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Abstract 

Objectives: To introduce the Canadian Network for Public Health Intelligence’s new Knowledge 
Integration using Web-based Intelligence (KIWI) technology, and to pefrom preliminary evaluation of 
the KIWI technology using a case study. The purpose of this new technology is to support surveillance 
activities by monitoring unstructured data sources for the early detection and awareness of potential 
public health threats. 

Methods: A prototype of the KIWI technology, adapted for zoonotic and emerging diseases, was 
piloted by end-users with expertise in the field of public health and zoonotic/emerging disease 
surveillance. The technology was assessed using variables such as geographic coverage, user 
participation, and others; categorized by high-level attributes from evaluation guidelines for internet 
based surveillance systems. Special attention was given to the evaluation of the system’s automated 
sense-making algorithm, which used variables such as sensitivity, specificity, and predictive values. 
Event-based surveillance evaluation was not applied to its full capacity as such an evaluation is 
beyond the scope of this paper. 

Results: KIWI was piloted with user participation = 85.0% and geographic coverage within monitored 
sources = 83.9% of countries. The pilots, which focused on zoonotic and emerging diseases, lasted a 
combined total of 65 days and resulted in the collection of 3243 individual information pieces (IIP) and 
2 community reported events (CRE) for processing. Ten sources were monitored during the second 
phase of the pilot, which resulted in 545 anticipatory intelligence signals (AIS). KIWI’s automated 
sense-making algorithm (SMA) had sensitivity = 63.9% (95% CI: 60.2-67.5%), specificity = 88.6% (95% 
CI: 87.3-89.8%), positive predictive value = 59.8% (95% CI: 56.1-63.4%), and negative predictive value = 
90.3% (95% CI: 89.0-91.4%).  

Discussion: Literature suggests the need for internet based monitoring and surveillance systems that 
are customizable, integrated into collaborative networks of public health professionals, and 
incorporated into national surveillance activities. Results show that the KIWI technology is well posied 
to address some of the suggested challenges. A limitation of this study is that sample size for pilot 
participation was small for capturing overall readiness of integrating KIWI into regular surveillance 
activities. 

Conclusions: KIWI is a customizable technology developed within an already thriving collaborative 
platform used by public health professionals, and performs well as a tool for discipline-specific event 
monitoring and early warning signal detection.  
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Background 
 

Internet Biosurveillance 
 

Internet biosurveillance emerged in the mid-1990s and has matured into a globally recognized 

technique for providing early warning of, and situational awareness for, public health threats [1-

2]. This web-based approach utilizes unstructured real-time or near real-time data to support and 

complement traditional indicator-based surveillance. Many internet biosurveillance systems have 

been developed with examples of well-established and analyzed systems including Argus, 

BioCaster, EpiSPIDER, GPHIN, HealthMap, MedISys, and ProMED-mail [3-8].  

 

Since internet biosurveillance, or non-traditional event-based surveillance, is distinct from 

traditional indicator-based surveillance, it is recognized that applying the Centers for Disease 

Control and Prevention’s “Updated Guidelines for Evaluating Public Health Surveillance 

Systems” [9] to the evaluation of internet biosurveillance systems is not suitable [10]. Therefore, 

criteria specific to event-based surveillance systems were developed during a workshop in 2010, 

which was held at the Pacific Northwest National Laboratory in Richland, Washington. These 

criteria include the following attribute families: Event (i.e. description of event including source, 

causative agent, and detection mode), Readiness (i.e. system validation and stakeholder 

willingness to use the system), Operational Aspects (e.g. administration/maintenance 

requirements, and system redundancy and ability to accommodate various levels of data), 

Geographic Coverage, Population Coverage, Input Data (e.g. accessibility, quality, quantity, and 

utility of input data), Output (e.g. accessibility, quality, quantity, and utility of output data), and 

Cost (i.e. funding sustainability, and research, evaluation, and operational expenses).  

 

Six of these eight attribute families were used to guide categorization of KIWI evaluation results 

based on a specific case study. Cost and Operational Aspects were not direct results of this 

evaluation; however, operational aspects may be identified throughout the introduction of KIWI.  

 

Internet biosurveillance systems have been compared to one another and evaluated both 

qualitatively and quantitatively throughout literature and system challenges are readily discussed 

[3-8]. In reference to event-based biosurveillance systems, Keller and colleagues suggested in 

2009 that the future development of event-based systems should focus on establishing 
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collaborative networks of public health practitioners for the verification and dissemination of 

early warning signals [3]. In 2010, Hartley and colleagues suggested that “prominent challenges 

[with event-based systems] include interoperability, interface customizability, scalability, and 

event traceability” [4]. In addition, it was suggested that biosurveillance capability can be 

expanded with the use of emerging media such as social networking sites and that the similarities 

and differences between event-based systems indicate that a more powerful resource can be 

created by combining them. The idea of combining existing internet biosurveillance systems to 

create a stronger platform is echoed throughout the literature [4, 6-7]. In 2013, Hartley and 

colleagues suggested the use of interactive functions for users such as scoring options and 

comment fields [1]. In 2014, a systematic review by Velasco and colleagues assessed 13 event-

based surveillance systems from Canada, the European Union, Japan, and the United States and 

identified that no system had been incorporated into a national surveillance program [8].   

 

In summary, literature suggests the need for:  

 

 Enhancing technologies including the ability to customize the system’s user interface, 
trace events from beginning to end, adjust to various volumes of data input and 
coverage (scalability), and be functional despite jurisdictional boundaries 
(interoperability);  

 Establishing collaborative networks of public health professionals for the verification 
and dissemination of early warning signals and addition of interactive functions;  

 Combining existing event-based systems; and  
 Integrating event-based systems into national surveillance initiatives.  

KIWI is uniquely designed within an existing national surveillance platform and is well posied to 

address the additional challenges proposed in literature regarding internet based monitoring and 

surveillance systems.    

 

Canadian Network for Public Health Intelligence 

 
The Canadian Network for Public Health Intelligence (CNPHI) is a Public Health Agency of 

Canada (PHAC) initiative developed and managed by the National Microbiology Laboratory 

(NML) [11]. CNPHI is a secure and comprehensive framework of applications and resources 

designed to enable multi-jurisdictional surveillance, response, and collaboration in the field of 

public health; CNPHI supports initiatives ranging from zoonotic disease detection to drinking 

water advisories, nosocomial infections, food borne illnesses and many others. The platform was 

established in 2003 and is built upon six focus areas: Knowledge Management, Surveillance, 

Alerting, Collaboration, Event Management, and Laboratory Systems.  

 

To complement and support surveillance activities currently performed using the CNPHI 

platform, an event-based monitoring application called “Knowledge Integration using Web-

based Intelligence” (KIWI) has been developed within the Knowledge Management focus area.  
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The Knowledge Integration using Web-based Intelligence 

Technology  
The purpose of CNPHI’s KIWI technology is to support surveillance activities by monitoring 

events using unstructured data sources for the early detection and awareness of potential public 

health threats. KIWI is designed to collect information from various internet sources and process 

intelligence using an automated sense-making algorithm (SMA). Individual information pieces 

(IIPs) are raw individual information items from RSS feeds. Once processed by KIWI’s 

automated SMA, IIPs either remain IIPs or become potential early warning signals, also referred 

to as anticipatory intelligence signals (AIS). AISs are presented to a community of CNPHI users 

for manual relevancy rating. Highly rated AISs become early warning signals (EWS), which are 

then disseminated to the user community. Users are also encouraged to record community 

reported events (CRE), which are entered into the KIWI system as additional unprocessed AISs 

for community rating. Figure 1 is a schematic of the information flow that underpins KIWI.  

 
Figure 1. KIWI Information Flow. 

 

KIWI takes advantage of both automated and manual processing to reduce the amount of time 

and resources required for reviewing IIPs and to ensure EWS relevance through manual 

validation. The KIWI interface presents IIPs and AISs/EWSs, or signals, in both map and listing 

formats with many search and filtering options. The map format allows users to view signals by 

geography, while the listing format allows users to view details including, but not limited to, 

title, description, source, and full-text link. Each signal is accompanied by supporting 

information via health condition specific links to tools such as Google Trends and the Global 

Infectious Diseases and Epidemiology Network (GIDEON). Each signal is equipped with forums 

for community interaction and tools for  following related signals over time. In addition, if users 
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want to remain updated on specific signals, they can “watch” the signal and receive email 

notifications.  

 

Since CNPHI users are multi-disciplinary and multi-jurisdictional, KIWI can be customized to 

meet the requirements of various organizations and collaborations. Figure 2 displays an overview 

of KIWI’s high-level components including data collection, processing, analysis, and 

dissemination. Details such as specific data sources and dictionaries (keywords and weights) 

vary by KIWI program (ex: Zoonotic).  

  
Figure 2. An overview of KIWI’s technology 

 

Collection and Storage 

 
RSS feeds are used to collect information in the form of IIPs from internet-based sources such as 

Eurosurveillance, MedISys, ProMED-mail, and others. IIPs are indexed and made available 

directly on the KIWI platform by use of customized searches.  

 

Data Processing  

 
Each IIP is fed through text mining software (Alchemy) to extract keywords, entities (e.g. 

geography), and keyword characteristics such as relevance and sentiment. Entities are used to 

map IIPs when geography is provided and gives details for tabulation. Identified keywords are 

accompanied by values indicating percent relevancy (R) and sentiment score (S). Each keyword 

is then searched in pre-assembled KIWI dictionaries where matched keywords are given 

additional weight (W), which can be either a positive or negative value. The following formula is 

used to calculate Total Intelligence Relevance (TIR): ∑ (R - S)*W, where TIR is the sum of 
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keyword relevance minus sentiment multiplied by weight for each keyword. TIR is used to 

determine whether an IIP becomes an AIS or EWS.  

 

Within the KIWI technology, duplicate IIPs may occur from the same source or from different 

sources. The current implementation does not automatically remove duplicates, however, the 

system flags similar IIPs that have occurred within the last 4 weeks. Further work in this area 

could be beneficial. 

 

Data Analysis 

 
AISs are manually rated by users on a scale of one to five, with one being not-relevant and five 

being extremely relevant (Figure 3). IIPs rated higher than not-relevant are considered valid 

AISs, and those rated greater or equal to relevant are considered valid EWSs. Note that valid 

AISs become EWSs automatically if 60% of users rate greater than or equal to relevant with a 

minimum of 10 raters, otherwise manual validation takes place by analysts. Community rating 

may be used as a gold standard for calculating sensitivity, specificity and predictive values for 

the sense-making algorithm.  

 

Dissemination 

 
KIWI includes an interactive interface to view signals and the technology is capable of creating 

auto-generated reports summarizing AISs and validated EWSs. Generated reports may be 

disseminated to appropriate communities via associated CNPHI collaboration centre, which 

include options for managing documents and notifying select workgroups via email. Auto-

generated reports may include the following signal-related information: title, description, date 

posted, program, source, signal type (AIS/EWS/CRE), detection method, and average rating.  

 

Case Study  

 
Though KIWI is designed to accommodate various programs, or topics/disciplines, the described 

study focuses solely on the Zoonotic program. The Zoonotic program was customized in 

collaboration with the Centre for Emerging and Zoonotic Disease Integrated Intelligence and 

Response (CEZD-IIR). For the purpose of this paper, this customization of KIWI will be referred 

to as KIWI-Zoonotic.  

 

KIWI-Zoonotic was piloted in two phases between June and November of 2015, with each phase 

lasting approximately one month in duration. The purpose of the first phase was to familiarize 

pilot participants with the technology, and verify its functionality and usability, while the second 

phase aimed to measure KIWI performance.  Pilot participants (Phase I: n = 20, Phase II: n = 37) 

were real end-users of zoonotic/emerging disease intelligence including veterinarians, 

epidemiologists, scientists, analysts, and others from local, provincial and federal institutions and 

agencies across Canada.  
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Preparation  

 
In preparation of the KIWI-Zoonotic pilot, data sources, dictionaries, and relevancy rating 

decision making criteria were configured to meet CEZD-IIR requirements. Data sources were 

identified and a standardized tool for prioritizing information sources was applied to refine 

selected sources[12]. KIWI-Zoonotic utilizes the following internet-based information sources: 

EurekAlert, Eurosurveillance, IBIS, MedISys, Outbreak News, Pig Process, ProMED-mail, 

Science Daily, and The Poultry Site. 

 

The KIWI technology requires three dictionaries: Health Conditions, Relevant Terms, and 

Significant Terms.  

 

 Health Conditions is a list of known health conditions and diseases of interest with 
assigned weights reflecting relevance.  For the Zoonotic program, this dictionary 
contains known zoonotic and known emerging diseases. Keyword weights were 
determined by sorting diseases by their presence or absence on various notifiable 
disease lists (animal/human and provincial/national/international). These weights were 
then adjusted based on relevance to the community of users via feedback from program 
team leads.  

 Relevant Terms is a list of terms used as a proxy for unknown health conditions to 
identify potential signals of interest with emerging capacity. For the Zoonotic program, 
this dictionary contains disease agents such as viruses, bacteria and others. Keywords 
were assigned neutral weight as there is no hierarchy in relevance of disease agents.  

 Significant Terms is a list of terms used to define signal importance, such as, outbreaks, 
unknown diseases, new diseases, et cetera. For the Zoonotic program, Keywords were 
grouped by the following categories: exclusion terms, epidemiological terms, and novel 
terms. Exclusion terms were given negative weight; epidemiological terms were given 
positive weight based on levels of keyword severity (for example, case versus outbreak 
versus pandemic); and novel terms were assigned positive weight without hierarchical 
variation. 

For the purposes of the pilot, these dictionaries were configured for the detection of known 

zoonotic and animal diseases as well as significant and relevant terms utilized for the detection 

of emerging diseases.  

 

A decision making tool was developed to aid KIWI-Zoonotic users in rating the relevancy of 

AISs. The tool was based on the International Health Regulations of 2005 [13] and adjusted for 

the purpose of zoonotic and emerging diseases (Figure 3).  
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Figure 3. Relevancy Assessment Tool for Zoonotic and Emerging Diseases 

 

Evaluation Methods 

 
Six of eight attribute families described earlier were used to categorize variables assessed during 

the KIWI-Zoonotic evaluation: events, geographic coverage, population coverage, readiness, 

data input, and data output.  

 

Events were represented by the number of potential early warning signals detected during the 

two pilot phases. The number of IIPs indicates the pool of possible events while the number of 

potential early warning signals indicates the number of potentially relevant events. These 

variables were measured over both pilot periods.  
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Geographic coverage was calculated by identifying the number of countries referred to in 

detected AISs and dividing that number by the total number of countries. The numerator was 

determined by viewing KIWI-Zoonotic’s map of potential early warning signals, and the 

denominator of 193 countries was based on members of the United Nations. This variable was 

measured over a one year time period (April 2015-2016). 

 

Population coverage is a qualitative variable describing the population of interest including two 

population types: health conditions/diseases and species affected. This variable is not time 

dependent. 

 

Readiness was represented by user participation in the KIWI-Zoonotic pilot. Descriptive 

statistics were used to identify the proportion of participants who accessed KIWI-Zoonotic, rated 

signals, commented on AISs, conducted searches for IIPs, and entered CREs. The proportion of 

participants who rated signals was measured over both pilot periods, while remaining variables 

were measured during Phase I because the purpose of Phase I and II differed.   

 

Data Input was represented by source performance, which was assessed by calculating the 

number of AISs produced per source and plotting it against the proportion of AISs identified as 

relevant per source. Source performance was measured during Phase II of the pilot because 

sources monitored were modified based on outcomes of Phase I. Phase II data provided the most 

recent information.    

 

Data Output was represented by assessing the automated SMA. KIWI’s automated SMA for the 

zoonotic pilot was analyzed by calculating its sensitivity, specificity, and predictive values. 

Average community relevancy rating was used as the gold standard in these calculations.  

 

 IIPs detected by the automated SMA (Automatic) that were rated “Not Relevant” were 
treated as false positives, and those rated higher than “Not Relevant” were treated as 
true positives.  

 IIPs not detected by the automated SMA (Manual) that were rated “Not Relevant” were 
treated as true negatives, and those rated higher than “Not Relevant” were treated as 
false negatives.  

Analysts reviewed IIPs for missed potential early warning signals on a daily basis and entered 

them manually for community rating. Community reported events are directly input into the 

system as AISs without being processed by the automated SMA. Since CREs are unprocessed, 

they were excluded from this portion of the analysis. Variables were measured over both pilot 

periods.  

 

Results 
 
IIPs – Events, Geographic Coverage, and Population Coverage 

 

The KIWI-Zoonotic pilot lasted a combined total of 65 days (Phase I = 36 days; Phase II = 29 

days) and resulted in the collection of 3243 IIPs (Phase I = 1618 IIPs; Phase II = 1625) and 2 

CREs (Phase I = 1; Phase II = 1).  
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The KIWI-Zoonotic system detected events on a global scale with total geographic coverage, 

within monitored sources, at 83.9% of countries.  

 

Since KIWI-Zoonotic focuses on animal and zoonotic disease, both animal (wild, agricultural, 

and domestic) and human events were captured by the system. The most frequently occurring 

IIPs were those referring to Dengue Fever, Avian Influenza, Ebola, Chikungunya Virus, and 

Zika Virus events. 

 

Readiness   

 

The rate of user participation during Phase I of the KIWI-Zoonotic pilot was 85.0% (17/20). 

76.5% (13/17) of participants who accessed the system rated AISs, 47.1% (8/17) commented on 

AISs, 35.3% (6/17) conducted customized searches for IIPs, and 5.9% (1/17) entered CREs. 

During Phase II, 77.8% (28/36) of participants rated AISs.  

 

During the pilot period, the average number of IIPs collected on a daily basis was 50, and the 

average number of potential early warning signals identified on a daily basis was 16. With the 

use of KIWI’s automated SMA and analysts, there is a 68% reduction in the number of signals 

that users would be required to view and rate on a daily basis.  

 

Sources – Data Input 

 

KIWI-Zoonotic configured ten sources for data input including the following: ProMED-mail, 

Outbreak News, MedISys, Science Daily, IBIS, EurekAlert, The Poultry Site, Eurosurveillance, 

Pig Progress, and CREs. Phase I of the pilot used six of these ten sources including ProMED-

mail, MedISys, EurekAlert, Eurosurveillance, Science Daily, and CREs, while Phase II used all 

ten sources. During Phase II of the pilot, 545 AISs were collected with the highest proportions of 

AISs input from ProMED-mail (34.3%; n = 187), Outbreak News (26.6%; n = 145), and 

MedISys (13.8%; n = 75). ProMED-mail and Outbreak News also produced the highest 

proportions of relevant AISs with 44.0% (142/323) and 30.0% (97/323) respectively. The 

denominator of 323 represents the number of AISs rated greater than “not relevant” by users.  

 

Figure 4 displays each source with its corresponding AIS frequency and proportion of relevant 

AISs produced.  

 

SMA – Data Output 
During the KIWI-Zoonotic pilot (Phases I & II), a total of 3243 IIPs were processed by the 

automated SMA. 1025 processed IIPs became AISs (Phase I = 481; Phase II = 544) and 2218 

IIPs remained IIPs. Of the 1025 processed AISs, 70.8% (726) were detected through KIWI’s 

automated SMA and 29.2% (299) were identified manually by analysts, see Figure 5. 
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Figure 4. Proportion of Relevant Anticipatory Intelligence Signals by source and AIS 

frequency 

 

 

 

 
Figure 5. Breakdown of signals entering the KIWI during the pilot period 

 

Of the 726 IIPs detected as AISs by the automated SMA, 434 were true positives and 292 were 

false positives (true positive rate = 59.8%; false positive rate = 40.2%). Of the 2517 IIPs not 
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detected as AISs by the automated SMA, 2272 were true negatives and 245 were false negatives 

(true negative rate = 90.3%; false negative rate = 9.7%), see Table 1.  

 

Table 1. KIWI's Sense-Making Algorithm 

Zoonotic Pilot Phases I, II, & Total 
         

   AIS  Non-

AIS 

 Total  

 

Detected 

Phase I 241  91  332  

 Phase 

II 

193  201  394  

 Total 434  292  726  

 

Not Detected 

Phase I 116  1170  1286  

 Phase 

II 

129  1102  1231  

 Total 245  2272  2517  

 

Total 

Phase I 357  1261  1618  

 Phase 

II 

322  1303  1625  

 Total 679  2564  3243  
         

 

The prevalence of AISs was 20.9% (679/3243). The probability that an AIS will be detected by 

the automated SMA is 63.9% (sensitivity; 434/679), and that a non-AIS will not be detected by 

the automated SMA is 88.6% (specificity; 2272/2564). The probability that a detected AIS will 

be a true positive is 59.8% (positive predictive value; 434/726), and that a non-detected IIP will 

be a true negative is 90.3% (negative predictive value; 2272/2517), see Table 2. 

 

Table 2. KIWI's Sense-Making Algorithm  

Zoonotic Pilot Total Diagnostics  
     

  Percent 95% Confidence 

Interval 

 

 Prevalence 20.9% 19.6-22.4%  

 Sensitivity 63.9% 60.2-67.5%  

 Specificity 88.6% 87.3-89.8%  

 + Predictive 

Value 

59.8% 56.1-63.4%  

 - Predictive Value 90.3% 89.0-91.4%  
     

 

Of 323 true AISs (detected manually, automatically, or via CRE) during Phase II of the pilot (1 

CRE plus 322 total AIS Phase II; Table 1), 32 (9.9%) met the threshold for automatically 

becoming an EWS and an additional 37 (11.5%) met the criteria for manual EWS validation.   
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Discussion 

 
KIWI-Zoonotic has broad geographic coverage, and processes individual information pieces, or 

IIPs, on a daily basis. Broad geographic coverage as a proportion of countries is important for the 

monitoring of diseases on a global scale despite population size or land mass. Increasing KIWI’s 

geographic coverage is limited by the geographic reach of sources being monitored and event 

occurrence.  

 

The system’s automated SMA increases system usability by significantly decreasing the number 

of IIPs rated manually by users, which has been shown to increase user willingness to participate 

in the rating process. Since approximately one quarter of users did not contribute towards rating 

of the KIWI signals, assessment of factors contributing to user willingness to participate in the 

rating process and the further refinement of KIWI’s SMA to reduce the number of false positives 

deserves future attention.  

 

All KIWI-Zoonotic sources provided relevant information with varying proportions of relevant 

AIS production (Figure 4). ProMED-mail and Outbreak News ranked highly in both the 

proportion of relevant AISs and the number of AISs produced. Though CREs, Pig Progress, The 

Poultry Site, and IBIS each produced a small number of signals, their proportions of relevant 

signals were high. The remaining sources, EurekAlert, MediSys, Science Daily, and 

Eurosurveillance, each provided high proportions of non-relevant signals, or false positives, per 

source. False positive signals are useful for refining keyword dictionaries and the SMA’s overall 

ability to distinguish relevant signals. 

A study by Barboza and colleagues evaluated seven event-based systems (Argus, BioCaster, 

GPHIN, HealthMap, MedISys, ProMED, and Puls) on the following characteristics: Usefulness, 

Simplicity, Flexibility, Representativity, Completeness, Sensibility, and Timeliness [6].  

Researchers concluded that no system ranked highly on every characteristic and thus systems 

with different strengths should be combined to make a stronger system. KIWI-Zoonotic takes 

advantage of this by including MedISys and ProMED-mail as sources which, in combination, 

ranked highly during the Barboza study in numerous evaluation characteristics.  

 

The goal of the KIWI-Zoonotic automated SMA is to reduce the number of IIPs being rated 

manually by users. With this in mind, it is more important for the automated SMA to maintain a 

low false negative rate rather than a low false positive rate. False positives are simply rated “Not 

Relevant” by the user community and do not become EWSs, while false negatives require more 

resources to locate and manually enter into the system. Since positive predictive value can be 

calculated as 1-(false positive rate) and negative predictive value can be calculated as 1-(false 

negative rate), we can alternatively say that it is more important for the automated SMA to 

maintain a high negative predictive value rather than a high positive predictive value.  

KIWI-Zoonotic’s automated SMA performed highly in specificity and negative predictive value, 

which is of value for our purposes.  The automated SMA performed moderately in sensitivity 

and positive predictive value based on the expected range of 38-72% sensitivity [6]. Further 
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efforts to maximize SMA sensitivity, while maintaining high specificity, will benefit the KIWI 

system as a whole.  

 

Conclusion 

 
KIWI is well poised to uniquely address the challenges proposed in literature regarding event-

based surveillance in the following ways: (a) KIWI allows for unique user interfaces by 

discipline/collaboration, the ability to “watch” individual information pieces (IIPs) and view 

trends of IIPs by health condition (thus allowing users to follow events from start to finish), data 

volume is not limited, geographic/population coverage is high/broad, and the CNPHI platform is 

specifically designed for multi-jurisdictional data sharing, support, and collaboration, (b) KIWI 

has been integrated into an already thriving community of public health professionals who 

discuss, comment on, and rate AIS relevancy for the verification of early warning signals, (c) 

KIWI utilizes a variety of sources including numerous existing event-based systems, and (d) the 

goal of KIWI is to support CNPHI’s existing activities in public health surveillance and 

response.  

 

The automated sense-making algorithm for KIWI’s Zoonotic program is useful for the detection 

of IIPs related to zoonotic and emerging diseases, and it seems to perform well in maintaining a 

low rate of false negatives. Further evaluation would be useful in validating this over a longer 

duration.  

 

The purpose of the KIWI technology is to provide situational awareness and early warning signal 

detection in support of surveillance activities. Resulting signals have the potential to influence 

public health action and complement traditional surveillance methods by providing timely 

information.  

 
Limitations 

 
The purpose of this paper was to introduce the KIWI technology, evaluate it briefly based on the 

KIWI-Zoonotic Pilot, and show how KIWI is uniquely designed within the context of national 

surveillance and collaboration. Event-based surveillance evaluation was not applied to its full 

capacity as such an evaluation is beyond the scope of this paper.  

The KIWI technology is limited by its dependence on online sources with available RSS feeds. 

The timeliness of early warning signal development is limited by the timeliness of manual 

detection of missed signals and of user rating. There is no factor in the rating process that 

accounts for rater expertise per program, and average relevancy rating is currently used as a 

threshold for signal relevance. A limitation of this current method is that an early warning signal 

may be rated high by an expert and low by the majority of users and not become an early 

warning signal. Future work should be done to identify whether an adaptive weighted approach 

may correct for this current limitation.  

Sample size for pilot participation in KIWI-Zoonotic was small for capturing the overall 

readiness of public health professionals to use such a system on a regular basis and with full 

integration into surveillance activities, and pilot duration was not long enough to capture 

seasonal patterns of disease.  
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