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Abstract

Background: The use of satellite imagery to quantify forest metrics has become popular because of the high costs 
associated with the collection of data in the field. 

Methods: Multiple linear regression (MLR) and regression kriging (RK) techniques were used for the spatial interpolation 
of basal area (G) and growing stock volume (GSV) based on Landsat 8 and Sentinel-2. The performance of the models was 
tested using the repeated k-fold cross-validation method. 

Results: The prediction accuracy of G and GSV was strongly related to forest vegetation structure and spatial dependency. 
The nugget value of semivariograms suggested a moderately spatial dependence for both variables (nugget/sill ratio~70%). 
Landsat 8 and Sentinel-2 based RK explained approximately 52% of the total variance in G and GSV. Root-mean-square 
errors were 7.84 m2 ha-1 and 49.68 m3 ha-1 for G and GSV, respectively.
 
Conclusions: The diversity of stand structure particularly at the poorer sites was considered the principal factor decreasing 
the prediction quality of G and GSV by RK.
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Nevertheless, there remain a number of issues like 
unequal or fragmented forest distribution, differing tree 
species and age classes, which can lead to difficulty when 
trying to maximise the spatial variance explained when 
modeling forest metrics (Chirici et al. 2008; Gebreslasie 
et al. 2008; Ingram et al. 2005; Lu et al. 2004). Because 
of these drawbacks, and in order to estimate forest 
metrics at an acceptable level of confidence and at a 
fine level of detail, scientists have combined remotely 
sensed data and ground measurements using methods 
such as ordinary least square, machine learning, and 
geo-statistic methods in the last ten years (Mallinis et al. 
2004; Franco-Lopez et al. 2001; Ingram et al. 2005; Meng 
et al. 2009; dos Reis et al. 2018). For example, Meng et al. 
(2009) evaluated ordinary kriging, universal kriging, co-
kriging and regression kriging methods combined with 
Landsat 7 ETM+ for spatially predicting G of pine forests. 

Introduction
Forest inventory studies are conducted to quantify 
forest attributes such as basal area (G), growing stock 
volume (GSV), biomass and carbon sequestration that 
are providing essential information for forest managers. 
G has been often used as an important auxiliary 
variable to determine competition indices (Contreras 
et al. 2011), stand density (Curtis 1982), and diameter-
height increment and mortality (Kuehne et al. 2016). 
Determination of the GSV (i.e. standing volume) is 
needed to assess silvicultural treatments for ensuring 
sustainable wood production in a managed forest 
(O’hehir & Nambiar 2010).

Measuring G and GSV can be time consuming 
particularly for precision forestry. As a consequence, 
foresters are using remote sensing for the estimation 
of forest metrics in remote and difficult locations. 
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They found that using regression kriging resulted in the 
greatest precision and almost unbiased estimates of G 
for Loblolly pine and Slash pine. The authors concluded 
that kriging is robust for the interpolation of forest 
variables such as G, GSV, and other carbon and forestry 
metrics such as stand density, stand age and dominant 
height. Maselli and Chiesi (2006) evaluated three 
methods relying on remotely sensed data including 
k-nearest neighbour method, a locally calibrated 
regression analysis and a kriging method for forest 
volume estimation in a Mediterranean region. Results 
showed that all three methods were similar in terms 
of their correlation coefficient and root-mean-square 
error, but the kriging method was slightly better with 
regard to lower residual variance. dos Reis et al. (2018) 
assessed a variety of methods including a random forest 
algorithm and a kriging method integrated with Landsat 
Thematic Mapper (TM) data for the spatial prediction 
of G and GSV. Multiple linear regression and artificial 
neural network models had the poorest performance 
for the estimation of timber volume of Eucalyptus clonal 
stands. 

In forest inventories, a wide range of data types 
are gathered in terms of forest variables as well as 
geographical locations. The relationships between a 
response variable and explanatory variable(s) can differ 
from one sample unit to another because of sampling 
density, site index and stand age. In order to obtain 
unbiased residual estimates, local (random) effects 
should be introduced in a model (Fortin et al. 2007). If a 
model accounts for local effects adequately, it may predict 
the target variable at an acceptable level of accuracy 
(Magnussen et al. 2017). Geostatistical approaches have 
the ability to account for unknown random effects in 
a local forest area, providing approximately unbiased 

estimates of residuals (Isaaks & Srivastava 1989). Also, 
the forest metrics are spatially correlated within the 
same locations. Although multiple regression analysis 
is user-friendly and easy to use for forest managers, 
it does not account for spatial autocorrelation in 
data. Therefore, especially in case of a trend in the 
error variance across predictions, this method can be 
inappropriate in the prediction of forest metrics due to 
its biased parameter estimates. RK uses residuals from 
the least-square methods (i.e. multivariate regression). 
The improvements on the predictions can be important 
when taking spatial autocorrelation in the data into 
account. Although there are a variety of approaches to 
consider spatial autocorrelation in data, the development 
and implementation of these methods require a strong 
statistical background. In this context, RK is both user-
friendly and relatively simple, which may suit the needs 
of forest managers. Therefore, the objective of this 
study was to evaluate the performance of Landsat 8 and 
Sentinel-2 based RK and MLR for improving the spatial 
predictions of G and GSV.

Methods
Study area
The study area is within the Inner Anatolia semi-arid 
climate in the Black Sea - steppe transitional zone in 
Turkey (Figure 1). It is bounded by latitudes 40° 29′ 
09″–40° 30′ 44″ N and longitudes 33° 25′ 47″–33° 27′ 
19″ E (WGS 1984 UTM Zone 36N). In the study area, 
average annual temperature and total precipitation 
are approximately 11.3 °C and 412 mm, respectively, 
while elevations range from 1280 to 1642 m (Turkish 
State Meteorological Service n.d.). Terrain variables of 
the study area were obtained from a digital elevation 
map with a twelve-metre resolution (Table 1). The 

FIGURE 1. Location of the study area and its location in Turkey



study area consists of 380 hectares, where Anatolian 
black pine (Pinus nigra Arnold. subsp. pallasiana Lamb 
Holmboe) is widely distributed. In this region, harsh 
ecological conditions such as low precipitation, high 
temperatures, and poor soils contribute towards poor 
forest growth (Barbati et al. 2014; Erşahin et al. 2016; 
Göl & Abay 2003). Such conditions adversely influence 
the distribution and abundance of conifer forests in this 
region (Çolak & Rotherham 2006). Anatolian black pine 
has been frequently planted because it adapts well to the 
semi-arid conditions of this region (Konukcu 2001).

Field research
The study area was afforested in the 1961-1965 
period and have been thinned every ten years since 
establishment. A systematic sampling with 51 plots 
distributed within a 200 x 200 m grid were measured 
in 2016. Circular plot sizes ranged from 400 to 800 m2 
depending on the crown closure as suggested by the 
forest management guidelines for Turkey (Anonymous 
2008). We calculated descriptive statistics for basal area 
(G, m2 ha-1), and growing stock volume (GSV, m3 ha-1) 
using the SAS software®. (Table 2). G and GSV of each 
sample plot were calculated by Eq. 1 and Eq. 2 (Şenyurt 
2017). In each sample plot, tree diameters at breast 
height (dbh) were measured with 0.1 cm-precision 
for each living tree (dbh ≥ 8 cm) using calipers. Trees 
with unsuppressed growth (due to lack of competition) 
representing potential site productivity were selected to 
assess the site index of each sample plot. Tree heights 
were measured with 1% precision using the Vertex IV 
ultrasound instrument. Top height was calculated as the 
mean height of the 100 tallest trees within a hectare. 
The mean age of each sample plot was measured 
using increment cores extracted from five trees that 
were selected based on the mean square diameter of 

the sample plot. Subsequently, the site index of each 
sample plot was assessed using the site index equation 
developed by Kalıpsız (1963) for black pine stands for 
a base age of 100 years. Relative density (RD) of each 
sample plot was calculated by the stand density index of 
Curtis (1982) (Eq.3). 

Satellite images, processing, and data
Landsat 8 and Sentinel-2 satellite images were obtained 
from the United States Geological Survey Earth Explorer 
data portal (USGS 2000) and acquired on 02 and 20 
August 2016, respectively. WGS 1984 (UTM Zone 36) 
projection system was used for orthorectification 
and georeferencing of the satellite images with first 
order nearest neighbourhood rules. The atmospheric 
correction was applied to Landsat 8 and Sentinel-2 
images using the ATCOR module of QGIS® Software. 
Then, the geometric correction was applied using twenty 
ground control points such as crossings, bridges, and hill 
tops through a Global Positioning System (GPS).

Inventory was carried out using circular plots of 400, 
600 and 800 m2. A single pixel obtained from Landsat 8 
covers an area of 900 m2 (30x30 m). Sentinel-2 has bands 
with a spatial resolution of 10, 20 and 60 m, which cover 
an area of 100, 200 and 3600 m2, respectively. Since 
Landsat 8 and Sentinel-2 spatial resolution (i.e. B9 and 
B10 bands of Sentinel-2) are higher than sample plot 
size, the position of some sample plots may not be the 
center of a pixel. In such a circumstance, the buffer zone 
was applied for obtaining more representative data. 
For those plots that did not coincide with the center of 
the corresponding pixel, the average of all those pixels 
comprised by a plot was calculated.

Detail descriptions and formulae for vegetation 
indices calculated from Landsat 8 and Sentinel-2 bands 
can be found in Vescovo et al. (2012), Chrysafis et al. 
(2017), and Korhonen et al. (2017). Table 3 lists all bands 
and vegetation indices from both satellite sensors used 
in this study. The six bands with 30 m spatial resolution 
of Landsat 8 were used, i.e. B2 (minimum value= 
450; maximum value=515 nm), B3 (525-600 nm),  
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Variable Min. Max. Mean Std. Dev.

Aspect (°) 0.00 354.09 221.98 120.30

Slope (°) 4.00 49.74 26.16 12.07

Elevation 
(m)

1264.00 1547.00 1434.53 71.66

TWI 3.00 16.17 5.70 2.19

STI 0.00 0.98 0.03 0.15

CI -50.00 32.38 1.71 13.05

TWI: Topographic Wetness Index, STI: Sediment Transport Index, 
CI: Convergence Index

TABLE 1: Descriptive statistics of terrain attributes of 
the study area

Variable #N Min. Max. Mean Std.  
Dev.

CV  

(%)
G  
(m2ha-1)

51 6.64 55.21 27.89 11.47 41.13

GSV 
(m3ha-1)

51 38.95 341.90 170.66 72.42 42.44

CV: coefficient of variation, #N: number of plots

TABLE 2. Descriptive statistics of the forest inventory 
data



B4 (630-680 nm), B5 (845-885 nm), B6 (1560-1660 nm) 
and B7 (2100-2300 nm). The twelve bands of Sentinel-2 
were used, i.e. B2 (458-523 nm), B3 (543-578 nm), B4 
(650-680 nm), B8 (785-900 nm) with 10 m resolution, 
B5 (698-713 nm), B6 (733-748 nm), B7 (773-793 nm), 
B8A (855-875 nm), B11 (1565-1655 nm), B12 (2100-
2280 nm) with 20 m resolution, and B9 (930-950 nm), 
and B10 (1365-1385 nm) with 60 m spatial resolution.

Statistical and geostatistical analysis
Multiple linear regression (MLR)
MLR has been used to assess the relationships between 
forest structural attributes and remotely sensed data 
(Næsset 2002). We focused on the predictability of G 
and GSV using MLR and regression kriging (RK) based 
on Landsat 8, Sentinel-2 data, and terrain indices. For 
this purpose, the statistical significance of the terrain 
variables and of the variables obtained from Landsat 
8 and Sentinel-2 were tested at 0.05 significance level 
using the forward variable selection technique in SAS® 
software. 

                            (4)

Where; b0 is a constant coefficient, bi is the vector of 
independent variables, xi is an independent variable that 
accounts for variation of a dependent variable and e is 
the model residual. The model residuals are expected to 
have a normal distribution.

Regression kriging (RK)
The sample plots in the same location are inherently 
interdependent (spatially correlated). Therefore, in 
fitting a model, it is highly important to consider the 
spatial autocorrelation in data in order to improve the 
model performance. RK uses the spatial autocorrelation 
in the residuals from MLR, and therefore may improve 
the predictions, as MLR does not consider spatial 
autocorrelation in data. Kriging methods have been 
increasingly used for interpolating spatially dependent 
data in recent decades. 

RK consists of three steps. Initially, MLR is carried 
out to estimate the regression parameters. Then, the 
residuals from MLR are incorporated into ordinary 
kriging to account for prediction uncertainty using 
ArcGIS® software. Finally, the values of the target 
variable were calculated by adding the predictions of 
MLR and the kriged values of the residuals (Odeh et al. 
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1995) (Figure 2).

					                     (5)

Where: φ0 and φi are the estimated values by MLR, xi 
is an independent variable that accounts for dependent 
variable variation, n is the number of observations, λi 
is ordinary kriging weight and, ε is the kriged model 
residual at measurement locations. 

Predictive performance and validation of MLR and 
RK
The repeated k-fold cross-validation with n repetition 
procedure was used to adequately exploit our small 
sample data (n=51) using SAS® software. Five-fold 
with 10 repetitions was applied in the cross-validation 
procedure, which allowed to reduce prediction biases. 
The data were randomly split into two groups (training 
and testing subsamples) using the unrestricted random 
sampling method at each repetition, and the different 
random subsamples were selected for the training and 
testing purposes. This process was repeated ten times 
for determining the best model parameters at the 0.05 
significance level. Finally, the best predictive MLR and RK 
models were compared using goodness-of-fit statistics 
including the root-mean-square error (RMSE), the mean 
absolute error (MAE) and the adjusted coefficient of 
determination (R2

adj) (Kozak & Kozak 2003) (Eq. 6 to 8). 
The similarities between the observed and the predicted 
values were assessed by the correlation coefficient 
(r). RK and MLR were further evaluated by plotting 
the residuals for each model. Also, the distribution of 
the relative error percent, RE (%), was used for model 
comparison.

Satellite Indices Satellite Indices Satellite Indices Satellite Indices

La
nd

sa
t 8

B1-B7, B9

Se
nt

in
el

-2

S1-S12, S8a

Se
nt

in
el

-2

MSRRE1

Se
nt

in
el

-2

NLINIRn2

NDVI NDVI MSRRE2 RSRRE1

EVI DVI MSRNIRn1 RSRRE2

SAVI MSRNIR MSRNIRn2 RSRNIRn1

MSAVI NLINIR NLIRE1 RSRNIRn2

NDMI RSRNIR NLIRE2 EVIRE1

NBR EVINIR NLINIRn1 EVIRE2

NBR2 CTVI

TABLE 3. Bands (B) and vegetation indices of Landsat 8 and Sentinel-2 considered as explanatory variables for G and GSV 
estimation. For calculations of spectral indices see Chrysafis et al. (2017)



Where; Di and Di are the observed and the predicted 
values, respectively, Di is the mean of the observed values, 
and nT and k are the total number of the observations 
and independent variables, respectively.
 
Results
We used multiple linear regression (MLR) to predict 
basal area (G) and growing stock volume (GSV) based 
on Landsat 8 and Sentinel-2 data and terrain indices 
choosing explanatory variable(s) at the 0.05 level of 
significance. The band values and vegetation indices of 
Landsat 8 and Sentinel-2 (Table 3) and terrain variables 
(Table 1) were analyzed to predict G and GSV. When 
Landsat 8 and the terrain variables were considered, EVI, 
elevation and STI independent variables were significant 
at the 0.05 level of significance. When Sentinel-2 
and the terrain variables were considered, NLINIRn2, 
elevation and STI were found to be significant at P<0.05  
(Table 5). Goodness-of-fit statistics for MLR and RK are 
given in Table 4.

RK performed better than MLR for both prediction and 
validation datasets, particularly when using RK based on 
Landsat 8 data. In both data sets, the models based on 
Sentinel-2 data performed worse than those based on 
Landsat 8. In summary, the prediction and validation 
statistics suggested using RK based on Landsat 8 data to 
predict G and GSV (Table 4).

Residual plots for G and GSV are displayed in  
Figure 3. The residual patterns of RK and MLR had no 

trend, suggesting that the predictions were unbiased for 
all cases. 

Figure 4a shows the relative errors (REs) for the 
model predictions against different values of G and GSV. 
The number of observed data used in the predictions is 
an important factor determining modeling performance 
or prediction quality. Interestingly, in general, Figure 4a 
indicated that the models performed better at G ≤20 and 
G ≥40 m2ha-1, while the number of observed data were 
lower at these Gs. However, we believe that those lower 
RE values for G predictions at ≤20 and ≥40 m2ha-1 could 
be biased. Figure 4b shows a similar case for the GSV 
models (the number of observed data are not shown in 
the figure).

A graph of the observed versus modelled (predicted) 
Gs, are shown in Figure 5. These graphics suggest that 
G estimates obtained from Landsat 8 showed greater 
similarity to the observations than those obtained from 
Sentinel-2 (r=0.72). In contrast, GSV estimates obtained 
from Sentinel-2 were more precise than those obtained 
from Landsat 8 (r=0.75).

The experimental semivariograms for the residuals 
of G and GSV are shown in Figure 6. Nugget values for 
Landsat 8 are lower than those for Sentinel-2. The nugget 
values are 70% for both G and GSV when using Landsat 8 
and 70% for G and 65% for GSV when using Sentinel-2. 
Cambardella et al. (1994) proposed that a variable with 
a nugget ratio <25% is assumed to be strongly spatially 
dependent, between 25% and 75% moderately spatially 
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FIGURE 2: Flowchart of regression kriging application used to spatially interpolate G and GSV



dependent, and >75% weakly spatially dependent. 
The nugget value was quite high in our research field, 
suggesting small-scale variabilities in the study area, 
in other words, a weak autocorrelation in our data. The 
surface maps of G and GSV obtained by RK are shown in 
Figure 7. 

Discussion
The goodness-of-fit-statistics suggested that RK models 
were adequate for both G and GSV predictions. Although 
the residual distributions showed that RK models were 

unbiased for G and GSV estimates, the relative error 
distributions suggested that RK models were biased for 
lower and higher values of G and GSV.

 Since plots within the same sampling unit are 
inherently correlated, the assumption of independence 
of observations is generally violated in the ordinary 
least square methods (e.g. multivariate regression) 
(Gregorie 1987). This feature results frequently in large 
error variance in residuals achieved by MLR (Fortin 
et al. 2007). In this study, the small error variance 
occurred due to low spatial dependence in the residuals  
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      Prediction set (n=30) Validation set (n=21)

      RMSE MAE RMSE MAE

G

Landsat 8
MLR 9.23 7.22 0.34 12.44 8.31 0.28

RK 7.84 5.89 0.52 10.30 8.98 0.28

Sentinel-2
MLR 9.08 7.36 0.36 17.11 9.44 0.15

RK 8.40 6.62 0.45 9.79 7.97 0.12

GSV

Landsat 8
MLR 57.39 45.24 0.36 73.93 51.49 0.14

RK 49.68 37.54 0.52 62.86 53.32 0.31

Sentinel-2
MLR 59.55 46.85 0.31 103.37 58.77 0.15

RK 47.47 37.20 0.56 68.44 57.35 0.17

TABLE 4. The goodness-of-fit statistics of the fitted MLR and RK models for G (m2 ha-1) and GSV (m3 ha-1) in the 
Anatolian black pine forest.

Note: Bold numbers indicate best G and GSV models

Response Variable Parameter Estimate S.E. t-Value p-Value

Ga

Intercept 122.548 35.196 3.482 0.002
EVI 104.102 29.968 3.474 0.002
STI -22.835 8.472 -2.695 0.013
Elevation -0.091 0.024 -3.835 0.001

GSVa

Intercept 766.719 221.901 3.455 0.002
EVI 690.130 188.942 3.653 0.001
STI -137.790 53.416 -2.580 0.016
Elevation -0.581 0.149 -3.891 0.001

Gb

Intercept -49155.840 16092.504 -3.055 0.005
NLINIRn2 49282.437 16090.139 3.063 0.005
STI -18.741 10.135 -1.849 0.076
Elevation -0.055 0.026 -2.130 0.043

GSVb

Intercept -212171.607 86662.410 -2.448 0.022
NLINIRn2 213198.437 86702.293 2.459 0.022
STI -136.718 59.549 -2.296 0.031
Elevation -0.532 0.166 -3.214 0.004

TABLE 5. Parameter estimates, standard errors (S.E.), t-values, and p-values of RK models predicting basal area (G, m2 

ha-1) and growing stock volume (GSV, m3 ha-1) as a function of Landsat 8, Sentinel-2 data and terrain variables 
for the Anatolian black pine

a Landsat 8 data; b Sentinel-2 data

R2
adj R2

adj



(Figure 6). While MLR may be more suitable in the 
case of low spatial dependency in the data, it does not 
take into account the spatial structure in data (Palmer 
et al. 2009). RK has the capability to account for 
these structures in continuous variables and has the 
advantages of the variable selection (Odeh et al. 1995). 
Therefore, we recommend the use of RK thus providing 
the surface map of the predicted values and accounting 
for measurement uncertainties.
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The study area is located in the Anatolian steppe 
transitional zone, covered by a semi-arid ecosystem 
(Göl & Abay 2003). In this region, tree (or stand) growth 
is limited due to the ecological conditions such as low 
precipitation, extreme temperature, and also poor soils. 
In this type of ecosystems, the General Directorate 
of Forestry of Turkey frequently recommends the 
Anatolian black pine for afforestation (Konukcu 2001). 
However, the harsh environmental conditions may lead 

FIGURE 3. Residuals for G and GSV against predicted values from the RK and MLR models based on Landsat 8 and 
Sentinel-2 data

FIGURE 4. Line plots of relative errors, RE (%), of RK and MLR based on Landsat 8 and Sentinel-2 data for: (a) basal area 
(G); and (b) growing stock volume (GSV).



TABLE 2: Confusion matrix
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FIGURE 5. Scatterplots of observed and predicted values of G and GSV using RK based on Landsat 8 and Sentinel-2 data

FIGURE 6. Experimental (circles) and theoretical (lines) semivariograms for basal area (G) and growing stock volume 
(GSV) based on Landsat 8 and Sentinel-2 data



to highly variable stands. Therefore, the explanatory 
variables (e.g. NDVI) are likely to be less correlated 
with the response variable, as suggested by our study. 
In our view, the forest vegetation structure limited the 
performance of RK, as the study site was composed of 
poor growth and thinned patches. In other words, sample 
plots with similar diameters at breast height may differ 
in tree heights ranging from 20 to 24 m (8.2%), 15 to 
19 m (57.4%) and 10 to 14 m (34.4%). These conditions 
led to poor correlations between the spectral data and 
the ground measurements. Another reason for sub-
optimal predictions was the thinning treatments in the 
study area. Since the stands were partially thinned, the 
sample plots with similar G showed the differences in 
terms of crown closure and stem density, which results 
in a discrepancy between the spectral data and the stand 
characteristics, leading to imprecise and biased models. 

Thinning treatments and harsh environmental 
conditions led to the spatial discontinuities, suggesting 
a weak spatial dependency of the G and GSV in the study 
area. In other words, the high short-range variability as 
evidenced by high nugget effect (~70%) occurred in the 
data (Dai et al. 2014; Gilbert & Lowell 1997; Gunnarsson 
et al. 1998; Maselli & Chiesi 2006; Viana et al. 2012). 
The nugget effect is one of the key factors decreasing 
the interpolation quality by kriging (Isaaks & Srivastava 
1989). Our results suggest that a systematic sampling 
(200 x 200 m grid) resulted in a high nugget effect in 
a semi-arid region (nugget effect ~70% for our data). 
In this context, the results of this study are important, 
evidencing that the sampling distance and scheme used in 
National Forest Inventory is not proper for geostatistical 
studies and that additional random subsamples are 
needed in finer resolution for a successful geostatistical 
analysis and interpolation. In these types of forests, 
Destan et al. (2013) and Corona et al. (2014) advised that 
inventory should be carried out with smaller sampling 

distances and that including more auxiliary variables 
representing spatial variability (e.g. soil and topography) 
may improve the performance of the kriging methods. In 
this study, aspect, slope, elevation, TWI, STI, and CI were 
used as explanatory variables to improve the predictions. 
Along with EVI indices of Landsat 8, NLINIRn2 indices of 
Sentinel-2, elevation and STI contributed to explain the 
total variance of G and GSV at the 0.05 significance level. 
Consequently, our results are promising as RK explained 
approximately fifty percent of total variance observed in 
both G and GSV obtained from Landsat 8 and Sentinel-2.

Conclusions
EVI obtained from Landsat 8, NLINIRn2 obtained from 
Sentinel-2, elevation and STI were the best independent 
variables explaining G and GSV. RK performed adequately 
to predict G from Landsat 8 and GSV from Sentinel-2. RK 
and MLR had similar residual scatterplots. However, the 
relative error distributions showed that especially in 
GSV estimates RK based on Landsat 8 performed better 
than MLR based on both Landsat 8 and Sentinel-2.

A highly random distribution of G and GSV occurred 
in our study site as shown by high nugget variance, 
suggesting a weak autocorrelation from a geostatistical 
perspective, which might be attributed to the coexistence 
in short distances of high-low productive patches, 
the coarse sampling scheme and undefined thinning 
practices. This suggests the sampling scheme may have 
been inadequate to detect the autocorrelation in G and 
GSV. Across such sites, a geostatistical sampling scheme 
should be performed with shorter sampling distances to 
improve modeling of semivariograms around the origin, 
which may help to decrease the nugget effect. Sampling 
sites having equal distributions of site index values can 
increase the performance of MLR and RK. The sampling 
sites with thinning practices should be excluded to 
improve the variance explained. In conclusion, we found 
that reasonably accurate predictions for forest planning 
can be achieved using Landsat 8 and Sentinel-2 through 
the RK method. 
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