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Abstract

Background: Taper modelling and volume estimation are key procedures in the management and planning of planted 
forests. The objective of this work was to evaluate the taper and volume behaviour of Pinus taeda L. species, along the stem 
in different ages, using the Preußner taper functions, compared to Schöpfer’s 5th-polynomial, Kozak’s and Max-Burkhart’s 
models. This work focused on plantations of Pinus taeda L., due to its wide use as a source of raw material in the forest 
industry of southern Brazil. 

Methods: The data were collected in the last 22 years from the Midwest region of Santa Catarina, of trees ranging in age 
from 3.5 to 18 years. This dataset consisted of a collection of volume sections, with relative diameter measurements along 
the stem, used in conventional forest inventory. The total volume of the trees, obtained by integrating the Preußner taper 
functions, was equated by dividing the stem into four parts, in which parabolas were fitted, and compared with the total 
and merchantable volume estimated by Schöpfer’s 5th-degree polynomial, Kozak’s and Max-Burkhart’s functions. 

Results: Bias, RMSE and r were generally better with the application of Kozak’s model, and AIC and BIC for the Preußner’s 
model. 

Conclusions: Kozak functions were better to provide the merchantable volume. In terms of total volume both functions, 
Kozak and Preußner, provided reliable estimates. The advantage of the procedure proposed by Preußner is the flexibility 
of the fitted taper functions, the simplicity of volume calculations by integration, and the feasibility for interpreting their 
coefficients.
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on taper functions.  Among these, we can highlight the 
dynamics of the stem, such as the evaluation of its taper, 
i.e. the reduction in diameter with increasing tree height. 
This variation can be expressed using a mathematical 
function (Miguel et al. 2011).

Among the variables used to evaluate wood quality 
for total volume and assortment purposes, the tree 
profile has been one of the most studied subjects in 
commercially valuable species. It is common to measure 
tree diameter at the base, i.e. at 0.3 m, and at 1.3 m 
aboveground and, thereafter, at fixed length intervals 
using Smalian’s method or at relative positions using 
Hohenadl’s method.

Introduction
The use of wood to produce high-quality sawn timber 
has become increasingly prominent throughout the 
world, providing increased demand for forest research 
to calculate tree volumes in a simple and rapid manner. 
Wood is an essential raw material used to meet various 
demands in Brazil – it is important in the furniture, 
civil construction, agricultural, and industrial sectors 
and is the second leading commodity of the state of 
Santa Catarina (Anuário Estatístico do Estado de Santa 
Catarina 2016).

The rational and appropriate use of available wood 
volumes and their assortment is associated with the 
growth of a specific species, mainly through studies 
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The use of stem equations makes it possible to 
describe the tree profile and, by integration, to obtain an 
estimation of the total and partial volumes in different 
sections with reasonable precision. These estimators 
are of paramount importance, both for quick evaluation 
of wood stock, in volume and biomass, and to obtain 
assortments of log types. The current modelling methods 
used to describe the profile of the tree are diverse. 

Taper functions describe the shapes of trees and 
express diametric variation along the stem as a function 
of diameter at breast height (DBH) and relative heights. 
These variations are affected by species, at different 
ages, spacing and site quality.

For better performance of taper functions regarding 
the adjustment and the use of inflection points, Kozak 
(1988); Lee et al. (2003) introduced taper models 
in a variable way and Bi (2000) used models with 
trigonometric principles, represented by non-segmented 
regression models, which implicitly divided trees into 
segments, without the need for inflection points.

Taper is understood to mean the rate of decrease 
in diameter as the bole height increases (Newnham, 
1992). The shafts of both coniferous and broad-leaved 
until the beginning of the canopy may take the following 
characteristics: (1) the base of the stem is convex to 
the longitudinal axis, with a variable inflection point, 
depending on the species, which resembles a neiloid. (2) 
from this inflection point until the top of the canopy, the 
external profile is concave to the axis. In conifers, this 
portion of the stem can be described by a paraboloid. 
(3) the terminal parts of conifers, which go from the 
bases of crowns to their apex, presents a profile slightly 
concave to the axes of trees, and can be represented by a 
quadratic paraboloid or cone (Assman, 1970).

Max and Burkhart (1976) proposed that the tree 
shapes could be represented by a segmented polynomial 
model, joining such segments along the stem. This idea 
came to be used widely by several researchers (Maguire 
& Batista 1996; Clark et al. 1991; Leites & Robinson, 
2004; Machado et al. 2004; Jiang et al. 2007).

Taper functions have been one of the most important 
topics of study in forest management in the last century 
(Fang et al. 1999). Various profile shapes of the stem and 
types of models have been proposed and evaluated for 
their accuracy (Sterba 1980; Clutter et al. 1983; Avery & 
Burkhart 2002; Kozak 2004; Rojo et al. 2005).

All theoretical developments to describe the profile of 
the tree bole are approximate to adequately explain all 
variations in the shapes of trees. From an objective and 
practical point of view, a taper function is essential to 
estimate the volumes of standing trees for multiple uses, 
especially when establishing the production planning 
of the stands or detailing restrictions on the sizes of the 
diameters and lengths of the sections on the tree boles 
(Newnham 1988; Sharma & Zhang 2004; Trincado & 
Burkhart 2006).

According to various authors (Prodan 1965; Kozak 
et al. 1969; Huang et al. 2000; Kozak 2004; Adams 
2005) taper models are relationships that describe the 
longitudinal profile of the bole of a tree with dynamic 
functions, because they make it possible to estimate the 

total volume of the tree and logs along the bole, as well 
as diameters at any position of the bole, height along the 
trunk, volume between any two points in the trunk, in 
addition to following the evolution of the taper of the 
tree at different ages.

Although the first attempt to establish a relationship 
between diametric series and series of heights was 
presented by Höjer (1903), it was only much later that 
it was carried out by Altherr (1953), who built a system 
based on the slide rule principle, in which diameters 
and heights were obtained in absolute values from their 
relative values. Later, the possibility of relating diametric 
and height series by means of a polynomial function 
was suggested by other authors. Osumi (1959) applied 
this concept to the species Criptomeria japonica, having 
solved it by adjusting a polynomial of the 3rd degree. 	
Wutt (1961), Prodan (1965), and Schöpfer (1966) 
proposed the adjustment of polynomials of the 4th 
and 5th degrees, with the argument that describing the 
shape of the bole with a single function, facilitating its 
integration and allowing to obtain reliable precision was 
desirable. From these results, Peters (1971) applied such 
modelling to Araucaria araucana with reliable results in 
Chile and Burger et al. (1979) to Araucaria angustifolia 
also with reliable results in Brazil. Researchers then 
tried to group the different concepts and models applied 
to describe the profile of tree boles and proposed a 
separation of them in non-segmented  and segmented  
models as follows:

Non-segmented  models
Following Demaerschalk & Kozak (1977), among the 
several statistical modeling techniques, we highlight 
the models that are non-segmented, which manage 
to combine efficiency with simplicity when compared 
to the segmented models. Of these, the first models 
developed and used were small order polynomials, for a 
relative height on the bole (Rojo et al. 2005).

In 1923, Behre used data from Ponderosa pine to 
determine whether or not the Höjer (1903) equation 
could be improved by introducing a new term, or if a 
different equation could be found for describing the 
average taper of the tree bole. Consequently, after these 
studies, a new equation was developed which described 
the bole form more consistently.

Kozak et al. (1969) developed a taper function 
based on the assumption that a tree bole is a quadratic 
paraboloid, whose equation is based on a quadratic 
polynomial of second order.

As some taper functions were inadequate for 
describing the form near the base of the bole, higher 
degree polynomials were used to correctly characterise 
the base (Rojo et al., 2005). Bruce et al. (1968) and 
Goulding & Murray (1976) also used high degree 
polynomials to characterise the bole profile.

Demaerschalk (1972; 1973) developed taper 
functions from integrated systems for volumetric 
estimates from which they were derived from volume 
equations based on the Schumacher and Hall (1933) 
model, Spurr’s model (1952), Honer’s model (1965) and 
other variations. 



Many taper models were developed with the objective 
of having better results of accuracy for dendrometric 
variable estimates (Ormerod 1973; Forslund 1991; 
Amidon 1984; Biging 1984; Baldwin & Feduccia 
1991; Sharma & Oderwald 2001). Souza et al. (2008), 
analyzing the performance of six non-segmented models 
(linear and non-linear) with data from Eucalyptus sp. 
driven to the production of sawmill wood, concluded 
that the Biging’s model provided greater accuracy in 
height estimation and commercial volume, followed by 
the Garay model (1979). The same author compared the 
performance of non-segmented models with segmented 
ones and pointed out that, in addition to being simpler, 
the best results were obtained with the non-segmented 
models.

Segmented models
According to Demaerschalk and Kozak (1977) it is 
necessary to use different models for studying taper, one 
for the bottoms and the other for the tops of trees, in 
order to obtain greater precision of estimates. However, 
these authors stated that the number of equations to 
be used depended on how complex the shape of a tree 
profile was.

According to Bi (2000), the weaknesses shared by 
many taper functions are: (1) a high degree of bias in 
the prediction of the diameter over some portions of the 
bole, in particular the lower (base) and upper (apex), 
although the total deviation is low; and (2) an inability 
to take into account differences in the shapes of trunks 
between trees.

The study of segmented taper models is quite recent. 
Cao et al. (1980) and Trincado & Burkhart (2006) 
commented that the first segmented model developed 
was that of Max & Burkhart (1976) in the United States.

In Brazil, the works of Péllico Netto (1994), 
Figueiredo-Filho et al. (1996), Rios (1997), Figueiredo-
Filho et al. (1999), de Assis et al. (2001), Fischer et al. 
(2001), Ferreira (2004) and Souza et al. (2008) are the 
most notable.

Segmented taper models use separate equations to 
describe various bole segments (Max & Burkhart 1976; 
Cao et al. 1980; Byrne & Reed 1986; Trincado & Burkhart 
2006; Cao 2009; Brooks et al. 2008; Özçelik et al. 2011; 
Cao & Wang 2011). In most cases, the parameters of 
segmented models are difficult to estimate and they 
do not always allow predictions of height for a given 
diameter (Kozak 1988; Perez et al. 1990). 

Iterative methods should be used to find the height for 
a given diameter. In addition, most taper models require 
more than four parameters to be estimated and involve 
different limitations, such as a zero diameter at the top 
of the trunk. Furthermore, these models have been used 
without testing hypotheses about how the parameters 
and/or the forms of equations are adapted to the bole 
shape (Benbrahim & Gavaland 2003).

We highlight the Kublin approach, a flexible function 
based on regression B-spline mixed effects, which 
the authors used to estimate the total volumes and 
assortment of the Norway spruce (Picea abies (L.) H. 
Karst.) (Kublin et al. 2013). 

Scotti et al. (2014) also applied this methodology to 
study the maritime pine, Pinus pinaster, in the commune 
of Pattada, Sardinia region, Italy. Li et al. (2012), when 
comparing shape models to estimate stem taper and 
volume in conifer species in the Acadia region of 
North America, used mixed-effect nonlinear modelling, 
which accounts for autocorrelation between multiple 
observations taken on a tree stem.

An alternative approach to the application of taper 
curves was developed by Preußner (1974). Preußner 
proposed a methodology accessible to foresters, 
segmenting the stem into four parts and applying four 
parabolas to describe them. His method has advantages 
over others, as highlighted by Péllico Netto (1994), when 
he applied it to Araucaria angustifolia (Bertol.) Kuntze 
trees in southern Brazil. The subdivision of the stem, 
using Preußner’s functions, facilitates wood volume 
estimation by integration at intervals that coincide with 
scaling points. This makes it possible to estimate the 
total volume, log volume, and partial assortments very 
easily.

To date, only two studies have used the Preußner 
method in Brazil, Jorge (1984) and Péllico Netto (1994). 
Both authors state that the methodology is appropriate 
for modelling tree taper. Perhaps the biggest constraint 
to the application of these functions is that the original 
study was published in German; here, we present step-
by-step procedures of Preußner curve fitting to facilitate 
understanding of its application.

This was the first taper methodology that used form 
quotients related to the diameter taken at half the total 
tree height. This made the function smoother along the 
trunk, with a slight change in coefficient values, which​
resulted in adjusted curves for trees under different 
conditions. Although the proposed model is flexible, 
it has not been commonly used to model tree taper in 
Brazil.

Moreover, the results obtained from the Preußner 
functions were compared with those from 5th-degree 
polynomial functions, one of the most used methods 
to describe the tree taper and volume assortments in 
Brazil. In addition, it is of interest to compare it with 
other models that are extensively used, such as the 
models of Kozak and Max-Burkhart. Thus, we tested two 
hypotheses: (1) the coefficients that describe the tree 
taper with Preußner models, with parabolic functions, 
present greater stability when applied to model the 
taper at different ages and (2) segmented adjustments 
of Preußner functions are effective for modelling the 
stem profile, compared to the application of Schöpfer’s 
polynomial, Kozak and Max-Burkhart’s functions.

The present work aimed to deepen our understanding 
of the most appropriate method to calculate the total 
volumes of trees and their assortments and to increase 
the accuracy of its application to Pinus taeda L., a species 
with large production and commercial use in southern 
Brazil. We used data from commercial Pinus taeda L. 
plantations, collected over the last 22 years in the Mid-
West of Santa Catarina, Brazil.
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Methods

Characterisation of the study area
The data used in this study was obtained from the region 
between the municipalities of Caçador (26°46’30”, 
51°00’5”), Calmon (26°35’59”, 51°05’50”), Lebon 
Régis (26°55’44”, 50°41’42”), Fraiburgo (27°01’34”, 
50°55’17”), and Videira (27°00’28”, 51°09’07”), state of 
Santa Catarina, Brazil. According to the Köppen climate 
classification, this region, the Midwest, has a Cfb climate. 
In the Caçador and Videira municipalities, taken as the 
reference for this area, the climate is humid, with hot 
summers, and the three coldest months of the year have 
an average temperature of 15 °C. Respectively, the annual 
precipitation is 1,633 mm and 1,793 mm, the annual 
average temperature is 16 °C and 17 °C, and the altitude 
is 960 m and 779 m. This region is characterised by 
slightly undulating to undulating relief, with steep hills 
and basalt-derived eutrophic Cambisols, Bruna lands, 
which have variable natural fertility and low phosphorus 
content (Rocha 2016).

Data Source
We used 904 trees scaled from the continuous forest 
inventory of regularly spaced commercial plantations, 
most of them 2.5 × 2.5 m, with 3 to 18-year-old trees. 
Data were collected from 1998 to 2018 in Pinus taeda 
L. stands using Hohenadl’s method, on different sites. 
The modelling was performed dividing the data in four 
groups ages: 5, 10, 15 and 20 years.

Preußner Taper Curve Adjustment and Application
To maintain the conditions described by Preußner 
(1974), the diameter measurements were restructured 
along the bole in relative positions, so that it was possible 
to obtain form quotients as a function of the diameter 
taken at half the bole (d0.5h), as proposed by Hohenadl 
(1924).

We slightly modified the subdivision of the stem 
suggested by Preußner: the first segment ranged from 0 
to 25% of the bole, the second segment from 25 to 50%, 
the third segment from 50 to 75%, and the last segment 
from 75 and 100%. These divisions coincide with the 
needs of volume estimates and other variables required 
for assortment studies. Thus, the following functions 
were adjusted to establish a continuous taper curve that 
joins the successive extremes of the form quotients:

where, y is the diameter at position x; d0.5h is the diameter 
at the middle of the bole; x is the relative length of the 
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bole (i.e. x = hx / h, and “x” is a real value in the interval 
0.0 and 1.0, h is the tree total height); w is the equation’s 
exponent, equal to one for a straight line and less than 
one to obtain an ordinary parabola (i.e. as it approaches 
zero, it describes a sharp curve, and approaching one, it 
describes a smooth curve); and b is the accelerator of the 
parabolas. Thus, the previous expressions of taper curve 
can be envisaged by a single mathematical function or a 
set of successive functions taken along the bole.	

Fit of the taper models proposed by Schöpfer, Kozak 
and Max-Burkhart
The models proposed by Schöpfer, Kozak and Max-
Burkhart were fitted and compared with Preußner’s 
model.

Adjustment and application of the Schöpfer (5th-
degree polynomial)
Initially, the data were adjusted with the fractional 
exponent polynomial (Hradetzky 1976) and the 5th-
degree polynomial (Schöpfer 1966), resulting in 
remarkably similar volume estimates. We applied the 
Hradetzky model to the data using several exponents 
through a stepwise regression, including four to five 
variables by age. However, the equations selected for 
volume calculation were difficult to integrate and the 
estimates were less accurate than those obtained by 
Schöpfer’s 5th-degree polynomial. Consequently, we 
opted to compare the volumes estimates obtained with 
the Schöpfer’s 5th-degree polynomial with those obtained 
with the Preußner’s model, due to its wide usage in the 
profile description of Pinus taeda and Pinus elliottii 
Engelm. in southern Brazil (Figueiredo Filho 2000).

Schöpfer’s 5th-degree polynomial is expressed as 
follows:

where: 
βis are parameters to be estimated;
di are diameters (cm) at sequential height positions hi ;
d1.3 are diameters at 1.3 m aboveground (cm);
ht is total height (m);
hi are heights at diameters di.

Total tree volume was estimated by polynomial 
integration:

where: 
K is π/40,000;
pj are exponents ranging from 1 to 5



Solving the integral we have:

Adjustment and application of the Kozak taper curve 
Kozak’s model (2004) is defined by:

where:
Xi = [1.0 – (hi/H)1/3]/[1.0– (p1/3] 
Qi = [1.0 – (hi/H)1/3] 
p = 1.3/H

To obtain the volume, a numerical integral was used, 
establishing the lower and upper limits for the variables.

Adjustment and application of the Max-Burkhart 
taper function

where:

X = hi/H
a1 and a2 are the connecting points of the polynomials

Assessment and Comparison of Preußner taper 
functions with Schöpfer’s 5th-degree Polynomial, 
Kozak and Max- Burkhart taper models
To assess the 5th-degree Polynomial, Kozak and 
Max- Burkhart taper models an adjusted coefficient 
determination (R2

adj), standard error of the estimate 
(Sxyz%), mean square of the error (MSE), root means 
square of error (RMSE), relative root means square 
of error (RMSE%) and parameter standard error were 
used. To assess the Preußner’s functions MSE, RMSE and 
RMSE% were used. Additionality, the following plots were 
inspected: absolute residuals of the diameter estimate, 
relative residues for the diameter estimate, observed 
and estimated diameters, absolute residuals of the total 
volume estimate, relative residuals of the total volume 
estimate and observed and estimated total volumes. 
Through this evaluation the best function between 

5th-degree Polynomial, Kozak and Max-Burkhart 
was selected and then compared with the Preußner 
functions. The comparison between the two procedures 
for obtaining tree taper, total volume, and merchantable 
volume, was evaluated through differences of observed 
and estimated volumes. The statistics used were:

where: 
yi is estimated tree volume (m3);
yi is observed tree volume (m3);
n is the number of observations.
COV is the covariance.
r is the correlation.
p is the number of parameter of the model.
AICs applied when n/p < 40.
AIC is the Akaike information criterion.
BIC is the Schwart’s information criterion.

In addition, it was calculated the merchantable volume, 
defined by the volume of 4 logs: 

- first assortment: logs size with a minimum diameter 
of 8 cm and height of 2.48 m.

- second assortment: logs size with a minimum 
diameter of 15 cm and height of 2.48 m.

- third assortment: logs size with a minimum diameter 
of 25 cm and height of 2.48 m.

- forth assortment: logs size with a minimum diameter 
of 35 cm and height of 2.48 m.

Results

Descriptive statistics
Summaries of diameter, height, and volume, for each age, 
are shown in Table 1. The average values were higher 
for older forests. The smallest trees had DBHs of 10 cm, 
while the largest trees were 52.5 cm in DBH. The average 
diameter, height and volume was 34.5 cm, 22.4 m, and 
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0.734 m³ for the older forest, respectively. The tree 
with the largest measured volume was 2.263 m³. The 
coefficient of variation, for both variables, was smaller in 
the older stands, due to thinning. 

Fitting of taper models proposed by Schöpfer, Kozak 
and Max-Burkhart

The estimated parameters of Schöpfer’s 5th-degree 
polynomial, Kozak and Max-Burkhart, fitted for all ages, 
are presented in Tables 2 to 10, with the respective 
parameter standard error, R2

adj, Sxy%, MSE, RMSE and 
RMSE%. For all models, at the evaluated ages, the values 
of R2

adj were reliable (greater than 0.98), as well as the 
values of Sxy% were accepted as reliable (less than 10%). 
The values of MSE, RMSE and RMSE% depended on the 
model and age, and Kozak’s model resulted in more 
appropriate statistics, that is, with the most reliable 
values when compared with the Schöpfer’s and Max-
Burkhart’s models. For the Kozak’s model, the RMSE 
values varied between 0.0030 to 0.0656, while the value 
of RMSE% between 12.45% to 8.93%, respectively for the 
ages of 5 and 20 years. Figures 1 to 6 show graphs of 
Kozak’s model, which revealed the following:

- Absolute residuals of the diameter estimate were 
not biased, being the worst result obtained for the 
5-year-old forest.

- The highest values of relative residuals were 
observed in the forests of 15 and 20 years for the 
diameter estimate.

- The model is flexible enough to represent the bole 
profile at all ages for observed and estimated 
diameters.

- The least reliable estimates were observed in the 
youngest forests (5 and 10 years) for the absolute 
residuals of the total volume estimate.

- The least reliable estimates were also obtained for 
the youngest forests (5 and 10 years) for relative 
residuals from the estimate of the total volume, but 
they were not biased.

- The model was flexible enough to detect the 
variability of the observed and estimated total 
volume at all ages.

Figures 7 to 12 show the graphics for the Schöpfer’s 
model, which reveal the following:

- The absolute residuals for the largest diameter 
estimate in the 5-year-old forest were biased.

- The highest residual values for the diameter 
estimate were observed in the 15 and 
20-year-old forests.

- The model is less flexible at representing 
stem profiles for observed and estimated 
diameters at all ages, when compared to 
Kozak’s model.

- The absolute residuals of total volume estimate 
were biased.

- The least reliable estimates for relative residues 
of total volume estimates were obtained for 
the oldest forests (15 and 20 years old).

- The model is flexible enough to represent 
variability of observed and estimated total 
volumes at all ages.

Figures 13 to 18 show the graphics for the Max-
Burkhart’s model, which reveal the following:

- Absolute residuals of the diameter estimate: 
residuals of the diameter estimate were not biased, 
but were the worst results obtained for the 5-year-
old forest.

- The highest values of relative residuals for the 
diameter estimate were observed in the 15 and 
20-year-old forests.

- The model is less flexible at representing observed 
and estimated diameters on the stem profile at all 
ages, when compared with Kozak’s model.

- Absolute residuals for total volume estimates 
showed a trend, especially for older forests (15 and 
20 years).
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Age No. trees/ha d h v max v min v cv% v
5 78 10.0 6.4 0.0242 0.1289 0.0022 98.63

10 241 21.0 12.6 0.1648 0.9601 0.0137 82.66
15 465 28.7 18.1 0.4293 2.2631 0.0359 79.67
20 120 34.5 22.4 0.7344 2.2563 0.3322 63.97

Age No. trees/ha max d min d cv% d max h min h cv% h
5 78 19.7 4.0 34.62 9.5 3.5 25.03

10 241 37.2 7.5 24.65 17.7 6.2 16.95
15 465 52.2 9.0 24.60 25.6 11.7 16.19
20 120 52.5 21.6 19.49 26.5 19.0 6.72

TABLE 1: Descriptive statistics for diameter at breast height (d), height (h) and total volume (v).

Max is the maximum value, min is the minimum value and cv is the variation coefficient. 

̵ ̵ ̵
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Estimated parameters

Model a0 a1 a2 β0 β1 β2 β3 β4 β5 β6

Kozak (2004) 1.767274 0.7927 0.1120 0.2969 -0.3412 0.8002 1.2650 -0.1029 -0.1792

Schöpfer (1966) 1.3317 -2.5077 5.1290 -9.6238 8.9117 -3.2391

Max-Burkhart 
(1976)

0.2469 0.5852 -2.7847 1.3517 5.8133 -0.0758

Parameter standard error

Kozak (2004) 0.0388 0.0237 0.0331 0.0204 0.1154 0.0239 0.1816 0.0126 0.0499

Schöpfer (1966) 0.0061 0.1610 1.1206 2.9768 3.3359 1.3282

Max-Burkhart 
(1976)

0.0300 0.9778 0.1315 0.0741 1.0930 0.3175

TABLE 2: Fit coefficients of the models for age 5.

TABLE 3: Fit statistics of the models for age 5 for total tree volume.
Estimated statistics

Model R2
adj Syx% MSE RMSE RMSE100

Preußner (1974) 1.83E-05 0.0043 17.6508

Kozak (2004) 0.9898 7.4941 9.10E-06 0.0030 12.4487
Schöpfer (1966) 0.9841 9.6153 3.68E-05 0.0061 25.0410
Max-Burkhart (1976) 0.9841 9.6169 9.92E-06 0.0031 13.0004

Estimated parameters

Model a1 a2 β0 β1 β2 β3 β4 β5 β6 β6

Kozak (2004) 1.19797 1.0373 -0.0336 0.4102 -0.3186 0.7067 -0.1164 -0.0199 -0.3166

Schöpfer (1966) 1.2403 -2.8449 8.8225 -17.845 15.9987 -5.3722

Max-Burkhart 
(1976)

0.1658 0.6348 -3.1609 1.5620 13.5017 -1.0789

Parameter standard error

Kozak (2004) 0.0285 0.0097 0.0136 0.0123 0.0455 0.0088 0.1912 0.0056 0.0414

Schöpfer (1966) 0.0024 0.0622 0.4330 1.1503 1.2892 0.5134

Max-Burkhart 
(1976)

0.0088 0.0184 0.0546 0.0306 1.2708 0.0615

TABLE 4: Fit coefficients of the models for age 10.

TABLE 5: Fit statistics of the models for age 10 for total tree volume.

Estimated statistics

Model R2
adj Syx% MSE RMSE RMSE100

Preußner (1974) 0.000262 0.0162 9.81289

Kozak (2004) 0.9906 6.5574 0.000254 0.0159 9.67295
Schöpfer (1966) 0.9903 6.6772 0.001704 0.0413 25.0489
Max-Burkhart (1976) 0.9903 6.6741 0.000313 0.0177 10.7305

̭ ̭ ̭ ̭ ̭ ̭ ̭ ̭ ̭ ̭

̭ ̭ ̭ ̭ ̭ ̭ ̭ ̭ ̭ ̭
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TABLE 6: Fit coefficients of the models for age 15 for total tree volume.
Estimated parameters

Model a0 a1 a2 β0 β1 β2 β3 β4 β5 β6

Kozak (2004) 1.350354 1.0460 -0.0848 0.5179 -0.7605 0.6327 1.7765 -0.0355 0.0628

Schöpfer (1966) 1.2335 -3.2456 10.728 -20.150 16.467 -5.0341

Max-Burkhart 
(1976)

0.1735 0.6846 -3.7667 1.8755 16.602 -1.8635

Parameter standard error

Kozak (2004) 0.0313 0.0075 0.0111 0.0096 0.0335 0.0068 0.1993 0.0034 0.0331

Schöpfer (1966) 0.0019 0.0510 0.3547 0.9425 1.0564 0.4206

Max-Burkhart 
(1976)

0.0055 0.0091 0.0614 0.0336 0.9141 0.0439

TABLE 7: Fit statistics of the models for age 15 for total tree volume.

TABLE 8: Fit coefficients of the models for age 20.
Estimated parameters

Model a0 a1 a2 β0 β1 β2 β3 β4 β5 β6

Kozak (2004) 2.804767 1.0038 -0.2743 0.6255 -0.7154 0.5052 2.3690 -0.0517 0.3939
Schöpfer (1966) 1.2033 -3.0393 10.400 -19.160 14.817 -4.2206
Max-Burkhart 
(1976) 0.1905 0.6781 -4.3478 2.1647 14.268 -2.7426

Parameter standard error
Kozak (2004) 0.3209 0.0155 0.0424 0.0203 0.1226 0.0178 1.1770 0.0065 0.0718
Schöpfer (1966) 0.0042 0.1117 0.7774 2.0657 2.3153 0.9219
Max-Burkhart 
(1976) 0.0124 0.0148 0.1393 0.0765 1.4805 0.1117

TABLE 9: Fit statistics of the models for age 20 for total tree volume.

Estimated statistics
Model R2

adj Syx% MSE RMSE RMSE100

Preußner (1974) 0.002216 0.0471 10.9655
Kozak (2004) 0.9883 7.1491 0.001916 0.0438 10.1966
Schöpfer (1966) 0.9869 7.5703 0.014876 0.1220 28.4084
Max-Burkhart (1976) 0.9869 7.5692 0.010279 0.1014 23.6147

Estimated statistics
Model R2

adj Syx% MSE RMSE RMSE100

Preußner (1974) 0.005903 0.0768 10.4619
Kozak (2004) 0.9855 7.3066 0.004305 0.0656 8.9339
Schöpfer (1966) 0.9824 8.1355 0.042385 0.2059 28.0330
Max-Burkhart (1976) 0.9823 8.1464 0.046220 0.2150 29.2736

̭ ̭ ̭ ̭ ̭ ̭ ̭ ̭ ̭ ̭

̭ ̭ ̭ ̭ ̭ ̭ ̭ ̭ ̭ ̭
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Age Source 8 cm 15 cm 25 cm 35 cm
5

Observed

90.53 9.47 0 0
10 26.12 60.47 12.73 0.68
15 9.73 38.12 40.00 12.15
20 5.08 25.15 44.07 25.70
5

Kozak

94.59 5.41  0 0 
10 27.68 57.88 13.83 0.61
15 9.78 38.49 39.50 12.23
20 4.86 25.68 47.04 22.43
5

Preuβner

94.31 5.69  0 0 
10 23.96 54.06 19.37 2.61
15 9.69 33.31 39.46 17.55
20 4.69 18.48 35.79 41.04

TABLE 10: Observed and estimated merchantable volume (%) for four minimum diameters up the top and height of 2.48 m

FIGURE 1: Absolute residuals of the diameter estimate 
for Kozak’s model.

FIGURE 2: Relative residues for the diameter estimate 
for Kozak’s model.

FIGURE 3: Observed and estimated diameters for 
Kozak’s model.

FIGURE 4: Absolute residuals of the total volume 
estimate for Kozak’s model.

FIGURE 5: Relative residuals of the total volume 
estimate for Kozak’s model.

FIGURE 6: Observed and estimated total volumes for 
Kozak’s model.
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FIGURE 7: Absolute residuals of the diameter estimate 
for Schöpfer’s model.

FIGURE 8: Relative residues for the diameter estimate 
for Schöpfer’s model.

FIGURE 11: Relative residuals of the total volume 
estimate for Schöpfer’s model.

FIGURE 10: Absolute residuals of the total volume 
estimate for Schöpfer’s model.

FIGURE 9: Observed and estimated diameters for 
Schöpfer’s model.

FIGURE 12: Observed and estimated total volumes for 
Schöpfer’s model.

FIGURE 13: Absolute residuals of the diameter estimate 
for Max-Burkhart’s model.

FIGURE 14: Relative residues for the diameter estimate 
for Max-Burkhart’s model.

FIGURE 15: Observed and estimated diameters for Max-
Burkhart’s model.

FIGURE 16: Absolute residuals of the total volume 
estimate for Max-Burkhart’s model.
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- The least reliable estimates for residuals of the total 
volume estimate were observed in older forests.

- The model was flexible enough to represent 
variability of the total observed and estimated 
volumes at all ages.

Following the results of adjustment statistics and 
evaluations of graphical representation of residuals 
of observed and estimated values, the Kozak model 
was found to be more flexible and better explained the 
variability of stem profiles and total volume for forests 
aged between 5 and 20 years. The most reliable statistics 
for this model, as well as for graphical analyses, were 
obtained in the oldest forests (of greatest economic 
importance). In general, over time, trees tended to be 
less cylindrical, showing an increase in taper.

Preußner Functions
Steps for fitting the Preußner functions are presented 
in Appendix 1. The functions proposed by Preußner 
and fitted in the present study can be used to address 
various questions: what is the length of the log for a given 
diameter at the top? What is the diameter of the log for 
a given height? What is the total volume or a segmented 
volume within a certain range of the bole?

Although many questions can be formulated and 
answered, the objective of this work is only to present 
the calculation of the total tree volume, obtained by the 
sum of the integrations of the four parabolas. The steps 
for calculating the volumes using Preußner’s functions 
are presented in Appendix 2.

The estimated parameters of Preußner’s model, 
fitted for all ages, are presented in Appendix 1. BIAS 
approached zero, indicating that the estimates were 
unbiased. The RMSE values ranged from 0.0043 to 
0.0768, while RMSE% between 17.65% to 10.46%, 
respectively for the ages of 5 and 20 years.

Figures 19 to 24 show graphs of the Preußner’s model 
and revealed the following: 

- The absolute residuals of diameter estimates were 
mostly unbiased, with the worst performance 
obtained for 5-year-old forests.

- The highest values of relative residues for the 
diameter estimate were observed in 15 and 
20-year-old forests.

- The model is slightly less flexible at representing 
bole profiles for observed and estimated diameters 
at all ages when compared to the Kozak’s model.

- The absolute residuals of the total volume estimate 
were biased in 5-year-old forests.

FIGURE 17: Relative residuals of the total volume 
estimate for Max-Burkhart’s model.

FIGURE 19: Absolute residuals of the diameter estimate 
for Preußner’s model.

FIGURE 20: Relative residues for the diameter estimate 
for Preußner’s model.

FIGURE 18: Observed and estimated total volumes for 
Max-Burkhart’s model.



- The worst distributions of residuals for the total 
volume estimates were observed in the youngest 
forests (5 years).

- The model is flexible enough to represent variability 
of observed and estimated total volumes at all ages.

Discussion
Testing the performance of polynomial models, ratios of 
volume and cubic spline functions (Lappi 2006; Pinheiro 
& Bates 1995), for estimating commercial volumes, 
Rios (1997) found that polynomial models provided 
more accurate estimates for describing tree profiles, in 
which the fifth-degree Polynomial was better than the 
Polynomial of Fractional Powers than, in second place, 
stand volume ratios and, in third, the spline functions. 
The author suggested that taper equations should be 
adjusted by diameter classes to obtain more accurate 
estimates. 

Lima (1986) evaluated the efficiency of the models 
proposed by Biging (1984), Demaerschalk (1973), Kozak 
et al. (1969) and Ormerod (1973) in Pinus elliottii trees, 
regarding the estimate of total and commercial volumes, 
and their respective diameters and heights. The author 
concluded that the most accurate model for estimating 
the commercial volume was the Kozak et al. (1969), 
and the least precise the Ormerod (1973). The model 
of Demaerschalk (1973) proved to be satisfactory for 
estimating all variables, except the total volume, which 
was most appropriate by the Biging model (1984).

Although the fifth-degree polynomial provides 
enough accurate results for most uses of form equations, 
it exhibits clear tendencies. Part of the deformations 
of the base are explained, but diameters are generally 
underestimated up to about 20% of the total height and 
overestimated above 80% of the total height (Gordon 
1983). Hradetzky (1976) was the first to identify that a 
good stem representation through polynomials requires 
a combination of appropriate powers, being necessary, 
for its determination, that they are submitted to the 
stepwise selection process and these powers ranged 
from 0.005 to 25.

We assessed the quality of the adjustment of the 
Preußner functions (empirically fitted) and Schöpfer’s 
5th-degree polynomial, Kozak’s and Max-Burkhart’s 
models (fitted by minimization of residues using the 
least squares method) by comparing the observed and 
estimated volumes. When comparing the adjustment 
statistics of the fitted models using regression analysis, 
the residuals, and the observed and estimated values, 
Kozak’s model was selected.

Kozak’s and Preußner’s functions showed similar 
performance at all ages, with little difference in 
adjustment statistics and in total volume estimate. The 
results of Preußner’s functions can be improved by 
minimization of residuals. In this research, we decided 
to find the Preußner’s coefficients in an empirical way, 
since the coefficients varied little with age and had a 
logical tendency, which revealed a better understanding 
of the taper profile. 

The value of w is the power of the function, being 
equal to one for obtaining a straight line and less than 
one for obtaining a classic parabola, i.e. if w is zero the 
profile (curve taper) is strong (curvature is accentuated) 
and when approach to one the profile (curve taper) is 
weak (smooth curve). The coefficient b is the accelerator 
of the parabola. The w values for the first segment varied 
between 0.06 to 0.046, respectively for forests with 5 and 
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FIGURE 21: Observed and estimated diameters for 
Preußner’s model.

FIGURE 22: Absolute residuals of the total volume 
estimate for Preußner’s model.

FIGURE 23: Relative residuals of the total volume 
estimate for Preußner’s model.

FIGURE 24: Observed and estimated total volumes for 
Preußner’s model.



20 years. Therefore, we observed that the first segment 
was influenced by the age of the trees, and older ones 
presented a more pronounced taper. The other segments 
were also affected by age of the trees, and the w values 
varied between 0.98 to 0.76, in such a way that the 
lowest values were observed for the oldest forest and in 
the last segment. The interval of the relative height 0.25 
< x ≤ 0.75 resulted in the smoothest curve. The value of b 
was stable across the age (Figure 25).

The coefficients β1 and β3 revealed a trend in Kozak’s 
model in all ages of forests. The values of the coefficient 
β1 ranged from -0.7605 to 2.369. The values of the 
coefficient a1 did not vary with age of the forests and was 
in the range of -0.2743 to 2.8047. The results revealed 
that the Kozak’s model appropriately represented the 
bole profile over all ages, but it was difficult to interpret 
its coefficients and relate them to the bole profile.

The following characteristics for Preußner’s functions 
can help us understand the profiles of the trees:

- The value of b is the accelerator of the parabola. 
Higher values of b indicate accentuated curves. If 
the b is equal to zero, the profile is smooth (Figure 
26).

- The value of w is the form of the profile, if w is zero the 
profile is pronounced (curvature is accentuated) 
and if w is equal to one the profile is weak (smooth 
curve) (Figure 26). 

- If all coefficients (b and w) are equal to zero, the 
profile of the tree approaches a cylinder (Figure 
26).

- If all coefficients (b and w) are equal to one, the 
profile of the tree approaches a cone (Figure 26).

FIGURE 25: Variation of the w values across the ages; 
where:
S1 is the 1st segment of the Preußner functions, i.e. 0.0 < x ≤ 0.25.
S2 is the 2nd segment of the Preußner functions, i.e. 0.25 < x ≤ 0.50.
S3 is the 3rd segment of the Preußner functions, i.e. 0.50 < x ≤ 0.75.
S4 is the 4th segment of the Preußner functions, i.e. 0.75 < x ≤ 1.00.

FIGURE 26: Relationship between the 
coefficients w and b with the taper curves.
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- As presented in Appendix 2, it is possible to obtain 
the Hohenadl form factor (HF), i.e. after integration 
of the function for all segments, total volume can be 
estimated for any tree using the resulting equation

v = π/4 × k2h2HF

where HF is the average Hohenadl’s natural form 
factor at the reference diameter d0.5h. Note that the 
results of the volume from the parts of the bole 
(commercial volume + residual volume) will be 
naturally compatibility with the total volume 

v = π/4 × k2h2HF.

TABLE 11: Statistics to assessing the Kozak and Preußner’s functions for merchantable volume.

- If all coefficients (b and w) are equal to zero or one, 
the average Hohenadl natural form factor in the 
reference diameter d0.5h approximate one.

- The value of  is a constant for all trees on the data 
set, i.e., to obtain better results to estimate log 
volumes, the fitting should be made by stratifying 
the effect of HF, for example, by site.

Kozak’s model resulted in the most appropriate 
statistics (Bias, MSE, RMSE and r) for estimating 
merchantable log volumes (Tables 10 and 11). The 
form of the variable-exponent equation improved 

Age Kozak Preußner
≥ 8 cm ≥  15 cm ≥ 25 cm ≥  35 cm ≥  8 cm ≥  15 cm ≥  25 cm ≥  35 cm

RMSE
5 0.0088 0.0077 - - 0.0097 0.0078 - -

10 0.0201 0.0416 0.0389 0.0030 0.0212 0.0614 0.0697 0.0358
15 0.0254 0.0603 0.0772 0.0680 0.0249 0.0808 0.1373 0.1183
20 0.0235 0.0961 0.1348 0.1359 0.0257 0.1477 0.2420 0.2233

RMSE(%)
5 48.20 402.94 - - 52.96 405.49 - -

10 34.69 31.00 137.50 196.42 36.64 45.69 246.46 2377.72
15 43.18 26.20 31.95 92.69 42.41 35.07 56.81 161.15
20 43.66 36.15 28.93 50.01 47.85 55.54 51.93 82.16

Bias
5 0.0008 0.0009 - - 0.0028 0.0010 - -

10 -0.0013 0.0102 -0.0014 0.0002 0.0039 0.0123 -0.0154 -0.0044
15 0.0012 0.0038 0.0092 0.0014 0.0000 0.0283 0.0023 -0.0331
20 0.0033 -0.0006 -0.0225 0.0390 0.0061 0.0785 0.1046 -0.1446

Bias (%)
5 4.48 47.78 - - 15.35 51.17 - -

10 -2.29 7.63 -4.79 12.65 6.79 9.19 -54.50 -291.55
15 2.07 1.66 3.79 1.94 0.03 12.28 0.93 -45.05
20 6.18 -0.24 -4.82 14.33 11.41 29.50 22.45 -53.19

r
5 0.93 0.76 - - 0.68 0.43 - -

10 0.57 0.90 0.92 1.00 0.41 0.58 0.56 0.01
15 0.42 0.77 0.94 0.95 0.16 0.02 0.54 0.79
20 0.34 0.62 0.83 0.94 0.20 0.26 0.27 0.83

AIC
5 -57527.30 -59152.33 - - -56381.61 -59076.97 - -

10 -453732.76 -369257.15 -377184.82 -676426.73 -447380.13 -324216.00 -309408.81 -386772.83
15 -1588752.69 -1214241.75 -1107641.07 -1162346.69 -1588762.69 -1088060.57 -858765.08 -923167.36
20 -108053.42 -67428.69 -57691.04 -57457.26 -105418.52 -55064.44 -40844.97 -43156.73

BIC
5 -57508.74 -59133.76 - - -56383.42 -59078.77 - -

10 -453702.18 -369226.56 -377154.23 -676396.14 -447366.19 -324202.06 -309394.87 -386758.89
15 -1588715.41 -1214204.48 -1107603.80 -1162309.41 -1596534.21 -1088044.01 -858748.51 -923150.79
20 -108029.97 -67405.24 -57667.59 -57433.81 -105418.16 -55064.07 -40844.60 -43156.36
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estimates of diameter up to tree tops, assimilating 
different site conditions at each age. The profiles were 
constant for trees described by Preußner’s model, which 
were represented by HF. In this way, the application 
for Preußner’s model can be improved; the fitting can 
be performed considering site or even h/d ratios, for 
example. In addition, to improve the results of Preußner’s 
model, MSE should be minimised using least squares.

Preußner’s model is not derived by the same least 
squares procedure as Kozak’s model, even though in both 
cases the average bias approximated zero. On the other 
hand, when assessing the AIC and BIC statistics, the best 
results were obtained with the Preußner’s model. This 
resulted from the complexity of the Kozak’s model when 
compared to Preußner’s model.

Additionally, the coefficients of Preußner’s functions 
are obtained analytically, whereas in the other functions 
they are obtained by regression adjustment. The 
coefficients of the parabolas are also interpretative, 
and cannot be similarly analysed in other functions. In 
Preußner’s model, this interpretation can be done by 
section. Although the analysis of the relation between 
coefficients of the functions and the profile of the tree 
may be interesting, for Kozak’s model these analyses will 
be appropriate only if the fundamental assumption of 
independence of errors within each tree, normality and 
homogeneity of the residuals are considered. 

The operational ease of applying mathematical 
models is an issue for debate, as they must meet two 
basic conditions: efficiency and practicality of use. 
Preußner’s functions are easily integrated by sections, 
which is not the case for other tested models, once 
the integrals are complex (they are adjusted for the 
entire bole). Preußner’s model presupposes steps for 
adjustment of the coefficients: 

(1) the solution of “x” (relative position) as a function 
of “y” (diameter), adjustment of the coefficients as 
a function of d1.3, solution of “x” as a function of “y” 
for d1.3, and the integration of the four sections to 
estimate the total and assortment volumes; 

(2) fractional coefficients, close to 1 and with two 
decimal places for the first section of the bole, 
decrease in the other sections and (1) through (17) 
constitute the first step (Appendix 1);

(3) as a result, decreasing coefficients are also 
observed in equations (17) to (32) (Appendix 1), 
but the magnitude of change increases with age. 
This behaviour is also observed in the constants; 

(4) the exponents used to obtain the constant “k” 
show little variation and decrease slightly with age, 
as shown in equations (44) to (47) (Appendix 1). 

These behaviours observed in the constants and 
exponents in the calculation of d0.5h are repeated in the 
adjustment solution of d1.3, as a function of d0.5h. 

Conclusions
- Kozak’s model is the most accurate function to 

estimate merchantable volume of 3 to 18-year-
old Pinus taeda in commercial plantations in the 
middle-west region of Santa Catarina, Brazil.

- Preußner’s functions are adequate and accurate to 
estimate the total and assortment volumes.

- The advantages of the procedure proposed by 
Preußner include: flexible functions, simple 
volume calculations, and the flexibility to interpret 
their coefficients.

- Bias, RMSE and r were generally better with the 
application of Kozak’s model, and AIC and BIC for 
the Preußner’s model.

- Preußner’s functions fitted by age and site-stratified 
subpopulations can significantly increase the 
accuracy and efficiency of tree volume and 
merchantable volume estimates.
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Appendix 1: Steps for fitting the Preußner functions at different ages

The Preußner taper curve as a function of the average diameter d0.5h 
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(1 +100x)0.06           0.0 < x ≤ 0.25
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One advantage of this approach over other taper functions is that the solution of variable “x” 
as a function of “y” can be easily obtained. The operative transformations for obtaining the height in 
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Using equations (17) to (32), it was possible to obtain the relative position in the shaft “x”, 
for a given diameter “y”. Note: to choose the proper equation, one must first calculate the v
𝑦𝑦/𝑑𝑑0.5ℎ for the chosen diameter “y”.
 
The taper curve as a function of diameter at breast height 
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     𝑘𝑘 = d1.3(1 + 𝑏𝑏𝑏𝑏)0.060

     𝑘𝑘 = d1.3(1 + 𝑏𝑏𝑏𝑏)0.050

     𝑘𝑘 = d1.3(1 + 𝑏𝑏𝑏𝑏)0.046

     k
a21

  k
a11

y = a13 k 1
(1 +100x)0.06           0.0 < x ≤ 0.25

y = k (1 − x)0.98 0.25 < x ≤ 0.5
y =  a33 k (1 − x)0.9 0.5 < x ≤ 0.75
y =  a43k (1 − x)0.874 0.75 < x ≤ 1.0
y = a13 k 1

(1 +100x)0.06    0.0 < x ≤ 0.25
y = k (1 − x)0.9 0.25 < x ≤ 0.5
y =  a33 k (1 − x)0.88 0.5 < x ≤ 0.75
y =  a43k (1 − x)0.87 0.75 < x ≤ 1.0
y = a13 k 1

(1 +100x)0.05 0.0 < x ≤ 0.25
y = k (1 − x)0.8 0.25 < x ≤ 0.5
y = a33 k (1 − x)0.79 0.5 < x ≤ 0.75
y =  a43k (1 − x)0.78 0.75 < x ≤ 1.0
y = a13 k 1

(1 +100x)0.046 0.0 < x ≤ 0.25
y = k (1 − x)0.78 0.25 < x ≤ 0.5
y = a33 k (1 − x)0.77 0.5 < x ≤ 0.75
y =  a43k (1 − x)0.76 0.75 < x ≤ 1.0

a13 = a11
a21

= 1.0530 a33 = a31
a21

= 0.9461; a43 = a41
a21

= 0.9126 𝑘𝑘 = d1.3(1 + 𝑏𝑏𝑏𝑏)0.06

5 years 
yearsanos 

 
10 years 

 

15 years 

 

20 years 

 

for 
 

for 
 

for 
 

for 
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a13 = a11
a21

= 1.0530; a33 = a31
a21

= 0.9862; a43 = a41
a21

= 0.9727;      𝑘𝑘 = d1.3(1 + 𝑏𝑏𝑏𝑏)0.06

a13 = a11
a21

= 1.0192; a33 = a31
a21

= 0.9931; a43 = a41
a21

= 0.9794; 𝑘𝑘 = d1.3(1 + 𝑏𝑏𝑏𝑏)0.05

a13 = a11
a21

= 1.0061; a33 = a31
a21

= 0.9931; a43 = a41
a21

= 0.9794;       𝑘𝑘 = d1.3(1 + 𝑏𝑏𝑏𝑏)0.046

x = a14
1

 (y
k)

16.6667
          

 −  1
 (b) 0.7543 ≤ yk ≤ 1.0530

x = 1 − (y
k)

1.0000
0.5070 ≤ yk ≤ 0.7543

x = 1 − a34 (y
k)

1.1111
0.2717 ≤ yk ≤ 0.5070

x = 1 − a44 (y
k)

1.1442
0.0000 ≤ yk ≤ 0.2717

x = a14
1

 (y
k)

16.6667
          

−  1
 (b) 0.7719 ≤ yk ≤ 1.0530

x = 1 − (y
k)

1.0000
0.5359 ≤ yk ≤ 0.7719

x = 1 − a34 (y
k)

1.1364
0.2912 ≤ yk ≤ 0.5359

x = 1 − a44 (y
k)

1.1494
0.0000 ≤ yk ≤ 0.2912

x = a14
1

 (y
k)

20
          

 −  1
 (b) 0.7944 ≤ yk ≤ 1.0192

x = 1 − (y
k)

1.0000
0.5743 ≤ yk ≤ 0.7944

x = 1 − a34 (y
k)

1.2658
0.3322 ≤ yk ≤ 0.5743

x = 1 − a44 (y
k)

1.2821
0.0000 ≤ yk ≤ 0.3322

x = a14
1

 (y
k)

21.7391
          

 −  1
 (b) 0.7990 ≤ yk ≤ 1.0060

x = 1 − (y
k)

1.0000
0.5824 ≤ yk ≤ 0.7990

x = 1 − a34 (y
k)

1.2987
0.3415 ≤ yk ≤ 0.5824

x = 1 − a44 (y
k)

1.3158
0.0000 ≤ yk ≤ 0.3415

a14 = a13
16.6667

b = 0.0236 a34 =  1
a33

1.1111 = 1.0636 a44 =  1
a43

1.1442 = 1.1104

a14 = a13
16.6667

b = 0.0236; a34 =  1
a33

1.1364 = 1.0159 a44 =  1
a43

1.1494 = 1.0324

a14 = a13
20

b = 0.0146 a34 =  1
a33

1.2658 = 1.0088 a44 =  1
a43

1.2821 = 1.0270
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for 
 

for 
 

15 years for 
 

10 years 

 

20 years for 
 



Stefanello et al. New Zealand Journal of Forestry Science (2021) 51:4						                   Page 23

a14 = a13
21.7391

b = 0.0114 a34 =  1
a33

1.2987 = 1.0090 a44 =  1
a43

1.3158 = 1.0277

when the value of “k” is known, which depends on the 
𝑦𝑦/𝑘𝑘
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Appendix 2: Example for obtaining tree volume using the Preußner function. 

For a relative function, the integration can be performed for the relative variable “x” in the range 
0 ≤ x ≤ 1. The variable “y” provides d

y by π/4 to obtain the area of 
(v). Finally, “y” is squared (y²) to get the cross

v =  π
4  h ∫ y² dx

1

0

Therefore, taking the functions for “y” (which describe the range f

v =  π
4  h [∫ a13k² 1

    (1 + 100x)0.12   
0.25

0
dx + ∫ k² (1 − x)1.96 dx 

0.50

0.25
+ ∫ a33k² (1 − x)1.8 dx 

0.75

0.50

+ ∫ a43k² (1 − x)1.748 dx 
1.0

0.75
]

v =  π
4  h [∫ a13k² 1

    (1 + 100x)0.12   
0.25

0
dx + ∫ k² (1 − x)1.8 dx 

0.50

0.25
+ ∫ a33k² (1 − x)1.76 dx 

0.75

0.50

+ ∫ a43k² (1 − x)1.74 dx 
1.0

0.75
]

v =  π
4  h [∫ a13k² 1

    (1 + 100x)0.1   
0.25

0
dx + ∫ k² (1 − x)1.6 dx 

0.50

0.25
+ ∫ a33k² (1 − x)1.58 dx 

0.75

0.50

+ ∫ a43k² (1 − x)1.56 dx 
1.0

0.75
]

v =  π
4  h [∫ a13k² 1

    (1 + 100x)0.092   
0.25

0
dx + ∫ k² (1 − x)1.56 dx 

0.50

0.25
+ ∫ a33k² (1 − x)1.54 dx 

0.75

0.50

+ ∫ a43k² (1 − x)1.52 dx 
1.0

0.75
]

v =  π
4  h k2[a13

2  1b 1.2664 (1+bx)0.7897|0
0.25 0.3657 (1−x)2.7347 |0.25

0.50  a33
2  0.3449 (1−x)2,8992|0,50

0,75 a43
2  0,3854 (1−x)2,5946|0,75

1,0 ]

v =  π
4  h k2[a13

2 1
b 1.1364 (1+bx)0.88|0

0.25  0.3571 (1−x)2.8 |0.25
0.50 a33

2  0.3623 (1−x)2.76|0.50
0.75 a43

2  0.3650 (1−x)2.74|0.75
1.0 ]

v =  π
4  h k2[a13

2 1
b 1.1111 (1+bx)0.9|0

0.25  0.3846 (1−x)2.6 |0.50
0.25 a33

2  0.3876 (1−x)2.58|0.50
0.75 a43

2  0.3906 (1−x)2.56|0.75
1.0 ]

v =  π
4  h k2[a13

2 1
b 1.1013 (1+bx)0.908|0

0.25  0.3906 (1−x)2.56 |0.50
0.25 a33

2  0.3937 (1−x)2.54|0.50
0.75 a43

2  0.3968 (1−x)2.52|0.75
1.0 ]

k 1.3/22.8 = 0.057
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k = 38 (1 + 100 ( 1.3
22.9))

0.046
= 41.475 cm

v =  π
4  (22.9) (0.41)2[1.012 1

100 1.1 (1+100x)0.06|0
0.25  0.39 (1−x)2.56 |0.25

0.50 0.992  0.39 (1−x)2.54|0.50
0.75 0.982 0.39 (1−x)2.52|0.75

1.0 ]

v = 3.080359 (0.203611 + 0.120792 + 0.055283 + 0.011570)
v = 3.080359(0.391256) 
v = 1.205209 m³

Pinus taeda

v = π/4 k² h² (0.391256)

variable “x” or x ≤ x ≤ x 𝑣𝑣𝑥𝑥1𝑥𝑥2 =  π/4  ℎ ∫ 𝑦𝑦2𝑥𝑥2
𝑥𝑥1

𝑑𝑑𝑑𝑑

𝑣𝑣𝑥𝑥0𝑥𝑥0.25     =  𝜋𝜋
4  (22.9)(0.4147518)2 [1.00612 1

100  1.1013 (1 + 100x)0.06|0
0.25] = 0.627194 m³

𝑣𝑣𝑥𝑥0.25𝑥𝑥0.50 =  𝜋𝜋
4  (22.9)(0.4147518)2[0.3906 (1 − x)2.56 |0.25

0.50] = 0.372083 m³
𝑣𝑣𝑥𝑥0.50𝑥𝑥0.75 =  𝜋𝜋

4  (22.9)(0.4147518)2[0.99312 0.3937 (1 − x)2.54|0.50
0.75] = 0.170291 m³

𝑣𝑣𝑥𝑥0.75𝑥𝑥1.0  =  𝜋𝜋
4  (22.9)(0.4147518)2[0.97942 0.3968 (1 − x)2.52|0.75

1.0 ] = 0.035641 m³


