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Abstract 

Human activity encompasses a series of complex spatiotemporal processes that are difficult to model 
but represent an essential component of human exposure assessment. A significant empirical data 
source, like the American Time Use Survey (ATUS), can be leveraged to model human activity. However, 
tractable models require a better stratification of activity data to inform about different, but classifiable 
groups of individuals, that exhibit similar activity sequences and mobility patterns. Using machine 
learning algorithms, we developed an unsupervised classification and sequence generation method 
that is capable of generating coherent and stochastic sequences of activity from the ATUS data. This 
classification, when combined with any spatiotemporal exposure profile, allows the development of 
stochastic models of exposure patterns and records for groups of individuals exhibiting similar activity 
behaviors. 

Keywords: American Time Use Survey; Machine Learning; Random Forests, Classification; Exposure 
Modeling 

Abbreviations: American Time Use Survey (ATUS), t-Stochastic Neighbor Embedding (t-SNE), Density-
based Spatial Clustering of Applications with Noise (DBSCAN), Recurrent Neural Network (RNN) 

*Correspondence: Julio.Facelli@utah.edu 

DOI: 10.5210/ojphi.v12i1.10588 

Copyright ©2020 the author(s) 

This is an Open Access article. Authors own copyright of their articles appearing in the Online Journal of Public Health Informatics. 
Readers may copy articles without permission of the copyright owner(s), as long as the author and OJPHI are acknowledged in the 
copy and the copy is used for educational, not-for-profit purposes. 

Introduction 

Estimating human exposure to airborne and other broadly distributed pollutants presents a 

significant public health challenge. Because humans are mobile and inhabit a variety of 

microenvironments, it is insufficient to model only the spatiotemporal distribution of pollutants. 

Even for a geographically homogeneous distribution of pollutants, different individuals experience 

different levels of total individual exposure depending on their activity patterns [1-3]. Therefore, 

any successful model of individual human exposure requires an estimation of the sequences of 
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activities human agents perform, along with their locations and context of those activities. 

Furthermore, a large amount of pollutant emissions in urban environments results directly from 

human activity. Modeling human activities could, therefore, have potential use in estimating 

pollution distributions directly from mobile sources, like automobile emissions. 

Comprehensive and detailed activity patterns from individuals can be gathered using a variety of 

tracking devices, including diaries, surveys, and structured observations. But such methods may 

be cumbersome to implement, prone to privacy concerns, and may fail to capture contextual data 

[4]. On the other hand, the American Time Use Survey (ATUS) [5] provides a comprehensive 

picture of human activities in the United States of America (US) and it can be used to infer human 

behavioral patterns. The ATUS dataset is highly complex, with each annual survey containing over 

10,000 activity diaries of recorded temporal sequences detailing daily activities of the survey 

respondents. Each activity diary can include up to 80 discrete activities with dozens of auxiliary 

variables and additional demographic variables embedded in the dataset. The composition and 

timing of activities can have significant overlap, but also present distinct patterns based on 

demographics. For example, the majority of the respondents report sleeping, eating, and grooming 

in most activity diaries, but other activities, such as working, recreation, and child care, will have 

unequal representation across different demographic categories. The ATUS has been described in 

great detail, including a comprehensive descriptive analysis in a recent publication [6]. 

The degree of complexity in the ATUS makes expert analysis or the development of a gold 

standard difficult. Its dimensionality and size are above the threshold for effective manual analysis 

and visualization. The synthesis of activity sequences has been explored with varying levels of 

success [7-11], but to the authors' knowledge, no attempts to classify ATUS activities for cohort 

identification have been reported. Classification of individual activity patterns is a critical step for 

the development of stochastic models of exposure [12]. To address this need, we developed a 

method for unsupervised classification of the ATUS data that broadly classifies activity and 

demographics without relying on human expertise. Identification and classification of activity and 

demographic classes enable us to construct activity sequences, the latter being artificial constructs 

used to model behavior in our recently published agent-based model [13] for total exposure. We 

developed a simple approach to construct activity sequences utilizing the concept of starting 

windows – which are periods where an activity may start. We then show that our method of 

generating activities results in sequences that are qualitatively indistinguishable from those 

collected in the ATUS. 

Methods 

Classification of the ATUS Activity Diaries 

While it can be intuitively conceived that different individuals follow different activity patterns, 

to our knowledge, there are no studies that have formally organized these activities, recognized 

common patterns, and classified individuals according to them. The ATUS activity diaries are 

organized into multiple tables containing demographic properties of the respondents (age, gender, 

work status, married status, etc.), activities of each of these respondents (a sequence of records 

containing activity type, start times, length), and some auxiliary information describing their 

household composition and activity context. The activities are described using the ATUS lexicon 

[5]. Variables can be categorical or continuous, possibly censored to protect unique respondents, 



Generation and Classification of Activity Sequences for Spatiotemporal Modeling of Human 
Populations 

 

3 

Online Journal of Public Health Informatics * ISSN 1947-2579 * http://ojphi.org * 12(1):e9, 2020 

OJPHI 

and have hierarchal dependencies based on survey responses. We eliminated variables from the 

demographic table related to survey questions that had a low response rate and/or low variance, as 

these would be non-informative and introduce noise in the unsupervised classifiers. Our final 

selection contains 16 demographic variables listed in Table 1, all of which can also be inferred 

from the US Census and employment statistics. 

Table 1. List of the 16 demographic variables and activity vectors included in this study. Variable 

names are given as they appear in the ATUS. The demographic classifier uses only these 16 

variables, while the activity classifier used the 16 demographic variables and associated activity 

vectors as the feature set. 

 FEATURE 

NAME & DESCRIPTION 

DEMOGRAPHIC 

VARIABLES 

TEAGE Age 

TEHRUSL1 Hours worked at main job 

TELFS 
Labor force status (employed, unemployed, not in 

labor force) 

TESCHENR Enrolled in high school, college or university 

TESCHFT Enrolled as full time or part-time student 

TESCHLVL 
School enrollment level (high school, college, or 

university) 

TESEX Gender 

TESPEMPNOT Employment status of spouse or unmarried partner 

TESPUHRS Hours worked by spouse or unmarried partner 

TRCHILDNUM Number of household children under age 18 

TRDPFTPT Full time or part-time employment status 

TRHHCHILD Presence of household children under age 18 

TRSPPRES 
Presence of spouse or unmarried partner in 

household 

TUDIS2 Disability preventing work in the next six months 

TUELNUM Number of elderly people cared for this month 

TUSPUSFT 
Spouse or unmarried partner full time or part-time 

employment status 

   

ACTIVITY 

VECTORS 

Activity count 

The number of times each type of activity is 

performed in the activity diary. Contains 

approximately 400 activity counts 

Activity Time 

The main activity performed in each five minutes 

slice in each activity diary. There are 288 five 

minute slices in a single day.  
& The names of the variables in this table may appear somehow cryptic, but we kept the original 

ATUS names so anybody interested in reproducing our results know exactly what variables were 

used. In the second column we give the definition of the variables as described in ATUS. 

We transformed the ATUS activity tables into two separate vectors representing the activities 

reported by each individual participating in the survey. The first vector with approximately 400 
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dimensions counts the number of instances each unique activity from the ATUS lexicon [5] is 

found in the activity diary of each individual. The second vector with 288 dimensions discretizes 

the 24-hour period of each individual's diary into five-minute intervals, assigning the ATUS 

lexicon code [5] of the primary activity reported in each slice to the corresponding slot. Together, 

these activity vectors capture both the categorical and temporal patterns of activities for each 

respondent. We used these vectors along with the 12 demographic variables to create the feature 

set for activity classification (Table 1). 

Our approach to classifying activities and demographics was as follows (Figure 1). First, we 

generated a random forest with 2,000 truncated trees having a maximum tree depth of five-leaf 

nodes. We used the Random Trees Embedding method from scikit-learn to generate a random 

forest-based on random subdivisions of variables in the absence of labels [14]. Next, we generated 

a proximity matrix according to the method proposed by Breiman [15], by counting the number of 

times each pair of feature vectors appear on the same leaf node for each tree in the initial random 

forest. In our third step, we used this proximity matrix as the input for a two-component t-

Stochastic Neighbor Embedding (t-SNE) [16], which is used for embedding high-dimensional 

datasets in low dimensional spaces. We normalized the embedded coordinates from t-SNE to the 

interval (-1,1) and performed clustering using density-based spatial clustering of applications with 

noise (DBSCAN) [17]. We manually estimated the maximum cluster distance and sample 

parameters, since these hyperparameters are dependent on the dataset and features used. We used 

a maximum cluster distance values of 0.03 for a cluster size of 20, and 0.02 for a cluster size of 10 

for the demographic and activity feature sets, respectively. Using these parameters allowed us to 

select small and dense clusters and the feature vectors to be non-labeled by the algorithm. 

 

Figure 1. Steps followed in classifying activities and demographics. 

The DBSCAN clustering generates a set of labeled and unlabeled feature vectors. In our final step, 

we used the labeled feature vectors to train a truncated Extra Random Forest [18]. Using the 
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entropy criterion, which is preferred for categorical data [18], we assigned a maximum tree depth 

of eight for this forest. We then classified all unlabeled feature vectors using this new random 

forest. We did this because the initial clustering leaves up to 30% of feature vectors unlabeled, and 

many of the labeled features are similar enough to be classified the same. As we needed our classes 

to have some level of statistical power, we generated one additional set of random forests, using 

the same parameters, but this time without truncation (no maximum tree depth). This set of forests 

was trained on all classes above a size cutoff of 25 feature vectors, with the remaining small classes 

being classified by this new classifier. This method produces the final classes for the demographic 

and activity classes and generates a classifier that can be used in conjunction with the US Census 

as part of our agent-based model [13]. 

Generation of Activity Sequences using Starting Windows 

While the classification by itself is a useful tool for identifying distinct patterns of activity, it is 

insufficient for predicting or simulating the behavior of an arbitrary agent representing a person in 

a class. The activity classes generated by our classifier provide a basis for what patterns of activity 

exist. However, the activity diaries themselves are not suitable for simulation purposes because 

they are intrinsically tied to the empirical and geographical constraints of the persons interviewed 

for the ATUS. Instead, we generate synthetic activity sequences from a probabilistic representation 

of each activity class. 
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Figure 2. A representation of activity window construction and probabilistic window 

sorting. The top section of this figure, each dot represents an activity with a start time and 

length, blue and green represent two different types of activities. Although blue represents 

a single activity type, the circumstances and times of those activities have different 

contexts. Groups of activities can be broken into windows of time where an activity can 

start. The same can be done with the lengths of activities. Creating a grid of starting times 

and lengths can be used to define contextual starting and length windows and, in turn, in 

defining types of activities. The lower section of the figure shows probabilities calculated 

based on the starting windows and probabilistic sorting of activities. Trips can be added 

when activity location change and activity lengths adjusted based on allowed starting times 

and activity lengths to fill the period of simulation. 

We generated synthetic activity sequences for each activity class according to the following 

procedure (Figure 2). For each class, we considered each activity present in the cohort separately 

and collected their starting times. Using Bayesian Gaussian Mixtures [19], we generated a set of 

one-dimensional clusters of activity starting times to create starting windows, which we define as 

a period of time when an activity can start. For example, if we were to distinguish daytime naps 

and nighttime sleeping, we would define two separate starting windows for each type of activity 

based on starting time, even though both instances are classified as sleeping activities 

Utilizing these starting windows, we calculated four different probabilities. First, we calculated 

the probability that a member of the activity cohort will perform an activity defined by a starting 

window. This is the probability of a starting window appearing in an arbitrary sequence drawn 

from the set of activity diaries that contains the starting window of interest. This probability 

captures the idea that some activities are repeatedly and consistently performed across the 

population, such as sleeping, eating, and personal grooming, but also allows for exceptions in 

ordinary behavior. We expected the members of each activity class to follow a schedule, but with 

potential variations. The second probability we calculated is the joint probability between start 

windows and activity lengths. We cluster activity lengths into length windows that are generated 

the same way as to start windows but using activity lengths instead of start times. The reason for 

using length windows instead of a more common distribution is that activity lengths can exhibit 

very different scales depending on the context. For example, a nap could last anywhere from 

twenty minutes to three hours long, whereas a typical night's sleep might vary from four the twelve 

hours. 

Further, activity lengths can have unusual distributions and cluster in ways that do not approximate 

to a smooth function. The third probability we calculated is the probability that an activity in one 

start window is preceded by an activity in another start window. This captures the idea that the 

order of some activities can be indiscriminate or based on preference, while others have specific 

causal orders. For example, food preparation always precedes the actual activity of eating. Still, 

the order of reading a book and watching a movie for evening entertainment largely depends on 

the preference of the participant. Estimating this probability allows us to effectively sort activities 

and insert the necessary stochastic components needed to capture variability in activity order. 

Finally, we calculated the joint probability between the start window and location type. Although 

the ATUS does not have specific geographic locations in the dataset, it does define the type of 

location for each activity (e.g., home, workplace, store, etc.). Encoding these location types allows 
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us to utilize contextual information for assigning precise locations to activities in a synthetic 

activity sequence. 

We utilize these four probabilities to generate synthetic activity sequences using Monte Carlo 

sampling. For this, we selected a set of start windows, assigned activity lengths, sorted those 

starting windows stochastically, and then assigned locations types. Next, we inserted travel 

activities between activities that occur at different locations to improve the quality of the sequence. 

Finally, we adjusted activity lengths within the intervals prescribed by the starting windows and 

minimum or maximum activity lengths to fill the period of the simulation so that there are no gaps 

in the synthetic sequence. We performed this adjustment using a weighted coefficient based on the 

selected length of each activity to preserve the relative lengths of activities. The code developed 

here is available at: https://github.com/uofu-ccts/prisms-comp-model-stham. 

Results and Discussion 

Figure 3 shows an example of activity classes derived from the classification process. Distinctive 

patterns of activity can be isolated despite the simplicity of the classification algorithm. Significant 

overlap in activity profiles occurs between some demographic classes, especially in classes where 

the fundamental activity profiles are essentially the same. Still, the timing of activities can be 

shifted as in cases where shift work is represented. This suggests that the classification method is 

effective in making distinctions in both temporal and categorical domains. 

 

Figure 3. Examples of activity classes generated by the unsupervised classification 

method. Distinct patterns of activity can be identified from the method. Panel A depicts a 

cohort that primarily participates in recreation activities (watching TV, reading, attending 

events). In contrast, panel B depicts a cohort that mostly participates in household activities 

(cleaning, yard work, child care, etc.). Panels C and D depict two different shifts of working 

days. The fact that the algorithm can elucidate temporal patterns is especially useful. 
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For these experiments, the demographic classification produced 95 classes with a median class 

size of 83 and a maximum of 696 individuals, while the activity classification produced 76 classes 

with a median class size of 82 and a maximum of 1237 individuals; both classifiers have an 

artificial minimum of 25 records. The number of classes produced by this approach varies due to 

stochastic elements in the t-SNE and random forest algorithms. We attempted to broadly classify 

the activity classes based on the main category of non-sleep activity that dominated each activity 

record. Roughly 40% of activity classes are dominated by work activities, while recreational 

activities dominate 25%. The remaining 35% of classes comprise some mixture of household 

activities, child or elderly care, and school-related activities. 

 

Figure 4. Real and simulated sequences for a single activity class, shown in their sequential 

form. Each row represents a different sequence, while different colors represent different 

types of activities. Generally, the simulated sequences conserve the same relative pattern 

of activity as the real sequences. Deviation from the strict timing of the real sequences is 

expected since the sequence generation algorithm includes some smearing components. 

Figure 4 shows sets of real activity sequences from the ATUS and synthetically generated activity 

sequences for a typical day belonging to a member of the “diurnal working class”. Qualitatively 

the two sets are difficult to distinguish from each other. Distinctive temporal boundaries are present 

between some activities in the real sequences, which are an artifact of the classification algorithm, 

strongly selecting a subset of temporal features. These temporal boundaries disappear in the 

synthetic activity sequences due to the length adjustment step and the introduction of randomness 

from the Monte Carlo process. Despite this variation, the overall profile of activity in the synthetic 

sequence still visually captures the overall prevalence of activities. 

We performed a quantitative analysis of our synthetic sequences to validate their similarity to the 

real sequences. Because the temporal sequences are categorical, a detailed temporal analysis of the 
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synthetic sequences is complicated. A realistic way to compare categorical temporal sequences is 

through a binary comparison at the smallest temporal granularity. Groups of sequences can be 

compared through their statistical mode, where the mode similarity is the fraction of minutes where 

the most frequent activity is the same between synthetic and measured sequences and a measure 

of dispersion. The later can be calculated with a method like the Gini index [20], which is 

analogous to the mean and standard deviation of a normally distributed continuous variable. We 

calculated the modes of each activity class by determining the most frequent activity at each minute 

across all activity sequences in that class. We then made a binary comparison between the modes 

of the synthetic and the ATUS reported sequences to obtain a percentage similarity between the 

two. We obtained the Gini index by calculating the frequency of all activities for each minute 

across all activity probabilities. We compared the synthetic and reported sequences by performing 

a linear regression of the Gini index. 

Figure 5 shows the plot of the r-correlation of the Gini indices and mode similarities for all activity 

sequences. The majority of activity classes (61%) have both Gini correlation and mode similarities 

above 0.8, while 95% of classes are above the 0.6 threshold. This presents strong evidence that our 

sequence generation algorithm correctly reproduces the majority of the activity classes. 

In the development of the sequence generation algorithm, we explored several techniques. Our 

results using a simple Markov chain ended up being intractable with the generated sequences 

having little to no resemblance to the ATUS data and incapable of capturing the structured nature 

of some activities (especially the home-work-home pattern). We also tried to train a recurrent 

neural network (RNN) against the ATUS activity diaries, but we found that the activity sequences 

were too short to train the RNN reliably. Specifically, we believe that the RNN needed to be trained 

on activity sequences spanning multiple days, which are unavailable from the ATUS surveys that 

only cover 24-hour periods. However, we ultimately found that the method we developed was both 

simpler and easier to implement than an RNN, and required less computational effort to establish 

and generate sequences. The method we have developed and presented here is also substantially 

more explainable than an RNN. 

Limitations 

The results presented here represent the classification of the activities reported in the ATUS; 

therefore, they are subject to any limitation in scope and granularity that may exist in the original 

ATUS surveys. For instance, the ATUS does not provide data on school-age children, so their 

activity patterns have to be inferred from their parents. As discussed above, the methodology is 

quite general. It could be applied to other activity surveys, but as with any classification method, 

it is subject to the somehow arbitrary selection cut off values to define the size and number of 

classes. While the parameters selected here are reasonable, it may be necessary to restrict or 

increase the number of desired classes depending on the intended use of the classification of 

activities. 
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Figure 5. Similarity plot of synthetic and measured activity sequences. For each type of 

activity sequence, the most frequent activity (the mode) and the Gini index is calculated 

for each minute across the cohort. The mode similarity is the fraction of minutes where the 

most frequent activity is the same between synthetic and measured sequences. The Gini R 

Correlation is from the linear regression of the Gini Indices for each minute. 61% of activity 

sequences have both similarities and R-values greater than 0.8. 

Conclusions 

We successfully developed and demonstrated a generalizable method to classify human activity 

sequences and generate synthetic spatiotemporal activity sequences. While in this study, we 

derived activity sequences from the ATUS activity classes, our method is not specific to this 

survey. It can be used for any well-structured activity survey data sets. We believe that the 

application of this approach will enable researchers to make significant inroads into simulating 

human activity patterns at population levels a first step in generating comprehensive personal 

exposure profiles records for utilization in translational research. 
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