany at Oklahoma State University, provided funding for this study.

LITERATURE CITED

- Axmann, B. D. and A. K. Knapp. 1993. Water relations of *Juniperus virginiana* and *Andropogon gerardii* in an unburned tallgrass prairie watershed. *Southwestern Naturalist* 38:325-330.
- Barbaro, L., T. Dutoit and P. Cozic. 2001. A six-year experimental restoration of biodiversity by shrub-clearing and grazing in calcareous grasslands of the French Prealps. *Biodiversity Conservation* 10:119-135.
- Bidwell, T. G., D. M. Engle, R. E. Masters, and J. R. Weir. 2002. Fire effects in Oklahoma. Oklahoma Cooperative Extension Service. F-2877.
- Briggs, J. M., G. A. Hoch and L. C. Johnson. 2002a. Assessing the rate, mechanisms, and consequences of the conversion of tallgrass prairie to *Juniperus virginiana* forest. *Ecosystems* 5:578-586.
- Briggs, J. M., A. K. Knapp, and B. L. Brock. 2002b. Expansion of woody plants in tallgrass prairie: A fifteen-year study of fire and fire-grazing interactions. *American Midlands Naturalist* 147:287-294.
- Brockway, D. G., K. W. Poutcalt, and R. N. Wilkins. 1998. Restoring longleaf pine wiregrass ecosystems: Plant cover, diversity and biomass following low-rate hexazinone application on Florida sandhills. *Forest Ecology Management* 103:159-175.
- Callaway, R. M. and E. T. Aschehoug. 2000. Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. *Science* 290:521-523.
- Clary, W. P. 1971. Effects of Utah juniper removal on herbage yields from

Springerville soils. *Journal of Range Management* 24:373-378.

- Clary, W. P. and D. A. Jameson. 1981. Herbage production following tree and shrub removal in the pinyon-juniper type of Arizona. *Journal of Range Management* 34:109-113.
- Costello, D. A., I. D. Lunt, and J. E. Williams. 2000. Effects of the invasion by the indigenous shrub *Acacia sophorae* on plant composition of costal grasslands in south-eastern Australia. *Biological Conservation* 96:113-121.
- Engle, D. M., J. F. Stritzke, and P. L. Claypool. 1987. Herbage standing crop around eastern red cedar trees. *Journal of Range Management* 40:237-239.
- Facelli, J. M. and S. T. A. Pickett. 1991a. Plant litter: Light interception and effects on an old-field plant community. *Ecology* 72:1024-1031.
- Facelli, J. M. and S. T. A. Pickett. 1991b. Plant litter: Its dynamics and effects on plant community structure. *Botanical Review* 57:1-32.
- Fitch, H. S., P. von Achen and A. F. Echelle. 2001. A half century of forest invasion on a natural area in northeastern Kansas. *Transactions of the Kansas Academy of Science* 104:1-17.
- Ganguli, A. C., D. M. Engle, P. M. Mayer, and E. C. Hellgren. 2008. Plant community diversity and composition provide little resistance to Juniperus encroachment. *Botany* 86:1416-1426.
- Ghersa, C. M., D. O. Ferranro, M. Omacini, M. A. Martinez-Ghersa, S. Pereaman, E. H. Satorre, and A. Soriano. 2002. Farm and landscape level variables as indicators of sustainable land-use in the Argentine Inland-Pampa. *Agricultural Ecosystems Environment* 93:279-293.
- Hallgren, E., M. W. Palmer, and P. Milberg. 1999. Data diving with cross-validation: an investigation of broad-scale gradients in Swedish weed communities. *Journal of Ecology* 87:1-16.

- Holmes, P. M. and C. Marais. 2000. Impacts of alien plant clearance on vegetation in the mountain catchments of the Western Cape. *South African Forestry Journal* 189:113-117.
- Holmes, P. M., D. M. Richardson, B. W.
 Van Wilgen, and C. Gelderblom. 2000.
 Recovery of South African fynbos vegetation following alien woody plant clearing and fire: Implications for restoration. *Australian Ecology* 25:631-639.
- Hulbert, L. C. 1969. Fire and litter effects in undisturbed bluestem prairie in Kansas. *Ecology* 50:874-877.
- Joy, D. A.and D. R. Young. 2002. Promotion of mid-successional seedling recruitment and establishment by *Juniperus virginiana* in a costal environment. *Plant Ecology* 160:125-135.
- Kush, J. S., R. S. Meldahl, and W. D. Boyer. 1999. Understory plant community response after 23 years of hardwood control treatments in natural longleaf pine (*Pinus palustris*) forests. *Canadian Journal of Forest Resources* 29:1047-1054.
- Legendre, P. and L. Legendre. 1998. Numerical Ecology. Elsevier, Amsterdam.
- Linneman J. S. and M. W. Palmer. 2006. The effect of *Juniperus virginiana* L. on plant species composition in an Oklahoma grassland. *Community Ecology* 7: 235-244.
- Limb, R. F., D. M. Engle, A. L. Alford, and E. C. Hellgren. 2010. Tallgrass prairie plant community dynamics along a canopy cover gradient of eastern redcedar (*Juniperus virginiana* L.). Rangeland Ecology Managment 63: 638-644.
- Monk, C. D. and F. C. Gabrielson. 1985. Effects of shade, litter and root competition on old-field vegetation in South Carolina. *Bulletin of the Torrey Botanical Club* 112:383-392.
- Palmer, M. W., D. B. Clark, and D. A. Clark. 2000. Is the number of tree species in small tropical forest plots nonrandom? *Community Ecology* 1:95-101.

Peltzer, D. A. and M. Köchy. 2001. Competitive effects of grasses and woody plants in mixed-grass prairie. *Journal of Ecology* 89:519-527.

- Petranka, J. W. and J. K. McPherson. 1979. The role of *Rhus copallina* in the dynamics of the forest-prairie ecotone in north-central Oklahoma. *Ecology* 60:956-965.
- Provencher, L., B. J. Herring, D. R.
 Gordon, H. L., Rodgers, G. W. Tanner,
 L. A. Brennan and J. L. Hardesty. 2000.
 Restoration of northwest Florida
 sandhills through harvest of invasive *Pinus clausa. Restoration Ecology* 8:175-185.
- Provencher, L., B. J. Herring, D. R.
 Gordon, H. L., Rodgers, G. W. Tanner,
 L. A. Brennan and J. L. Hardesty. 2001.
 Effects of hardwood reduction
 techniques on longleaf pine sandhill
 vegetation in northwest Florida. *Restoration Ecology* 9:13-27.
- Schmidt, T. L. and E. C. Leatherberry. 1995. Expansion of eastern redcedar in the lower midwest. *Northern Journal of Applied Forestry* 12: 180-183.
- Smith, S. D. and J. Stubbendieck. 1990. Production of tall grass prairie herbs below eastern redcedar. *Prairie Naturalist* 22:13-18.
- ter Braak, C. J. F. and P. Šmilauer. 2002. *Canoco for Windows 4.5*. Biometris-Plant Research International. Wageningen, Netherlands.
- USDA, NRCS. 2004. The PLANTS Database, Version 3.5 (http://plants.usda.gov). National Plant Data Center, Baton Rouge, LA.
- van Els, P., R. E. Will, M. W. Palmer, and K. R. Hickman. 2010. Changes in forest understory associated with *Juniperus* encroachment in Oklahoma, USA. *Applied V egetation Science* 13:356-368.
- Weaver, J. E. and N. W. Rowland. 1952. Effect of excessive natural mulch on the development, yield, and structure of a native grassland. *Botanical Gazette* 114:1-19.

Whiteman, G. and J. R. Brown. 1998. Assessment of a method for mapping woody plant density in a grassland. *Journal of Arid Environments* 38:269-282. Yager, L. Y.and F. E. Smeins. 1999. Ashe juniper (*Juniperus ashei*: Cupressaceae) canopy and litter effects on understory vegetation in a juniper-oak savanna. *Southwestern Naturalist* 44:6-16.

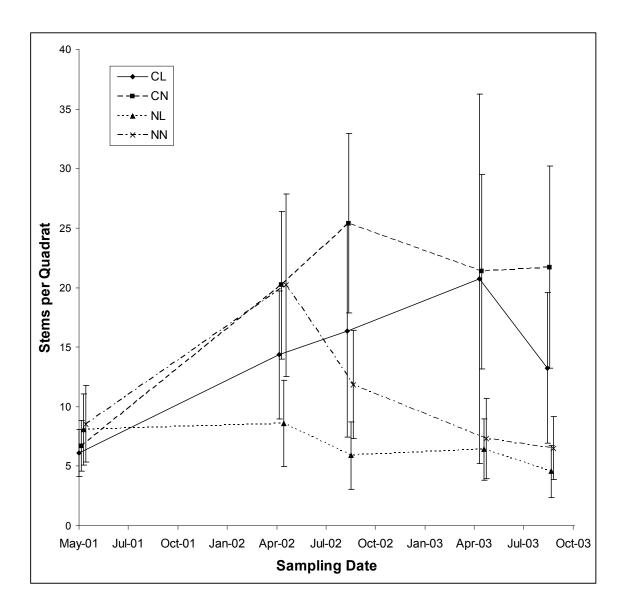


Figure 1 Mean stems per 0.25 m²quadrat in tree removal and litter removal treatments for 2.5 years. The data points have been staggered to increase visibility of 95% confidence intervals (determined for each treatment at each sampling). CL=cut with-litter, CN=cut with no litter, NL=no cut with litter, NN=no cut with no litter.

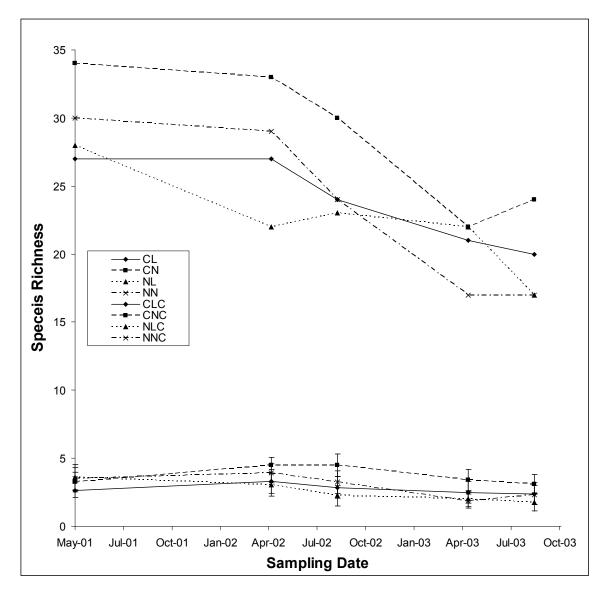


Figure 2 Mean species richness per 0.25 m² and cumulative species richness of tree removal and litter removal treatments for 2.5 years. The data points have been staggered to increase visibility of 95% confidence intervals (determined for each treatment at each sampling). CL=cut with litter, CLC=cumulative cut with litter, CN=cut with no litter, CNC=cumulative cut with no litter, NL=no cut with litter, CNL=cumulative no cut with litter, NN=no cut with no litter, CNN=cumulative no cut with no litter of tree removal and litter removal treatments for 2.5 years.

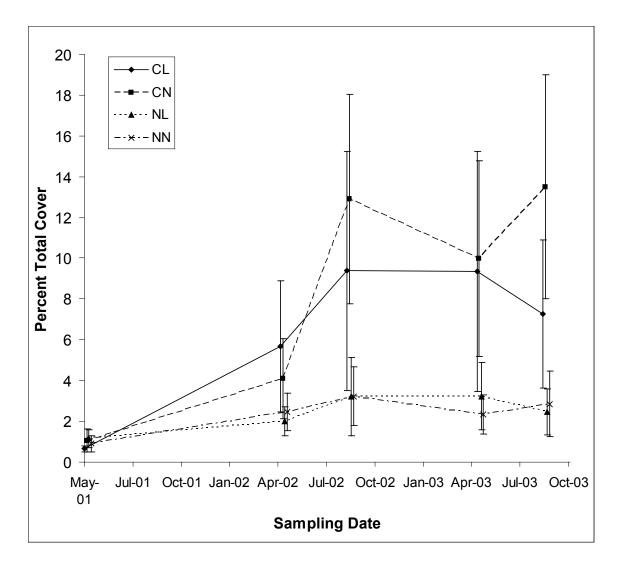


Figure 3 Mean percent total cover of tree removal and litter removal treatments for 2.5 years. The data points have been staggered to increase visibility of 95% confidence intervals (determined for each treatment at each sampling). CL=cut with litter, CN=cut with no litter, NL=no cut with litter, NN=no cut with no litter.

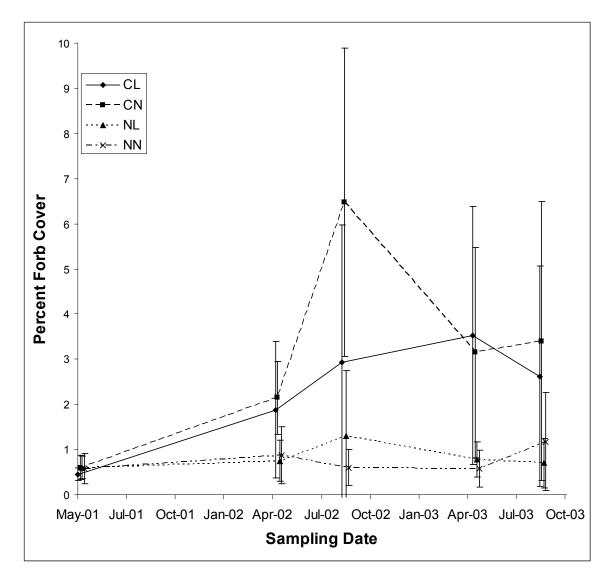


Figure 4 Mean percent forb cover of tree removal and litter removal treatments for 2.5 years. The data points have been staggered to increase visibility of 95% confidence intervals (determined for each treatment at each sampling). CL=cut with litter, CN=cut with no litter, NL=no cut with litter, NN=no cut with no litter.

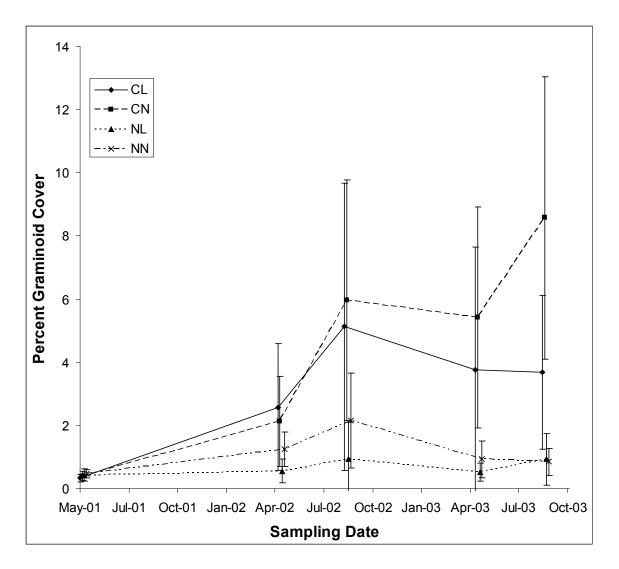


Figure 5 Mean percent graminoid cover of tree removal and litter removal treatments for 2.5 years. The data points have been staggered to increase visibility of 95% confidence intervals (determined for each treatment at each sampling). CL=cut with litter, CN=cut with no litter, NL=no cut with litter, NN=no cut with no litter.

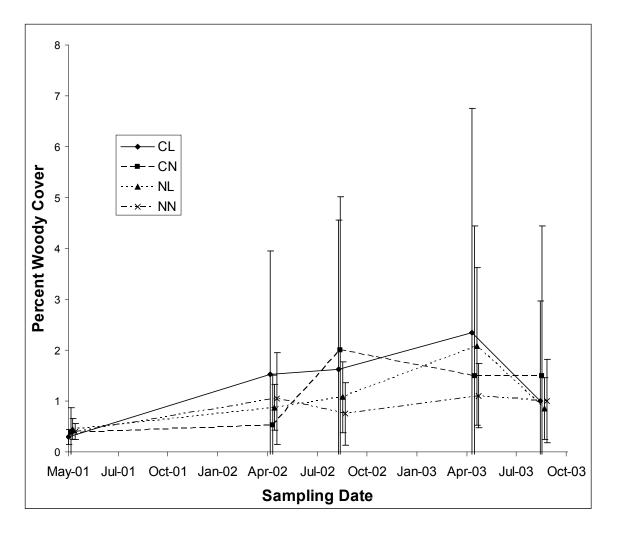


Figure 6 Mean percent woody cover of tree removal and litter removal treatments for 2.5 years. The data points have been staggered to increase visibility of 95% confidence intervals (determined for each treatment at each sampling). CL=cut with litter, CN=cut with no litter, NL=no cut with litter, NN=no cut with no litter.

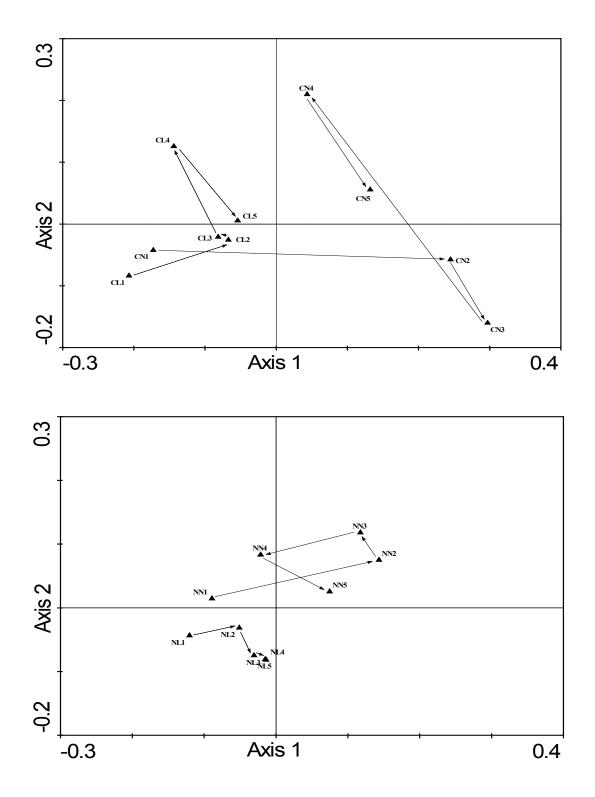


Figure 7 pRDA trajectory of tree and litter removal treatment centroids for each sampling period. The two figures are from the same analysis but were separated to increase legibility. CL=cut with litter, CN=cut with no litter, NL=no cut with litter, NN=no cut with no litter. Axes 1 and 2 are displayed in both figures.

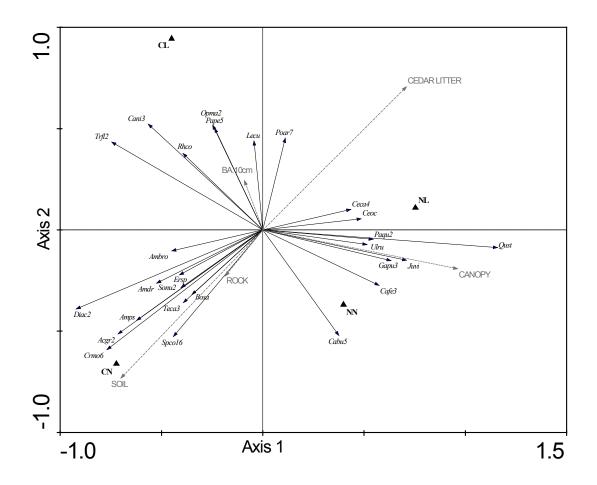


Figure 8 pRDA triplot of species codes, treatment centroids and supplemental environmental variables. All post-treatment samplings are included and axes 1 and 2 are displayed. Species codes represent the relative multi-dimensional position of each species in ordination space based on absolute cover of each species. Species codes are indexed in Appendix 1. Arrow length indicates the relative strength of supplemental variables. CL=cut with litter, CN=cut with no litter, NL=no cut with litter, NN=no cut with no litter.

APPENDIX

Species names and USDA PLANT codes

Species	USDA Code
Acalypha gracilens	Acgr2
Ambrosia psilostachya	Amps
Ambrosia sp.	Ambro
Amphiachyris dracunculoides	Amdr
Bothriochloa saccharoides	Bosa
Carex bushii	Cabu5
Carex festucacea	Cafe3
Carex nigromarginata	Cani3
Celtis occidentalis	Ceoc
Cercis canadensis	Ceca4
Croton monanthogynus	Crmo6
Dichanthelium acuminatum	Diac2
Eragrostis spectabilis	Ersp
Gamochaeta purpurea	Gapu3
Juniperus virginiana	Juvi
Lespedeza cuneata	Lecu
Opuntia macrorhiza	Opma2
Oxalis stricta	Oxst
Parietaria pensylvanica	Pase5
Parthenocissus quinquefolia	Paqu2
Quercus stellata	Qust
Rhus copallinum	Rhco
Sorghastrum nutans	Sonu2
Sporobolus compositus	Spco16
Teucrium canadense	Teca3
Tridens flavus	Trfl2
Ulmus rubra	Ulru

THE CHANGING FORESTS OF CENTRAL OKLAHOMA: A LOOK AT THE COMPOSITION OF THE CROSS TIMBERS PRIOR TO EURO-AMERICAN SETTLEMENT, IN THE 1950s, AND TODAY

Richard E. Thomas Department of Geography and Environmental Sustainability University of Oklahoma Norman, OK 73019

Bruce W. Hoagland Department of Geography and Environmental Sustainability, Oklahoma Natural Heritage Inventory University of Oklahoma Norman, OK 73019

Keywords: Surveys, historical ecology, mesophication, cross timbers, fire

ABSTRACT

Prior to Euro-American settlement, the Cross Timbers of the Southern Plains marked the edge of "civilization," beyond which lay a prairie ecosystem ruled primarily by Plains Indian tribes. War, trade, and pasture for cattle brought an increased Euro-American presence by the middle of the 19th century. In the early 1870s a large portion of what was to become the state of Oklahoma was surveyed by the General Land Office (GLO). Although these surveys were not conducted for ecological purposes, they have provided information on pre-settlement vegetation that has been invaluable for researchers seeking to reconstruct the historical landscape. Perhaps the most beneficial information for historical ecologists and biogeographers comes from data on bearing trees recorded by GLO surveyors, which have given present-day researchers a good idea of the species composition of Cross Timbers forests during this time. When compared to modern studies of the Cross Timbers, it documents a change in species composition over time, believed to be the result of fire suppression and perhaps the beginning of a wetter climate cycle. In central Oklahoma, this has meant a shift from forests dominated by *Quercus marilandica* and Quercus stellata (with the former being more abundant) to forests containing an equal abundance of these two species, and an increase in *Carya texana*, Juniperus virginiana, and other mesophytic and invasive woody species.

INTRODUCTION

Cross Timbers Overview

The Cross Timbers are a mosaic of riparian forest, woodland, and grassland that extends from southeastern Kansas, through Oklahoma, and into north-central Texas (Dyksterhuis 1948 and 1957, Rice and Penfound 1959, Omernik 1987, Hoagland et al. 1999, Francaviglia 2000; Figure 1). The Cross Timbers encompass an estimated 4.8 million ha in this region (Kuchler 1964). Slightly more than half of the total area (2.5 million ha) is located in Oklahoma, where it comprises a larger area than all other forest types in Oklahoma combined (Duck and Fletcher 1945; Rice and Penfound 1959; Dwyer and Santelman 1964). As a result, the Cross Timbers are the most studied forest type in Oklahoma.

These studies note the importance of *Quercus stellata* (post oak) and *Q. marilandica* (blackjack oak) in Cross Timbers stands. Combined, these two species constitute over 90% of the canopy cover and 50% of the basal area (Rice and Penfound 1959, Kennedy 1973). *Q. marilandica* is the more xeric and fire-tolerant of the two species (Brown and Davis 1973; Givnish 1981; Dooley 1983; Dooley and Collins 1984). Stem density (number of

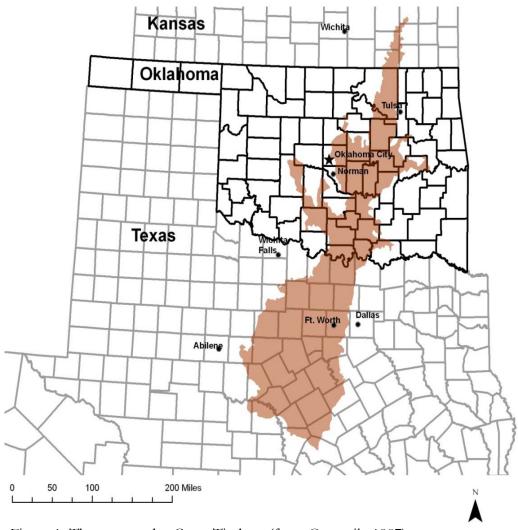


Figure 1 The present-day Cross Timbers (from Omernik, 1987).

stems per unit area) is correlated with slope, aspect, and/or geographic location, but the ratio of *Q. stellata* to *Q. marilandica* has generally ranged from 2:1 to 3:1, (Luckhardt and Barclay 1938, Kennedy 1973). Although stem density of *Q. marilandica* may surpass *Q. stellata* on south-facing slopes, *Q. marilandica* rarely exceeds 30 cm in diameter and, therefore, basal area values of the two species are roughly equivalent in these instances (Luckhardt and Barclay 1938, Rice and Penfound 1955, 1959).

Woody species of secondary importance include *Carya texana* (black hickory), *Quercus*

velutina (black oak), and Juniperus virginiana (eastern redcedar) (Coppock et al. 1955, Hale 1955, Rice and Penfound 1955 and 1959, Penfound 1963, Johnson and Risser 1972, Hoagland et al. 1999). The herbaceous understory of the Cross Timbers, which becomes more prevalent in the woodland aspect, is similar to the surrounding prairie (Dyksterhuis, Kuchler 1964 and 1974). Schizachyrium scoparium (little bluestem) dominates most Cross Timbers stands, but Andropogon gerardii (big bluestem) and Sorghastrum nutans (Indiangrass) may be codominant (Kuchler 1964).

The Changing Cross Timbers

Three major factors influencing the Cross Timbers region today are urban fringe development, woody plant encroachment, and the "mesophication" of Quercusdominated portions of the Cross Timbers (Coppedge 2001a; Dillard et al. 2006, DeSantis et al. 2010). Urban fringe development (UFD) is currently more geographically ubiquitous in the mainland United States than any other human activity that negatively impacts ecosystems (Czech et al 2000). UFD produces some of the highest local extinction rates and often eliminates most of the native species (Vale and Vale 1976, Luniak 1994, Kowarik 1995, Marzluff 2001, McKinney 2002). Biological communities around these areas are increasingly homogenized (McKinney 2004), producing a "distinct and rapid trajectory of vegetation change towards historically unprecedented and simplified conditions" in some regions (Schulte et al. 2007).

In their study of landscape structure and change within a forest-prairie ecotone, Boren et al. (1997) indicated that increased human activity in densely populated rural areas surrounding urban centers in northern Oklahoma lowered biodiversity, increased homogeneity, and resulted in greater patch fragmentation than a rural landscape with a low-density population. Fragmentation was higher in forested areas than in grasslands in each year of their twenty-four year study, in both low- and high-density areas.

In Oklahoma, the main culprit in woody plant expansion is *Juniperus virginiana* (eastern redcedar), a native species that has advanced beyond its pre-settlement range and density in the Great Plains and portions of the Cross Timbers (Engle et al. 1997, Coppedge et al. 2001b, Briggs et al. 2002, Horncastle et al. 2005). Encroachment at a rate of 300,000 acres per year in Oklahoma (Drake and Todd 2001) by *J. virginiana* has many negative consequences, including displacement of native plant species (Engle et al. 1997, Cooper 1998, Coppedge et al. 2002), wildlife species (Engle et al. 1997, Smith 2001, Guthery 2001, Coppedge et al. 2002), a decrease in livestock forage production (Stritzke and Bidwell 1989, Engle and Stritzke 1992, Engle et al. 1997), and a deterioration of water quality (Thurow and Carlson 1994, Cooper 1998).

In a recent study, DeSantis et al. (2010) make the contention that drought and fire suppression are changing the woody species composition of relatively undisturbed portions of the Cross Timbers in Oklahoma. They indicate that woodland portions of the Cross Timbers "appear to be in transition to closed-canopy mesophytic forest stands with less *Quercus* and more shade-tolerant tree species." In their study, they draw heavily on the work of Nowacki and Abrams (2008), who coined the term "mesophication," which they define as a process "whereby microenvironmental conditions (cool, damp, and shaded conditions; less flammable fuel beds) continually improve for shade-tolerant mesophytic species and deteriorate for shade-intolerant, fire-adapted species." According to the authors, this process is widespread in the forests of North America as a result of fire suppression.

This study sought to characterize Cross Timbers forest and woodland in an urban area in central Oklahoma, focusing specifically on Cross Timbers vegetation that had undergone little visible disturbance (i.e. few invasive species present, trees of varying ages). The area chosen for this was the southeast sector of Oklahoma City, the least developed portion of the city. As a baseline for comparison, General Land Office (GLO) Public Land Survey (PLS) bearing tree data from the 1870 to 1873 survey were analyzed. This analysis relied on results produced in Thomas (2010), which contradict previous analyses of the Cross Timbers in Oklahoma (Shutler and Hoagland 2004, Fagin 2009), but are in line

with primary historical sources along with past and present research on the woody plant composition of the Oklahoma Cross Timbers.

STUDY AREA

The southeast sector of Oklahoma City is almost equally divided between Oklahoma and Cleveland counties in central Oklahoma, with a portion falling in Pottawatomie County (Figure 2). Average temperature is around 15° C, ranging from an average January low of -3° C to an average July high of 34° C. Average annual precipitation ranges between 91 and 99 cm, and winds from the south and southeast predominate (OCS 2009).

Cross Timbers forest and woodland in the study area is found on the Darnell-Stephenville soil series, which is made up of moderately deep, well-drained, moderately permeable upland soils with slight to moderate slopes (Fisher and Chelf 1969).

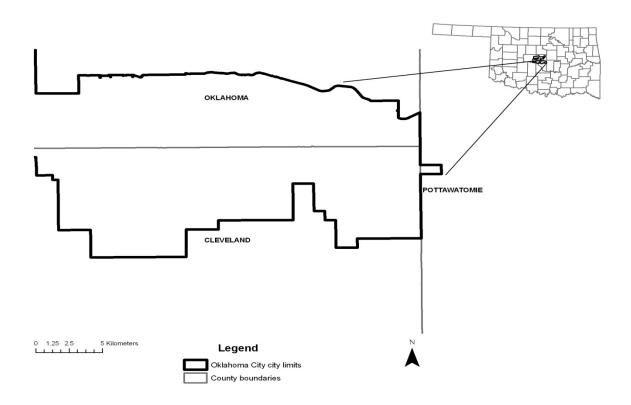


Figure 2 Study area – southeastern Oklahoma City.

METHODS

The Public Land Surveys

The PLS, conducted in the United States beginning with the Land Ordinance of 1785, subdivided land into square townships six miles on a side, which were further subdivided into thirty-six sections of one square mile (Stewart 1935). Surveyors would travel along the section lines, erecting monuments at the intersections of section lines and making notes about the landscape, soil, and vegetation in order to draw an accurate plat of the township following the survey (Bourdo 1956). Surveyors were also instructed to list tree species encountered in order of predominance at the end of each section line, known as "ranked timber observations" (Bourdo 1956, Grimm 1981).

In order to facilitate the relocation of a section corner, at the intersection of section lines the surveyors would record the distance, direction, species, and diameter of four near and "durable" trees. One tree was recorded in each quadrant formed by the intersection of the section lines (Grimm 1981). These were known as bearing trees and were inscribed by the surveyors. Two trees were also marked as bearing trees at the half-mile interval between the intersections of section lines (Bourdo 1956, Fagin and Hoagland 2002, Figure 3).

Since the 1873 bearing tree data was not taken in individual plots, relative frequency (RF) was not calculated, and relative basal area (RBA) and relative density (RD) were combined to provide an importance value (IV).

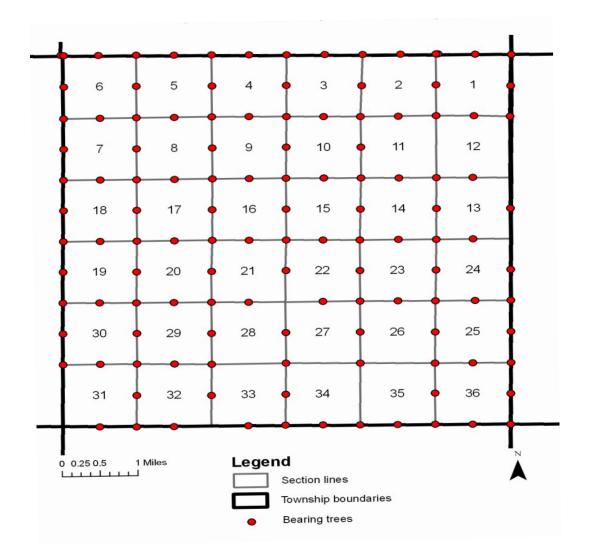


Figure 3 Bearing trees noted at the intersection of section lines and at halfway points along the section lines.

Contemporary vegetation

The first stage of analysis was the interpretation and delineation of forest vegetation in the study area using four Digital Orthoquarter Quads (DOQQs) from June 2006. Each DOQQ was imported into Arcmap GIS and joined into a complete coverage. The resulting layer was reviewed and forest vegetation delineated, resulting in a map of either "potential" or "probable" undisturbed Cross Timbers.

Ground-verification of the preliminary map began in the winter of 2007 and consisted of two phases. First, sites were visited to determine the accuracy of the initial disturbance designations of potential or probable. Sites that were verified as or upgraded to probable were then considered for the collection of quantitative vegetation data pending contact with and approval of the landowner. Following the verification of the accuracy of these designations, field studies commenced in order to characterize the structure and species composition of forest/woodland vegetation at these sites, using twenty-by-twenty meter plots. Where possible, multiple plots were established at a site. However, collection of quantitative data even at "probable" sites was somewhat limited by low quality of vegetation and access restrictions. Each tree and shrub was identified to species (nomenclature follows the US Department of Agriculture-Natural Resources Conservation Service [USDA-NRCS 2006]) and stems exceeding 7.5 cm diameter-at-breast-height (DBH) were measured within plots, so that this data could be compared to the PLS bearing tree data, as few trees below this size were marked by GLO surveyors. Basal area (BA) was calculated for each species in each plot using the formula Area= Πr^2 . Relative Basal Area (RBA) was calculated as:

 $(\sum BA_{\text{species I}} / \sum BA_{\text{all species}}) \times 100 = RBA$

Density (D) was defined as the number of stems for each species occurring in a plot. Relative density (RD) was calculated as:

$$(\sum D_{\text{species I}} / \sum D_{\text{all species}}) \ge 100 = RD$$

Frequency was defined as the number plots in which a species occurred. Relative Frequency (RF) as calculated as:

$$(\sum \text{FREQ}_{\text{species I}} / \sum \text{FREQ}_{\text{all species}}) \ge 100 = \text{RF}$$

An importance value (IV) was calculated for each species in order to determine which trees were stand dominants:

IV = RBA + RD + RF

RESULTS

Public Land Survey

A total of 608 trees were recorded by PLS surveyors within the study area. Ten different species were recorded. Of these, 397 individuals were Q. marilandica and 182 were *Q. stellata*. Fourteen stems of *Ulmus sp.* were recorded, but no other species was recorded more than three times. Q. marilandica had a total basal area of 9.76 m², Q. stellata 16.37 m². No other species had a total basal area over 1 m². The highest importance values for 1873 bearing tree data were scored by *Q. marilandica* at 100.89 and Q. stellata at 89.65 (Table 1). The importance values of other species marked as bearing trees were very low. Ulmus sp. had an importance value of 3.29, Carya texana 2.87 and Populus deltoides 1.20. Public land surveyors also reported finding Fraxinus *nigra* (black ash), a species native to northeastern North America and not found in Oklahoma. It is likely that different common names applied to species at the time resulted in this anomaly.

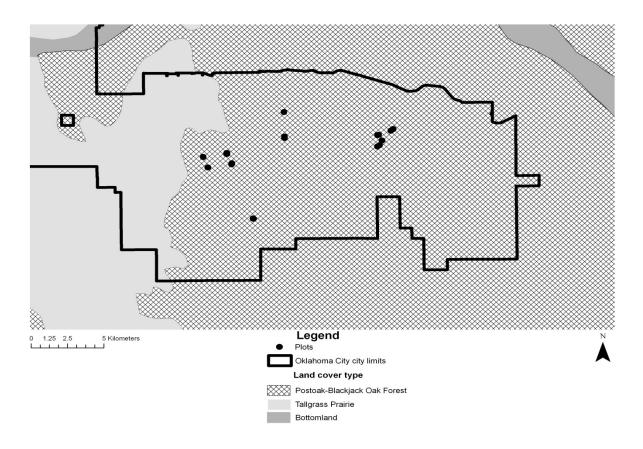


Figure 4 Locations of vegetation plots on sites within the study area.

Contemporary Vegetation

Vegetation was quantified using a total of twenty-two plots (some in close proximity) on about ten sites (Figure 4). A total of 944 stems with a diameter of at least 7.5 cm were sampled. Stem diameters ranged from the minimum of 7.5 cm to 55.5 cm, with a mean diameter of 15.21 cm and a median diameter of 13 cm. Eighteen woody plant species were encountered (Table 2). The most common were *Quercus marilandica* (blackjack oak), Quercus stellata (post oak), Carya texana (black hickory), and Juniperus virginiana (eastern redcedar), respectively. Four hundred and two stems of *Q*. marilandica were recorded, ranging in diameter from 7.5 cm to 42 cm, with a mean diameter of 14.3 cm and a median diameter of 13 cm. Three hundred ninety-four stems of *Q. stellata* were recorded, ranging in diameter from 7.5 cm to 55.5 cm, with a mean diameter of 16.49 cm and a median

diameter of 14.5 cm. Forty-two stems of *C. texana* were recorded, ranging in diameter from 7.5 cm to 44 cm, with a mean diameter of 17.55 cm and a median diameter of 16.25 cm. Twenty-four stems of *J. virginiana* were recorded, ranging in diameter from 7.5 cm to 22 cm, with a mean diameter of 12.46 cm and a median diameter of 12 cm.

The highest importance values were scored by *Q. stellata* at 115.26 and *Q. marilandica* at 96.33 (see Table 2). *C. texana* at 20.12 and *J. virginiana* at 14.49 fell far below these two dominant oaks. Other notable species include *Ulmus rubra* (Slippery elm) at 9.45 and *Celtis occidentalis* (common hackberry) at 6.31.

Plot total basal area values ranged from 0.66 m² to 1.88 m² (mean 0.95 m², median 0.88 m², standard deviation 0.28 m²). The highest basal area values were reported for trees dominant in the Cross Timbers in the following order: *Q. stellata* > *Q. marilandica* >

C. texana. Q. stellata had the highest frequency (22), followed by *Q. marilandica* (19), *J. virginiana* (10), and *C. texana* (9) (see Table 2). Mean basal area for *Q. stellata* was $0.506 \text{ m}^2/\text{plot}$, median basal area $0.38 \text{ m}^2/\text{plot}$ (range = 0.057 m^2 to 1.876 m^2 , standard deviation 0.474 m^2), mean basal area for *Q. marilandica* was $0.343 \text{ m}^2/\text{plot}$, median basal area $0.305 \text{ m}^2/\text{plot}$ (range 0.0 m^2 to 0.765 m^2 , standard deviation 0.252 m^2), mean basal area for *C. texana* was $0.064 \text{ m}^2/\text{plot}$, median basal area $0.0 \text{ m}^2/\text{plot}$ (range 0.0 m^2 to 0.506 m^2 , standard deviation 0.168 m^2), and median basal area for *J. virginiana* was $0.017 \text{m}^2/\text{plot}$, median basal area $0.004 \text{ m}^2/\text{plot}$ (range 0.0 m^2 to 0.133 m^2 , standard deviation 0.038 m^2).

Plot density values ranged from 20 to 65 (mean = 42.91, median = 43, standard deviation = 15.16). The highest density values were for *Q. marilandica* with 21.16 stems/plot (range 0 to 56, median 25, standard deviation 16.3), *Q. stellata* with 17.91 stems/plot (range 1 to 56, median 17.5, standard deviation 17.16), *C. texana* with 4.67 stems/plot (range 0 to 13, median 0, standard deviation 3.84), and *J. virginiana* with 2.4 stems/plot (range 0 to 11, median 1, standard deviation 3.10).

Table 1 Species scores for bearing trees that fell within the boundaries of the study area from the 1873 PLS data. DEN = total number of stems, BA = total basal area in study area (m^2), RD = relative density, RBA = relative basal area, and IV = importance value.

1873 Bearing trees DEN		$BA(m^2)$	RD	RBA	IV
Quercus marilandica	397	9.76171	65.29605	35.59868	100.8947
Quercus stellata	182	16.3742	29.93421	59.71289	89.6471
Ulmus sp.	14	0.270201	2.302632	0.98536	3.287992
Carya texana	2	0.697738	0.328947	2.544488	2.873435
Populous deltoides	3	0.194575	0.493421	0.70957	1.202991
Salix sp.	3	0.04915	0.493421	0.179239	0.67266
Juglans nigra	3	0.020775	0.493421	0.075762	0.569183
Fraxinus nigra	2	0.016214	0.328947	0.059129	0.388076
Celtis occidentalis	1	0.032429	0.164474	0.118261	0.282735
Cercis canadensis	1	0.00456	0.164474	0.016629	0.181103

Table 2 Species scores for woody plants in the twenty-two plots sampled. FRQ = frequency, RF = relative frequency, BA = total basal area in study area (m^2), MPLT = median basal area/plot (m^2), RBA = relative basal area, DEN = total number of stems, MSTM = average density/plot, RD = relative density, and IV = importance value.

Species	FRQ	RF	BA	MPLT	RBA	DEN	MSTM	RD	IV
Quercus stellata	22	22.92	10.6	0.481	50.61	394	17.91	41.74	115.26
Quercus marilandica	19	19.8	7.112	0.374	33.95	402	21.16	42.58	96.33
Carya texana	9	9.38	1.319	0.147	6.3	42	4.67	4.45	20.12
Juniperus virginiana	10	10.42	0.321	0.032	1.53	24	2.4	2.54	14.49
Ulmus rubra	5	5.21	0.445	0.089	2.12	20	4	2.12	9.45
Celtis occidentalis	4	4.17	0.183	0.046	0.87	12	3	1.27	6.31
Quercus muhlenbergii	3	3.13	0.202	0.067	0.96	14	4.67	1.48	5.57
Morus alba	4	4.17	0.173	0.043	0.83	4	1	0.42	5.42
Carya illinoinensis	3	3.13	0.196	0.065	0.94	4	1.33	0.42	4.48
Prunus mexicana	3	3.13	0.101	0.034	0.48	4	1.33	0.42	4.03
Cercis canadensis	3	3.13	0.033	0.011	0.16	5	1.67	0.53	3.81
Viburnum rufidulum	3	3.13	0.051	0.017	0.24	3	1	0.32	3.69
Morus rubra	2	2.08	0.102	0.051	0.49	7	3.5	0.74	3.31
Prunus angustifolia	2	2.08	0.052	0.026	0.25	5	2.5	0.53	2.86
Celtis laevigata	1	1.04	0.028	0.028	0.13	1	1	0.11	1.28
Sideroxylon lanuginosum	1	1.04	0.013	0.013	0.06	1	1	0.11	1.21
Quercus macrocarpa	1	1.04	0.01	0.01	0.05	1	1	0.11	1.19
Diospyros virginiana	1	1.04	0.005	0.005	0.02	1	1	0.11	1.17

DISCUSSION

Two previous studies that have utilized PLS bearing tree data from the Cross Timbers of central Oklahoma provide apt comparison here. Shutler and Hoagland (2004) reported that PLS surveyors sampled 6886 stems in Carter County in the early 1870s, with Quercus stellata (2,648 stems) and Quercus velutina (1,740 stems) being the two most abundant species by far, and only 18 stems of Quercus marilandica recorded. Fagin (2009) reported that PLS surveyors sampled 2,578 trees in the Arbuckle Mountains of south-central Oklahoma in the early 1870s, recording 1,234 stems of *Q. stellata* and 529 stems of Q. velutina. These reports would indicate that the composition of Cross Timbers forests in central Oklahoma were drastically different than they are today. However, Thomas (2010) demonstrated that the stems labeled as "black oak" by the PLS surveyors and assumed to be *Q. velutina* in these studies were almost certainly Q. *marilandica*. "Black oak" was another common name for blackjack oak, and references to Q. velutina are almost completely absent from any historical accounts of the Cross Timbers. "Blackjack oak" (*Q. marilandica*), on the other hand, is almost universally present in these accounts.

Even so, it still appears that in southcentral Oklahoma Q. stellata was twice as abundant as *Q. marilandica* during the first PLS in Oklahoma in the early 1870s. The 2:1 ratio of *Q. stellata* to *Q. marilandica* at the time seems to demonstrate that the Cross Timbers of south-central Oklahoma contained more mesophytic vegetation than the Cross Timbers found in Oklahoma and Cleveland counties in central Oklahoma, where a ~ 1:2.2 ratio of Q. stellata to Q. marilandica was reported by the PLS surveyors in the early 1870s. Carya texana was also much more abundant in southcentral Oklahoma as well, with 118 stems reported by Fagin (2009), but only two recorded by PLS surveyors in Oklahoma

and Cleveland counties. This further lends credence to the idea that the Cross Timbers in Carter County and the Arbuckle mountains contained more mesophytic vegetation than those in Cleveland and Oklahoma counties, perhaps as a result of protection from prairie fires, as prairie fires select for fire-tolerant species in environments that would ordinarily trend toward a more mesophytic species composition (Thomas 2010).

In their study of the upland forests of Oklahoma, Rice and Penfound (1959) sampled three sites in Oklahoma County and three sites in Cleveland County (for their sampling methods see Hoagland and Hough 2008). In Oklahoma County they recorded 39 stems of *Q. stellata* and 137 stems of *Q. marilandica*. In Cleveland County they recorded 66 stems of *Q. stellata*, 129 stems of *Q. marilandica*, 10 stems of *C.* texana, and 7 stems of Q. velutina (Hoagland and Hough 2008). This \sim 1:2.5 ratio of Q. stellata to Q. marilandica is much more in line with the \sim 1:2.2 ratio recorded by PLS surveyors in the early 1870s than with the \sim 1:1 ratio recorded in the current study.

However, with the reports of C. texana and Q. velutina by Rice and Penfound (1955, 1959), we begin to see the results of the "mesophication" of the Cross Timbers noted by this study and by DeSantis et al. (2010). As mentioned in the introduction, this mesophication process is believed to occur as a result of fire exclusion, which "can alter stand structure and create microclimatic conditions that are more beneficial to mesophytic woody species" (DeSantis et al. 2010). In his study, DeSantis (2010) re-sampled 30 forest stands originally sampled by Rice and Penfound (1959) and noted substantial increases in the abundance of C. texana, Juniperus virginiana, and Q. stellata, while Q. marilandica declined in abundance. These results are consistent with this study, as we recorded a large increase in C. texana and the fire-intolerant J. virginiana since the 1870s PLS, and the replacement of *Q. marilandica* by the less fire-tolerant *Q. stellata* as the most important species in the Cross Timbers of central Oklahoma.

CONCLUSION

It is apparent from this study and other studies conducted in the Cross Timbers and in Quercus forests worldwide that the dominance of *Quercus*, especially those species at the xeric end of the spectrum, is in decline. Fire exclusion seems to be a plausible mechanism, and with the pace of urban, suburban, and ex-urban development the urgency and necessity of fire exclusion will only continue to expand in coverage. Thus, there will likely be nothing to check the mesophication trend in *Quercus*-forests, save greatly altered land management practices. Noting these trends, future studies might attempt to document what changes in woody species composition mean for other flora and fauna found in *Quercus*-dominated forests. Documenting changes such as these might increase the urgency for conservation and preservation practices in the Cross Timbers ecoregion.

LITERATURE CITED

- Blinn, W. C. 1958. The Short Grass Plains and Post Oak-Blackjack Woodland of Oklahoma in Historical Perspective. M.S. thesis. Oklahoma State University, Stillwater, OK.
- Boren, J. C., D. M. Engle, et al. 1997. Landscape structure and change in a hardwood forest-tall-grass-prairie ecotone. *Journal of Range Management* 50(3):244-249.
- Bourdo, E. A. 1956. A review of the General Land Office survey and of its use in quantitative studies of former forests. *Ecology* 37(4):754-768.
- Briggs, J. M., G. A. Hoch, and L. C. Johnson. 2002. Assessing the rate, mechanisms, and consequences of the

conversion of tallgrass prairie to *Juniperus* virginiana forest. *Ecosystems* 5(6):578-586.

- Brown, A. A. and K. Davis. 1973. Forest Fire Control and Use. 2nd ed. McGraw Hill, New York.
- Cooper, M. S. 1998. Riparian Area Management Handbook. Oklahoma Cooperative Extension Service, Division of Agricultural Sciences and Natural Resources, Oklahoma State University and Oklahoma Conservation Commission. E-952.
- Coppedge, B. R., D. M. Engle, et al. 2001a. Landscape cover type and pattern dynamics in fragmented southern plains grasslands, USA. *Landscape Ecology* 16:677-690.
- Coppedge, B. R., D. M. Engle, R. E. Masters, and M.S. Gregory. 2001b.Avian response to landscape change in southern Great Plains grasslands. *Ecological Applications* 11(1):47-59.
- Coppedge, B. R., D. M. Engle, R. N. Fuhlendorf, R. N. Chapman, R. E. Masters, and M. S. Gregory. 2002.
 Juniper encroachment and avifaunal dynamics in southern Great Plains grasslands: A multi-scale summary.
 Poster paper at the 17th Annual Symposium of the International Association for Landscape Ecology-U.S. Regional Association. Lincoln, NE.
- Coppock, R. K., C. A. Ely, et al. 1955. An evaluation of the quadrat method in the blackjack-post oak forest. *Proceedings of the Oklahoma Academy of Science* 36:49-50.
- DeSantis, R. D., S. W. Hallgren, T. B. Lynch, J. A. Burton, and M. W. Palmer. 2010. Long-term directional changes in upland *Quercus* forests throughout Oklahoma, USA. *Journal of Vegetation Science* 21:606-615.
- Dillard, J., S. Jester, et al. 2006. White-tailed deer food habits and preferences in the Cross Timbers and prairies region of Texas. Texas Parks and Wildlife Department, Austin, TX. PWD RP W7000-1017.

- Dooley, K. 1983. Description and dynamics of some western oak forests in Oklahoma.
 Ph.D. dissertation. University of Oklahoma, Norman, OK.
- Dooley, K. L. and S. L. Collins. 1984. Ordination and classification of western oak forests in Oklahoma. *American Journal of Botany* 71(9):1221-1227.
- Drake B. and P. Todd. 2001. A Strategy for Control and Utilization of Invasive Juniper Species in Oklahoma: Final Report of the "Redcedar Task Force." Oklahoma Department of Agriculture, Food, and Forestry.
- Duck, L. G. and J. B. Fletcher. 1945. A Survey of the Game and Furbearing Animals of Oklahoma. Oklahoma Game and Fish Committee Bulletin 144.
- Dwyer, D. and P. W. Santelman. 1964. A Comparison of Post Oak-Blackjack Oak Communities on Two Major Soil Types in North-Central Oklahoma. Oklahoma Agricultural Experiment Station, Stillwater, OK.
- Dyksterhuis, E. J. 1948. The vegetation of the western Cross Timbers. *Ecological Monographs* 18(3):325-376.
- Dyksterhuis, E. J. 1957. The savannah concept and its use. *Ecology* 38(3):435-442.
- Engle, D. M. and J. F. Stritzke. 1992. Vegetation Management in the Cross Timbers. Range Research Highlights 1983-1991, Circular E-905. Cooperative Extension Service, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK.
- Engle, D. M., T. G. Bidwell, and M. E. Moseley. 1997. Invasion of Oklahoma Rangelands and Forests by Eastern Redcedar and Ashe Juniper. Oklahoma Cooperative Extension Service, Stillwater, OK. Circular E-947.
- Fagin, T. 2009. In Search of the Forest Primeval: Data-Driven Approaches to Mapping Historic Vegetation. Ph.D. dissertation. The University of Oklahoma, Norman, OK.

- Fagin, T. and B. W. Hoagland. 2002. In search of the forest primeval: The use of land survey records in reconstructing past landscapes and evaluating human impact. *The North American Geographer* (4):1-20.
- Francaviglia, R. V. 2000. *The Cast Iron Forest*. University of Texas Press, Austin, TX.
- Givnish, T. J. 1981. Serotiny, geography, and fire in the pine barrens of New Jersey. *Evolution*. 35(1):101-123.
- Grimm, E. C. 1981. An Ecological and Paleoecological Study of the Big Woods Vegetation in Minnesota. Ph.D. dissertation. University of Minnesota, Minneapolis, MN.
- Guthery, F. S. 2001. Green varmints. *Quail* News. Vol. 1.
- Hale, M. 1955. A survey of the upland forests in the Chautauqua Hills, KS. *Transactions of the Kansas Academy of Science* 58(2):165-168.
- Hoagland, B., I. Butler, F. L. Johnson, and S. Glenn. 1999. The Cross Timbers. In: Anderson, R. C., J. S. Fralish, J. M.
 Baskin, eds. Savannas, Barrens, and Rock Outcrop Plant Communities of North America. Cambridge University Press, New York.
- Hoagland, B. W. and D. J. Hough. 2008. Upland Forests of Oklahoma: A Searchable Database of Information from Rice and Penfound (1959). (http://www.biosurvey.ou.edu/rice_and _penfound/index.html), Oklahoma Biological Survey, University of Oklahoma, Norman, OK.
- Horncastle, V. J., E. C. Hellgren, P. M.
 Mayer, A. C. Ganguli, D. M. Engle, and D. M. Leslie. 2005. Implications of invasion by *Juniperus virginiana* on small mammals in the southern Great Plains. *Journal of Mammology* 86(6):1144-1155.
- Johnson, F. L. and P. G. Risser. 1972. Some vegetation-environment relationships in upland forests of Oklahoma. *Journal of Ecology* 60(3):655-663.

- Kennedy, R. 1973. An Analysis of Selected Oklahoma Upland Forest Stands Including Both Overstory and Understory Components. Ph.D. dissertation. University of Oklahoma, Norman, OK.
- Kowarik, I. 1995. On the role of alien species in urban flora and vegetation. In: Pysek, P, K. Prach, M. Rejmanek, P. M. Wade, eds. *Plant Invasions- General Aspects* and Special Problems. SPB Academic, Amsterdam, Netherlands.
- Kuchler, A. W. 1964. Potential NaturalVegetation of the Coterminous UnitedStates. Special Publication Number 36.American Geographical Society,Washington, DC.
- Kuchler, A.W. 1974. A new vegetation map of Kansas. *Ecology* 55:586-604.
- Luckhardt, R. and H. Barclay. 1938. A study of the environment and floristic composition of an oak-hickory woodland in northeastern Oklahoma. *Proceedings of the Oklahoma Academy of Sciences* 18:25-32.
- Luniak, M. 1994. The development of bird communities in new housing estates in Warsaw. *Memorabilia Zoologica* 49:257-267.
- Marzluff, J. M. 2001. Worldwide urbanization and its effects on birds. In: Marzluff, J. M., R. Bowman, and R. Donnelly, eds. *Avian Ecology in an* Urbanizing World. Kluwer, Norwell, MA.
- McKinney, M. L. 2002. Urbanization, biodiversity, and conservation. *Bioscience* 52(10):883-890.
- McKinney, M. L. 2004. Measuring floristic homogenization by non-native plants in North America. *Global Ecology and Biogeography* 13:47-53.
- Mitchell, 2007. Quantitative analysis by the point-centered quarter method. Hobart and William Smith Colleges, Geneva, NY. http://people.hws.edu/mitchell/ PCQM.pdf (retrieved 6/14).
- Nowacki, G. J. and M. D. Abrams. The demise of fire and "mesophication" of

forests in the eastern United States. *Bioscience* 58(2):123-138.

- Omernik, J. M. 1987. Ecoregions of the conterminous United States. Map (scale 1:7,500,000). *Annals of the Association of American Geographers* 77(1):118-125.
- Penfound, W. T. 1963. The composition of a post oak forest in south-central Oklahoma. *The Southwestern Naturalist*. 8(2):114-115.
- Rice, E. L. and W. T. Penfound. 1959. The upland forests of Oklahoma. *Ecology* 40(4):593-608.
- Rice, E. L. and W. T. Penfound. 1955. An evaluation of the variable-radius and paired-tree methods in the blackjackpost oak forest. *Ecology* 36(2):315-320.
- Schulte, L. A., D. J. Mladenoff, T. R. Crow, L. C. Merrick, and D. T. Cleland. 2007. Homogenization of northern U.S. Great Lakes forests due to land use. *Landscape Ecology* 22(7):1089-1103.
- Shutler, A. and B. W. Hoagland. 2004. Vegetation patterns in Carter County, Oklahoma. 1871. Proceedings of the Oklahoma Academy of Science 84:19-26.
- Stewart, L. O. 1935. *Public Land Surveys: History, Instructions, Methods.* Collegiate Press, Ames, IA.
- Strizke, J. F. and T. G. Bidwell. 1989. Eastern Redcedar and its Control. Oklahoma Cooperative Extension Service, Divison of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK. Fact Sheet 2850.
- Thomas, R. E. 2010. The Cross Timbers in Central Oklahoma Prior to Euro-American Settlement: Using the General Land Office Public Land Surveys as a Tool for Vegetation Analysis. M.S. thesis. University of Oklahoma, Norman, OK.
- Thurow, T. H. and D. H. Carlson. 1994.Juniper Effects on RangelandWatersheds. 1994 Juniper Symposium.Texas Agricultural Experimental Station.Tech. Rep. 94-2.

Vale, T. R. and G. R. Vale. 1976. Suburban bird populations in west-central California. *Journal of Biogeography* 3:157-165.

SOME THOUGHTS ON OKLAHOMA PLANTS AND SUMMER 2011'S EXCEPTIONAL DROUGHT

Leslie E. Cole, D.V.M.

Oklahoma has just had a summer of incredible heat and exceptional drought (D4), the worst such designation possible from the National Drought Monitor and marked by a menacing dark red on the drought maps they make. The impacts of this tough climate event can be seen everywhere one looks from the dormant or dead Blackjacks and Eastern Redcedars to the thin young crows, and felt in the economy and our communities.

We can set the stage for these musings by quoting Mr. Gary McManus, Associate State Climatologist, Oklahoma Climatological Survey.

Oklahoma is "... just coming off one of our driest you-name-the-period on record. The current drought originated in September 2010 with the arrival of La Nina in the equatorial pacific waters. This water year, which ended September 2011, finished as the second driest on record for Oklahoma with a statewide average precipitation total of 20.26 inches, 16.43 inches below normal. The driest such period on record was 18.69 inches from the 1955-1956 water year. For the Panhandle, west central, central and southwestern parts of the state, it was easily the driest water year on record. Southwest Oklahoma's water year average of 12.68 inches was more than 18 inches below normal and nearly 5 inches drier than the previous record low total of 17.45 inches, again from the 1955-56 water year."

And to gain perspective on the record heat of summer 2011, also from Mr. McManus...

"According to data from the Oklahoma Mesonet, the state's climatological summer, June 1 through August 31, ended with a statewide average of 86.8 degrees, obliterating the previous state record of 85.2 degrees from the summer of 1934."

Oklahoma has won the prize for hottest summer for any state since records began.

Oklahoma agriculture has experienced nearly \$2 billion dollars in losses due to the current drought, according to estimates by Oklahoma State University's Division of Agricultural Sciences and Natural Resources. The Oklahoma Department of Agriculture, Food, and Forestry estimates crop losses of more than \$953 million and cattle losses of about \$1 billion. Much of Oklahoma is still prairie grassland and well suited to produce protein from grazing herbivores like cattle. Oklahoma is home to the second largest beef cattle herd in the United States and the drought, with its withered grasses and forage and dried ponds, has hit the state's beef producers hard, particularly those west of Interstate 35 and in southwest Oklahoma, according to the Oklahoma Cattlemen's Association. These agricultural losses will be the highest ever recorded in a single year for our state.

As a veterinarian, I suspect that a lot of less than ideal hay will be fed and less than ideal areas will be grazed in Oklahoma this fall and winter. We could see increased oral injury in livestock due to the presence of higher numbers of mature grass seed heads in graze and late cut hay (like *Setaria* or foxtail grass) with stiff barbed bristles that easily penetrate flesh and are kept there by the barbs. Relatively small amounts of these types of bristled seed heads in hay can produce these lesions (1.8% for *Setaria*).

A significant volume of hay is being shipped into Oklahoma from out of state. There could be toxic plants and seeds associated with this out of state hay that we don't normally see in Oklahoma. Those concerned about livestock health and Oklahoma native plants should be on the lookout for these aliens.

Drought stressed plants can accumulate or produce toxins not usually present under more "normal" conditions. Cyanogenetic glycosides that yield hydrocyanic acid (HCNcyanide) upon hydrolysis are a concern in stressed *Sorghum* spp. (sudan grass, Johnsongrass, etc.), *Prunus* spp. and others. Nitrate levels in stocks, other forage or some hay are a concern as well.

Plants that accumulate or produce toxins are usually avoided by browsers and grazers; however, when said browsers and grazers are faced with eating dirt or that less than palatable toxic plant, the toxic plant gets eaten. Oklahoma has many toxic plants that can cause problems if ingested by livestock; for example, the loco weeds (*Astragalus* spp. and *Oxytropis* spp.), selenium accumulators (*Astragalus* spp. again and *Stanleya* spp.), oxylate accumulators (*Rumex* spp. and *Chenopodium* spp.) and saponin producers (*Phytolacca* and *Sesbania* spp.).

Even some of Oklahoma's smallest plants have been important in this past summer's heat and drought. "Blooms" or explosive reproduction of bluegreen algae in warm state waters this summer have made the headlines. Individual cells of these organisms are microscopic but they are collected into colonies, filaments or masses of filaments. Cattle, sheep, horses, swine, dogs, cats, fowl, geese, wild and domestic ducks, game and song birds, fish, rodents, and small game have been killed by ingesting these smallest of plants.

Lack of water can eventually lead to catastrophic biological failures and death in plants. One can think about the wilting of leaves and decreased turgor pressure, hydraulic failure with stomata closure and reduced photosynthesis and the myriads of other adaptations, mechanisms and strategies that plants employ to survive the stresses of Oklahoma's wild climate and unique ecology. What I remember most about this year's drought was the amazing green-up of the grasses and the abundant fall flowers that followed the relatively meager fall rains. The native plants of Oklahoma are scientifically fascinating, true survivors, and incredibly beautiful.

Kingsbury, John M. 1964. *Poisonous Plants of the United States and Canada*. Prentice Hall: Englewood Cliffs, NJ.

National Agricultural Statistics Service (NASS). Oklahoma Field Office and the Oklahoma Department of Agriculture, Food, and Forestry (ODAFF). Oklahoma Agricultural Statistics 2011.

EDITORIAL POLICIES AND PRACTICES

Oklahoma Native Plant Record is published annually by Oklahoma Native Plant Society. Submission for publication in the journal is open to all. Manuscripts will be accepted on topics related to Oklahoma's regional botany, including historical research reports, current research articles, site record species lists, and descriptions of new or important species sightings in Oklahoma. Oklahoma's environmental gradients of human impact, climate, and elevation make the *Record* a prime resource for research on habitat edges, species ranges, and edge species. Articles of other themes may be included as well. Local research overlooked by journals of broader geographic regions will be considered for publication in the *Record*.

Papers must not have been published previously or accepted for submission elsewhere and should represent research conducted in accordance with accepted procedures and scientific ethics. All authors retain copyright of their articles. Submission of the manuscript implies the granting to Oklahoma Native Plant Society permission to publish it. We ask only for the right to publish articles. We do not seek to own them. In return, we require our authors to allow their work to be used freely for non-commercial purposes, allowing each individual to make, gratis, a single copy of the published manuscript whether from its print or its internet version; instructors to make, gratis, multiple copies available for non-commercial teaching purposes; and libraries to make copies available, gratis, for interlibrary loan. Authors are responsible for supplying reprints upon request.

Manuscripts will be reviewed for content and appropriateness by at least two reviewers. The title page should state the affiliation and complete addresses of all authors and telephone number or email address for the corresponding author. Research and technical papers should include a one-paragraph abstract of not more than 250 words. It should concisely state the goals, principal results, and major conclusions of the paper. Please suggest four key words. All references, figures, and tables should be cited in the text. Site descriptions should include latitude, longitude, total area, and elevation. Common names should be referenced to a scientific name using nomenclature that has been revised according to the National Plant Data Center, Baton Rouge, LA (http://plants.usda.gov) and organized based on the Angiosperm Phylogeny Group, Missouri Botanical Gardens (http://www.mobot.org/MOBOT/research/APweb/). Abbreviations of authorities for scientific names should follow *Authors of Plant Names* (Brummitt and Powell 1992). Titles of periodicals should be abbreviated following Botanico-Peridoicum-Huntianum and its supplement, except in historic publications when original format may be used.

Authors are encouraged to submit manuscripts electronically via websites or to send a digital copy of the manuscript on CD or as an email file attachment in standard text format. Use no headers, no footers, nor auto page numbering. Proof-read and verify taxa numbers before submission. Color photos may be submitted. CDs or email files should be sent to the managing editor at the address below by June 1.

Dr. Sheila A. Strawn, Managing Editor, Oklahoma Native Plant Record Oklahoma Native Plant Society c/o Tulsa Garden Center 2435 South Peoria, Tulsa, Oklahoma 74114 Email: sastrawn@hotmail.com

Five Year Index to Oklahoma Native Plant Record

Volume 6	
4	The Lichens of North Central Oklahoma, Darvin W. Keck
51	Annotated Nomenclatural Update to Keck (1961), Douglas M. Ladd
53	Vascular Flora of a Red Sandstone Hills Site, Canadian County, Oklahoma,
	Bruce W. Hoagland and Amy K. Buthod
69	Vascular Flora of a Riparian Site on the Canadian River, Cleveland County,
	Oklahoma, Lacy Burgess and Bruce W. Hoagland.
80	Critic's Choice Essay: Cedar-apple Rust, Clark L. Ovrebo
Volume 7	chur v chone interfe court appro ready churte in orreto
4	Vascular Plants of the Oklahoma Ozarks, Charles S. Wallis
21	Updated Oklahoma Ozark Flora, Bruce W. Hoagland
54	The Vascular Flora of the Oklahoma Centennial Botanical Garden Site
51	Osage County, Oklahoma, Bruce W. Hoagland and Amy Buthod
67	Vascular Plant Checklists from Oklahoma, Michael W. Palmer
78	The Need for Savanna Restoration in the Cross Timbers,
70	Caleb Stotts, Michael W. Palmer, and Kelly Kindscher
91	Botanizing with Larry Magrath, <i>Patricia A</i> . Folley
Volume 8	Botanizing with Larry Magrath, <i>Furnue</i> 24. <i>Foury</i>
	A Eleristic Study of the Vesculer Dients of the Grosum Hills and Redhed Diens
4	A Floristic Study of the Vascular Plants of the Gypsum Hills and Redbed Plains
27	Area of Southwestern Oklahoma, 1975 M. S. thesis, <i>Susan C. Barber</i>
37	Updated List of Taxa for Vascular Plants of the Gypsum Hills and
4 5	Redbed Plains Area of Southwestern Oklahoma, <i>Susan C. Barber</i>
45	Updated Flora of the Wichita Mountains Wildlife Refuge
	Keith A. Carter, Pablo Rodriguez, and Michael T. Dunn
57	Common Spring Mushrooms of Oklahoma, <i>Clark L. Ovrebo and Nancy S. Weber</i>
61	Fern Habitats and Rare Ferns in Oklahoma, Bruce A. Smith
67 W 1	Tribute to Paul Buck, Constance Murray
Volume 9	
4	Vascular Plants of Southeastern Oklahoma from San Bois to the Kiamichi Mountains,
20	1969 Ph.D. dissertation, F. Hobart Means
38	Composition and Structure of Bottomland Forest Vegetation at the
	Tiak Research Natural Area, McCurtain County, Oklahoma
50	Bruce W. Hoagland and Newell A. McCarty
59	Is Seedling Establishment Very Rare in the Oklahoma Seaside Alder, <i>Alnus maritima</i>
	ssp. oklahomensis?, Stanley A. Rice and J. Phil Gibson
64	Whatever Happened to <i>Cheilanthes horridula</i> and <i>Cheilanthes lindheimeri</i> in Oklahoma?
70	Bruce A. Smith
70	Critic's Choice Essay: Invasive Plants Versus Oklahoma's Biodiversity, Chadwick A. Cox
X 7 1 10	
Volume 10	
4	The Identification of Some of the More Common Native Oklahoma Grasses by
2.4	Vegetative Characters, 1950 M. S thesis, William Franklin Harris
34	The Vascular Flora of Hale Scout Reservation, LeFlore County, Oklahoma
	Bruce W. Hoagland and Amy K. Buthod
54	The Toxicity of Extracts of Tephrosia virginiana (Fabaceae) in Oklahoma
	Mary Gard
65	Four Western Cheilanthoid Ferns in Oklahoma, Bruce A. Smith
77	<i>Critic's Choice Essay</i> : Being a Method Proposed for the Ready Finding To What Sort Any Plant Belongeth, Ronald J. Tyrl

Oklahoma Native Plant Society c/o Tulsa Garden Center 2435 South Peoria Tulsa, Oklahoma 74114

In this issue of Oklahoma Native Plant Record Volume 11, December 2011:

- 4 Survey of the Vascular Flora of the Boehler Seeps and Sandhills Preserve, Ph.D. dissertation *Linda Gatti Clark*
- 22 Schoenoplectus hallii, S. saximontanus, and the Putative S. hallii x S. saximontanus Hybrid: Observations from the Wichita Mountains Wildlife Refuge and the Fort Sill Military Reservation from 2002 – 2010 Marian Smith and Paul M. McKenzie
- 33 Spatial Genetic Structure of the Tallgrass Prairie Grass Dichanthelium oligosanthes (Scribner's panicum) Molly J. Parkhurst, Andrew Doust, Margarita Mauro-Herrera, Janette A. Steets, and Jeffrey M. Byrnes
- 43 The Effects of Removal of *Juniperus virginiana* L. Trees and Litter from a Central Oklahoma Grassland *Jerad S. Linneman, Matthew S. Allen,* and *Michael W. Palmer*
- 61 The Changing Forests of Central Oklahoma: A Look at the Composition of the Cross Timbers Prior to Euro-American Settlement, in the 1950s, and Today *Richard E. Thomas* and *Bruce W. Hoagland*
- 75 Critic's Choice Essay: Some Thoughts on Oklahoma Plants and Summer 2011's Exceptional Drought Leslie E. Cole

Five Year Index to Oklahoma Native Plant Record - inside back cover