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Abstract

Background: Red needle cast caused by Phytophthora pluvialis Reeser, Sutton & E. Hansen, and less frequently P. kernoviae
Brasier, Beales & S.A.Kirk, is an important foliar disease of Pinus radiata D.Don (radiata pine) in plantations throughout
parts of New Zealand. Significant growth loss occurs following years when severe outbreaks occur. Aerial spraying with
a copper-based fungicide has potential for disease control. Research is being carried out to optimise application timing,
supported by complementary studies to understand RNC epidemiology.

Methods: In order to determine the pathogen infection periods, a field trial was conducted over two years at two forests
in the Central North Island of New Zealand. Batches of potted radiata pine seedlings were placed beneath diseased pine
stands at fortnightly intervals, before returning them to an open nursery area for assessments of infection every two weeks
(based on visual symptoms and qPCR) over a period of three months. A hybrid modelling approach was employed to
establish relationships between the proportion of plants showing symptoms and weather conditions during the fortnight
of exposure and previous fortnights. Gradient boosting machine learning analyses were used to identify the most important
weather variables, followed by analysis of these by generalised mixed effects models, generalised least square models and
ordinary least square models.

Results: Development of RNC symptoms and detection of Phytophthora pluvialis and P. kernoviae on exchange seedlings
was greatest for those exposed between April and September (Southern Hemisphere mid-autumn to early-spring). At this
time, temperatures, solar radiation and evapotranspiration were lower, and rainfall and foliage wetness were plentiful.
Modelling identified temperature and relative humidity several months before the date of exposure as the most important
weather variables explaining infection.

Conclusions: Because of autocorrelation, it was not possible to determine those variables that drive sporulation, dispersal,
infection and symptom development. This will require more detailed exchange plant studies together with controlled
environment inoculation experiments. Nevertheless, results of this and earlier work complement recent research
indicating that it may be possible to manage RNC by fungicide applications made in late summer or autumn, early in the
annual disease cycle.

Keywords: epidemiology, infection period, needle disease, Phytophthora kernoviae, Phytophthora pluvialis, Pinus radiata, red
needle cast, seedlings, weather variables
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Introduction

Red needle cast (RNC) is a foliar disease of Pinus radiata
D.Don (radiata pine) and Pseudotsuga menziesii (Mirb.)
Franco (Douglas-fir) in New Zealand caused by the
oomycete Phytophthora pluvialis Reeser, W. Sutton
& E.M.Hansen (Dick et al. 2014; Hansen et al. 2015).
Phytophthora pluvialis is also responsible for needle
loss and twig symptoms on Douglas-fir and twig and
stem cankers on Notholithocarpus densiflorus (Hook.
& Arn.) Manos, C.H.Cannon & S. Oh (tanoak) in Oregon
(Reeser et al. 2013; Hansen et al. 2015). Recently it was
reported causing cankers on Tsuga heterophylla (Raf.)
Sarg. (western hemlock) in the United Kingdom (Pérez-
Sierra et al. 2022). In New Zealand, the pathogen was
first detected in the eastern North Island in 2008 (Dick
et al. 2014) and is now found throughout the country
(Graham et al. 2018). Outbreaks of RNC have been
intermittent and uneven, varying in severity in different
years, with greater prevalence in certain regions such
as the eastern North Island (Dick et al. 2014; Ganley
et al. 2014). The disease is also expressed seasonally,
and from late autumn, through winter and into spring,
crowns on diseased trees change gradually from green
through red-brown to brown, defoliate and concurrently
re-green with the development of the new season’s
flush. These changes in the expression of RNC begin at
the base of the crown and progress upwards. Growth
increment is significantly reduced in the year following
a severe disease event (P.N. Beets, pers. comm.).
Phytophthora kernoviae Brasier, Beales & S.A.Kirk is also,
to a lesser extent than P. pluvialis, isolated from foliage
on radiata pine trees affected by RNC in New Zealand
(Dick et al. 2014). Both Phytophthora species produce
indistinguishable short, discrete, olive or khaki coloured
lesions marked with tiny black specks or bands that
contrast with the fresh green colour of the remaining
healthy needle tissue.

Chemical control studies have shown that a
copper fungicide used routinely to treat dothistroma
needle blight, caused by the ascomycete Dothistroma
septosporum (Dorogin) M.Morelet, in New Zealand
radiata pine plantations can also be effective against
RNC under controlled conditions (Rolando et al. 2014,
2017, 2019) and in plantations (Fraser et al. 2022).
Research is proceeding towards the development
of recommendations for operational aerial spray
applications (Fraser et al. 2022). In order to assist this
work, detailed knowledge of the epidemiology of both
Phytophthora pathogens is needed (Hood et al. 2017).

Significant epidemiological work has already been
initiated. A prototype dynamic systems model has been
developed as a basis for understanding the behaviour of
red needle cast (Wake et al. 2018). To refine this model,
a study was undertaken to monitor the progress of
infection after foliage on three-year-old grafts of radiata
pine was inoculated with P. pluvialis under assumed
optimal conditions for the pathogen (Gémez-Gallego
et al. 2019a). qPCR analysis and symptom severity
indicated a small peak in detection after four days and a
second larger peak at ca. 20 days, followed by a decline
in detectable pathogen incidence.
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In addition, field research has been conducted to
determine the seasonal life cycles of both Phytophthora
species. Between 2012 and 2014 spore traps consisting
of freshly detached radiata pine fascicles floating
on deionised or rainwater held in plastic containers
were placed at fortnightly intervals beneath initially
symptomatic radiata pine stands (Fraser et al. 2020). In
the laboratory, sections of the needle baits were plated
onto selective isolation media to establish the presence
and identity of trapped phytophthoras. Inoculum was
detected in most months throughout the year, although
the pattern varied annually and with location. In some
years, and depending on the site, inoculum of P. pluvialis
was present from March (autumn) through to January
(summer) and that of P. kernoviae from March through
to November (spring). Peak abundance for both species
was in late winter, approximately coincident with
maximum disease expression nationally. Accordingly,
probability of detection of inoculum was related to
lower temperatures and periods of wet weather (Fraser
et al. 2020). Similarly, preliminary small-scale studies
with potted grafted cuttings have revealed successful
intermittent infection at least between July and October
(mid-winter and mid-spring; Hood et al. 2017). In
a further study, relative abundance of P. pluvialis in
Douglas-fir foliage at different locations was found to be
positively correlated with mean winter relative humidity
(Gomez-Gallego et al. 2019b).

This paper presents the results of a field trial
conducted to gather confirmatory information on
the seasonal life cycle of Phytophthora pluvialis and P
kernoviae on radiata pine. A succession of radiata pine
exchange plants were deployed to field sites to determine
when infection (as measured by visible symptoms and
presence of pathogens) occurs and to examine how this
relates to weather variables. To confirm species identity,
two procedures, high-throughput qPCR and plating onto
selective media, were used to detect the Phytophthora
pathogens from a subset of needle samples taken from
the study plants. Spore traps were included to enable a
comparison with earlier work (Fraser et al. 2020).

Methods

Trial period
The trial was run in two contiguous phases, the first
between late November 2017 and November 2018, and
the second between November 2018 and early January
2020 (Fig. 1).

Sites

Four sites were established in mature radiata pine stands
showing symptoms of red needle cast in two forests in
the Central North Island approximately 50 km apart.
Sites 1 (“Tar Hill”; Lat: -38.30251; Long: 175.95880)
and 2 (“Kaki Road”; Lat: -38.36274; Long: 175.91888),
8 km apart, were located in Kinleith Forest. Sites 3
(“Goudies Road”; Lat: -38.43808; Long: 176.49657) and
4 (“Low Level Road”; Lat: -38.61988; Long: 176.49988),
21 km apart, were located in Kaingaroa Forest. Due to
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operational felling, Site 1 (“Tar Hill”) was relocated
700 m to a new position for the second phase (Lat:
-38.30497; Long: 175.96530) in a new stand also
affected by red needle cast at that time.

Infection period

Plant material

Potted, open-pollinated, GF 19 (Vincent 1987; NZFFA
2005), radiata pine seedlings untreated with fungicides
wereexposedtonaturalinoculumatsuccessive fortnightly
intervals to detect when infection occurred. Plants
were lifted from nursery beds, individually potted in
9 L plastic pots and held for a short period until stabilised
prior to use. A different set of plants, each of one seed lot,
was deployed during each phase of the study. Seedlings
ranged 30-100 cm in height during the trial period.

Exchange plants

Sets of potted seedlings were transported to the field
for two weeks before being replaced by new plants, the
replaced set being returned to a different location in the
nursery (Fig. 1a). Seven seedlings were exchanged at
each site per fortnight. Seedlings returned to the nursery
were assessed every two weeks for 12 (first phase)
or 10 (second phase) weeks before being discarded
(Fig. 1a). The number or percentage of needles on each
plant with symptoms of red needle cast infection were
scored on the following scale: 0, none; 1, 1-10 needles;
2,>10 needles but <50% of needles; 3, > 50% of needles.

Control plants

In addition, 14 seedlings (first phase) and 10 seedlings
(second phase) were kept permanently at each of the
four field sites as positive controls (Fig. 1b). Positive
control seedlings were replaced by fresh plants if
they became unhealthy due to prolonged shading
from the stand canopy or infection by Phytophthora.
Replacements began in May in the first phase and
February in the second phase. Fourteen seedlings were
held permanently in the nursery throughout the trial as
negative controls, in an area separate from the exchange
seedlings. All plants were exposed to natural rainfall and
were watered as necessary from beneath in the field and
from above in the nursery.

Control seedlings were assessed every two weeks
throughout each study phase using the same procedure
as for the exchange plants (assisted for the shaded
positive field controls by torchlight illumination).

Pathogen identification

During the first phase of the trial, needle fascicles
were sampled at each assessment and prepared for
detection of P. pluvialis and P. kernoviae by automated
high-throughput DNA extraction and species-specific
gPCR targeting the Yptl gene region (Schena et al.
2006; McDougal et al. 2021) at Slipstream Automation,
Palmerston North (O’Neill et al. 2018). Sampling was
prioritised towards symptomatic needles on seedlings
with such foliage. Two fascicles were sampled from
each of two plants per seedling batch (i.e., 2 fascicles x
2 plants x 4 sites x 6 fortnightly exposure intervals =
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48 two-fascicle samples every two weeks, once the trial
was underway). Each fortnight, two fascicles were also
collected from at least two field control seedlings at
each of the four sites and at least one seedling from the
nursery negative control set.

When symptoms were observed, isolations onto
Phytophthora-selective media were attempted inaddition
to qPCR (which was undertaken whether symptoms
were present or not). In these cases, of the two-fascicle
sample per plant, one was used for qPCR and one for
isolation. To isolate the pathogens, sections of needles 5
mm long were surface sterilised for 30 seconds in 70%
ethanol, rinsed twice in sterile deionised water, blotted
dry in clean paper towelling and plated onto 10% carrot
agar (CA) amended with 0.2 g/L ampicillin, 0.05 g/L
nystatin, 0.01 g/L rifampicin and 0.01 g/L pimaricin
(Gomez-Gallego et al. 2019a). Sections were selected
to include the margins of characteristic red needle cast
lesions. Emerging colonies typical of Phytophthora were
sub-cultured on CA (Dick et al. 2006) and identified
based on macro- and micromorphological features.

During the second phase of the trial, needle samples
were taken only when symptoms were observed, and
these were analysed solely by qPCR. Disease severity
was low in the second year and this procedure avoided
possible confusion between young lesions produced by
Dothistroma septosporum and those of red needle cast.
Symptoms of RNC were only recorded as present when
either Phytophthora species was detected by qPCR.

Spore traps

During the first phase of the study, spore traps were also
set up and monitored at each site to allow comparisons
with data from the exchange plant study and with the
previous inoculum timing study of Fraser et al. (2020).
These consisted of square plastic buckets of cross-
sectional dimensions 25 x 25 cm, covered in a coarse, ca.
1 cm square, plastic coated wire grid to exclude litter, and
holding about 5 L deionised water. Traps were placed on
the ground at the study sites (5 traps per site) and were
baited with freshly collected needle fascicles of radiata
pine held in coarse mesh bags floating on the surface of
the deionised water. Fascicles were taken at the same
position from a GF 19 plant of a seed lot known from
detached needle inoculation assays to be receptive to
colonisation by P. pluvialis, avoiding new growth. These
were held overnight at 4°C and transported wrapped in
fresh dry paper towelling inside clean polythene bags
within an insulated polystyrene container for placement
in traps the following day. Baits and deionised water were
changed fortnightly, and on return to the laboratory baits
were again held overnight at 4°C prior to processing the
next day. Bags were soaked in bleach, rinsed thoroughly
with water and dried prior to reuse.

Baits were evaluated by isolation and morphological
identification of resulting cultures, as described above.
In addition, isolations were attempted each fortnight
from fresh needles from the bait source plant as negative
controls. Positive controls consisted of isolation attempts
made from needles exposed each fortnight as baits to
Phytophthora zoospores in the laboratory. Bait needles
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were placed along with 5 mm diameter CA plugs from
a standard P. pluvialis culture, and later (from early July
2018) also from a P. kernoviae culture, in sterile pond
water to induce production of sporangia and release of
zoospores. Ten needle bait sections were plated per trap
and for each control at each fortnightly interval.

Weather variables

The National Institute of Water and Atmospheric
Research (NIWA) provides daily meteorological estimates
for points on a Virtual Climate Station Network (VCSN)
spatially interpolated using actual data from real climate
stations located around New Zealand (Tait et al. 2006;
https://www.niwa.co.nz/climate/our-services/virtual-
climate-stations). Data for the following variables were
extracted from the virtual 5 km-grid weather station
nearest to each site for the period from November, 2016:
daily maximum air temperature (°C), daily minimum
air temperature (°C), daily soil temperature (°C), rain
accumulation over 24 hr (mm), relative humidity (RH) at
9.00 a.m. (%), solar radiation over 24 hr (M]/m?), mean
wind speed over 24 hr at 10 m (m/sec.) and Penman’s
evapotranspiration index over 24 hr (kg/m? Penman
1948).

Data analysis

The analyses of infection were run as one data set from
November 2017 to January 2020. Statistical analyses
were conducted using R 3.6.2 (2019).

NIWA virtual weather station data were used to
predict RNC infection, as expressed by the presence of
symptoms, on the foliage of exchange seedlings during the
study period. Plants were treated as infected if symptoms
were recorded at least once during assessments after
being returned from the field. Fortnightly lag variables
were constructed so that the proportion of seedlings at
each exchange period that developed RNC symptoms at
each site could be compared with historical as well as
concurrent weather (Table S1). Lag variables of time
periods T1 to T26 represented weather from 1 to 26
fortnights prior to seedling exchanges. Because variables
for predicting RNC at each exchange period at each site
were correlated, gradient boosting machine learning
(gbm) analyses were used to identify the most important
weather variables using the R package gbm (Friedman
2002; Greenwell et al. 2020). Tree-based analyses such
as gradient boosting models are suited to analysis of data
with high collinearity among variables (Dormann et al.
2013). A Gaussian distribution with 100 trees was used
to specify the gbm model. Calculation of goodness of fit
statistics (RMSE, R?) and diagnostics were undertaken.

Generalised mixed effects models, generalised least
square (GLS) models and ordinary least square (OLS)
models were fitted to the most important variables,
identified for each model by gradient boosting analysis.
GLS models included a serial correlation matrix to allow
for the effects of temporal autocorrelation. An automated
stepwise procedure was applied to choose the minimum
adequate model, using AIC as a selection criterion. The
most parsimonious model which adequately predicted
the relationship between important weather variables
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and the proportion of RNC symptomatic seedlings was an
ordinary least squares regression. Inclusion of variables
identifying the season when RNC was measured, the
site, or temporal autocorrelation, did not significantly
improve the most parsimonious models. Adjusted R?
values were calculated following Nakagawa et al. (2017).

To investigate seasonal variation in rates of symptom
development, the time taken before RNC symptoms
appeared, after seedlings were returned from the field,
was plotted against time of year. An apparent difference
between rates in winter and spring in the first phase of
the study was analysed using a t-test.

Comparison of pathogen detection data from qPCR
and isolation onto selective media was assessed with
a McNemar’s test of contingency table for P pluvialis
and P, kernoviae separately. A continuity correction was
applied due to low numbers of positives.

Because positive detections from spore traps were
low in number, this dataset is presented but was not
analysed statistically.

Results

Seasonal pattern of symptom development and
pathogen detection

Symptoms of RNC appeared on exchange seedlings
during both phases of the trial (Fig. 2a). They occurred
predominantly on plants exposed between April and
September (mid-autumn to early-spring) in 2018 and
between April and July (mid-autumn to mid-winter)
in 2019 (Fig. 3). Fewer exchange seedlings developed
symptoms during the second phase. Symptoms were
also observed during the first phase on a plant exposed
at Tar Hill between 19 December 2017 and 15 January
2018 (Fig. 3).

Phytophthora pluvialis was first detected on a
symptomless seedling exposed at Low Level Road
between 20 November and 5 December 2017 (Fig. 3).
The earliest detection of infection by P. kernoviae was
made on the seedling that showed symptoms after
exposure between 19 December 2017 and 15 January
2018. However, the main period during the first phase
in which the phytophthoras were detected on exchange
plants was between April and September 2018 for P
kernoviae, and between April and August 2018 for P,
pluvialis. During the second phase, P kernoviae was
detected between April and July, 2019, but P. pluvialis
was only detected in one fortnight in July 2019 (Fig. 3).

Control seedlings

On field seedlings permanently exposed to available
inoculum under conditions of perpetual shade (positive
controls), disease symptoms differed somewhat from
those on exchange seedlings, which were only shaded
during the fortnight in which they were kept in the field
(Fig. 2b, c). Nevertheless, these symptoms on control
plants were observed during a similar period to that for
exchange plants. During the first phase, symptoms on
most control seedlings were recorded between June and
November 2018 (early winter through to late spring),
when the plants were replaced for the second phase of
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FIGURE 2: Symptoms of Phytophthora infection on foliage of radiata pine seedlings in the present study. (a). Typical
symptomology on an exchange seedling after its return to an open section in the nursery. Affected portions of
needles have transitioned from olive green to khaki-orange-red. (b, c). Atypical symptoms as seen on shaded
field control seedlings maintained under the forest canopy. On such plants affected foliage often first turned dark
green and then grey rather than transitioning to red as is more characteristic for the disease on canopy trees.
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FIGURE 3: Severity of RNC symptoms by time of year on exchange seedlings. Each dot indicates the mean, for all exchange
seedlings exposed at a specific site and fortnight, of the highest score per plant (full symptom expression)
from the series of assessments made after returning from the field (note: not all zero value dots are visible
where they coincide and are superimposed). Scale (needles with symptoms): 0, none; 1, 1-10 needles; 2,
>10 needles but <50% of needles; 3, > 50% of needles. Also shown are positive detections of P. pluvialis or
P. kernoviae in needle samples taken from exchange seedlings exposed at specific sites and fortnights using
gPCR and/or isolation (each symbol represents detection on one plant; negative qPCR results are not shown,
including those for 328 samples from seedlings exposed between 15 January 2018 and 23 April 2018). Sites:
Kinleith Forest: green, Tar Hill; purple, Kaki Road. Kaingaroa Forest: red, Goudies Road; blue, Low Level Road.
Each point indicates the starting date of its fortnightly period of exposure. The vertical dotted line separates
seedlings of the first and second phases of the study.
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the study (Fig. 4). During the second phase, symptoms
were observed on the newly deployed plants between
December 2018 and January 2019 (summer), with a lull
preceding a fresh period with symptoms recorded from
May 2019 to January 2020 (early winter to summer),
comparable to that in the first year. On the permanently
exposed control seedlings, P. pluvialis was detected by
gPCR between July and November, and P. kernoviae
between May and November, during the first phase (Fig.
4). During the second phase, P. pluvialis was detected
between December 2018 and January 2019, and again
between May 2019 and January 2020, while P. kernoviae
was detected in January 2019 and then between July
2019 and January 2020 (Fig. 4).

No symptoms of RNC developed on negative control
seedlings held permanently in the nursery. Likewise,
neither species of Phytophthora was detected by qPCR
on samples collected from negative control plants.

Observed relationship with meteorological variables
Symptom expression and pathogen detection on
exchange seedlings were greatest in both forests
between April and September (late autumn through

. shath

Phytophthora pluvialis
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to mid spring), when air and soil temperatures, solar
radiation and evapotranspiration were at their lowest,
and relative humidity was at its maximum (Figs. 3,
5a,b,d-g). Rainfall occurred intermittently but was still
ample during the period when infection and pathogen
detection occurred (Figs. 3, 5¢).

Analysis of the relationship with meteorological
variables

A gradient boosting model with predictor variables
of site and fortnightly lags for evapotranspiration,
maximum temperature, minimum temperature, rainfall,
relative humidity, photosynthetically active solar
radiation, soil temperature and wind speed identified
four variables with importance scores over 5%. These
were soil temperature from 13 to 15 fortnights before
the exchange, and minimum temperature in the fortnight
before exchange (Table S2). The full model explained
74% of variation in data (Table 1, RMSE = 0.170, R?
value of 0.739; Fig. 6b). An OLS model containing the
ten most important variables identified in the gradient
boosting model accounted for 36% of variability in
RNC scores (RMSE = 0.134, R? value of 0.357; Table 1;
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FIGURE 4: Severity of RNC infection by time of year on field control seedlings. Each dot indicates the mean score for all

permanently placed plants at a specific site and
survival; note: not all zero value dots are visible

date (up to 10 or 14 plants per site, depending on year and
where they coincide and are superimposed). Scale (needles

with symptoms): 0, none; 1, 1-10 needles; 2, >10 needles but <50% of needles; 3, > 50% of needles. Also

shown are positive detections of P. pluvialis or P.

kernoviae in needle samples taken from control seedlings at

specific sites and times using qPCR and/or isolation (each symbol represents detection on one plant; negative
qPCR results are not shown, including those for 55 samples taken from 5 December 2017 to 7 May 2018).
Sites: Kinleith Forest: green, Tar Hill; purple, Kaki Road. Kaingaroa Forest: red, Goudies Road; blue, Low Level
Road. The vertical dotted line separates seedlings of the first and second phases of the study.
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FIGURE 5: Seasonal weather patterns during the trial. Fortnightly means of data from the nearest NIWA virtual weather
station to each site. Kinleith Forest: green lines, Tar Hill; purple lines, Kaki Road. Kaingaroa Forest: red lines,

Goudies Road; blue lines, Low Level Road.

Fig. 6¢). A stepwise procedure reduced the number of
predictor variables included in the linear model to four,
with little difference in the model fit (RMSE = 0.135,
R? value of 0.335; Table 2). Soil temperatures 13 and
14 fortnights prior to the exposure period had positive

TABLE 1: Rootmean square error (RMSE) and R? statistics
from models used to predict RNC symptoms.
The gradient boosting model included 212
highly correlated predictor variables. The
most important of these were used in linear
regression models. Other methods were tried
including Nagelkerkes R? and from packages
including ModelMetrics. DescTools, fmsb.

Model RMSE ? R?® Nagelkerke
Gradient boosting 0.170 0.753

Binomial General 4886 0.331 0.465
Linear Model (GLM)

OLS Linear model 0.134 0.357

Stepwise OLS 0.135 0.350

ay/ mean| (predicted - observed)?

bcorrelation of (observed vs fitted)?

relationships with the presence of symptoms. Maximum
air temperature 14 fortnights prior and relative
humidity 20 fortnights prior to exposure had negative
relationships with the presence of symptoms. Caution
should be applied to results from linear regression
using correlated predictor variables, even of a reduced
number.

Period between field exposure and symptom
expression

During the first phase of the trial, time until symptoms
appeared was significantly greater on seedlings
exchanged before August (i.e., exposed in mid-winter;
mean, 2.9 fortnights) than on those exposed later (i.e.
exposed in early spring; mean, 1.3 fortnights; t = 5.584,
P < 0.001; Fig. S1). After August, a greater number of
plants were already symptomatic when returned from
the field. No trends were apparent among the limited
positive disease data obtained during the second phase
(Fig. S1).

Seasonal pattern of detection of Phytophthora spp.
in spore traps

Inoculum of Phytophthora was detected only infrequently
in the spore traps during the trial (undertaken during
the first phase, only), but when present it matched
the seasonal timing for infection and RNC symptom
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data from gradient boosting (gbm) and reduced OLS models fitted to weather data. Also shown are dates of
needle sampling including those with qPCR detection of P. pluvialis and P. kernoviae. From four sites in two
forests (Kinleith Forest: green line, Tar Hill; purple line, Kaki Road. Kaingaroa Forest: red line, Goudies Road;

blue line, Low Level Road).

development on exchange seedlings (Fig. 7). Inoculum
of P. pluvialis was identified during August (late winter;
in Kaingaroa Forest) and P. kernoviae between June and
August (throughout winter; in Kinleith Forest). Neither
species was isolated from negative control needles.
Of the 10 positive control needle sections plated each
fortnight, P. pluvialis was obtained from a mean of 5.9
sections (range 0-10; n=24) and P. kernoviae from a
mean of 3.4 sections (range 1-8; n=10).

TABLE 2: ANOVA table from the OLS linear model stepwi
variables selected by the procedure. Lag varia

Comparison of pathogen detection methods

There was greater percentage detection by automated
high-throughput qPCR than isolation onto Phytophthora-
selective media for both Phytophthora species from
a subset of 64 samples from the first phase of the
trial. Phytophthora pluvialis was detected from 7.8%
of samples by qPCR compared to 3.1% of samples
by isolation. Phytophthora kernoviae was detected
from 9.4% of samples by qPCR compared to 7.8% of

se procedure. Regression coefficients are displayed for the four
bles are described from 1 to 26 fortnights prior to the exposure

fortnight.

Parameter df MeanSq F value P Coefficient SE Coeffcient
Site 1 0.126 6.703 0.01 0.021 0.008
Soil Temperature Week 14 1 1.325 70.751 0 0.044 0.009
Soil Temperature Week 13 1 0.11 5.864 0.016 0.019 0.006
Maximum Air Temperature Week 14 1 0.517 27.622 0 -0.057 0.01
Relative humidity Week 20 1 0.118 6.305 0.013 -0.005 0.002
Residuals 218 0.019
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FIGURE 7: Seasonal pattern of detection of Phytophthora species in inoculum spore traps at four sites in two forests. Each
dot indicates the proportion of 10 fragments from needles in one trap yielding (a) Phytophthora pluvialis or
(b) Phytophthora kernoviae (five traps per site). Kinleith Forest: green dots, Tar Hill; purple dots, Kaki Road.
Kaingaroa Forest: red dots, Goudies Road; blue dots, Low Level Road.

samples by isolation. However, these differences were
not statistically significant (McNemar’s test, P > 0.05).
Phytophthora pluvialis was not detected by isolation
from samples that were also negative by qPCR. However,
P. kernoviae was isolated from two samples that were
negative for the species as determined by qPCR. Only
three of 35 positive detections from exchange seedlings,
and three of 122 from field control seedlings, had no
records of symptoms being present.

Discussion

The results from this trial demonstrated a seasonal
pattern of RNC development that corroborates results
from earlier studies, implying that most infection by
P. pluvialis and P. kernoviae takes place between autumn
and spring, tailing off into summer especially in years
when RNC is more severe. During the first phase of the
study, infection in the exchange plants, as determined by
the qPCR analysis and symptom expression, occurred
mainly between April (autumn) and September (early
spring), with some in November and December 2017
(spring-early summer). No infection was detected
between late January and mid-April 2018 on the many
samples (328) that underwent qPCR during that
period and no symptoms were recorded. Infection
also occurred in late November or December 2018 on
the newly placed second phase control plants, with
some possibly extending through to January 2019. This
pattern was clearly apparent even though both phases
of the trial were conducted during a low disease period

following two years of severe disease expression in each
forest. It is likely that in years of greater severity some
infection may occur both earlier and later than indicated
in this study. The brief incidence of infection detected
in exchange seedlings exposed during November-
December 2017 and December 2017-January 2018
at the beginning of the first phase may have been the
residual aftermath of the previous, more severe period
of RNC. The qPCR and isolation results supported
earlier work showing that the life cycles of P. pluvialis
and P. kernoviae are similar, and as with some other
phytophthoras they are apparently polycylic. This trial
did not include a micromorphological aspect, but empty
sporangia of P. pluvialis were observed part way through
an initial pilot study on the surface of a needle from an
exchange plant following earlier infection in the same
season (Hood et al. 2017). This observation and the
sustained detection of inoculum in previous spore trap
work signify the repetitive production of infectious
propagules during the infection period (Fraser et al
2020). RNC thus progresses epidemically, especially in
high disease severity years, as the season advances.

A key aim of the present trial was to investigate how
the infection periods of P. pluvialis and P. kernoviae
are affected by different weather variables. The results
of the study concur with previous work showing that
infection mostly takes place during the cooler, wetter
winter months, when relative humidity is greater,
temperatures, solar radiation and evapotranspiration
are lower, at times of ample rainfall and foliage wetness
(Fraser et al. 2020). It also appears that symptoms on
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infected needles developed more rapidly later in the
season, as winter transitioned into spring. The seasonal
relationship between infection (measured as proportion
of plants with visible symptoms) and weather was
examined statistically. The best model accounted for
33% of the variation in symptom expression which was
explained by four key weather variables prevailing in
the six months before seedlings were exposed. However,
it is unclear from these observations which variables
are the actual drivers because of their covariation, e.g.,
between warmer summer temperatures and increased
solar radiation (this particular relationship might be
less likely with the plants in this study, however, as they
were shaded beneath mature trees). The models did
not identify a simple and clear association between any
single weather variable and RNC. Because of this it will
be necessary to conduct further experimental work.
Follow up studies should focus on epidemic periods
of the year, placing exchange plants directly under
symptomatic canopy trees and utilising significantly
shorter exposure periods (e.g., two days) to identify key
variables for spore release, spread and infection. Further,
the results of controlled environment inoculation studies
will determine which climatic variables are primarily
causative and, complementary to those of the present
and previous research, thereby helping to clarify RNC
epidemiology (Gomez-Gallego et al. 2019a; Fraser et al.
2020).

Direct evaluation by means of automated high-
throughput qPCR was a more efficient technique than
isolating phytophoras from needles, in agreement with
Gomez-Gallego et al. (2019a,b) and Fraser et al. (2022).
Only two samples yielding cultures of P. kernoviae tested
negative for this species using qPCR, possibly due to
the low level of disease during the trial period, with
often only a single needle on one of the two sampled
fascicles displaying symptoms. Both methods were
better indicators of inoculum release and availability
(since infection presupposes inoculum) than the spore
trap procedure. It is puzzling why the spore traps gave
only limited results, but this may also have been partly
due to the low level of disease in the stands sampled
and consequent reduced inoculum loading. Detached
needle baiting was used successfully in the earlier study
reported by Fraser et al. (2020). In that work spores
were trapped over a period broadly comparable to that
when infection occurred in this study. This suggests that
absence of infection on exchange plants was due to a
lack of inoculum, not because foliage was unreceptive to
spores at this time, but this requires confirmation. It is
still possible that spores may be released over a longer
period than detected even in the spore trapping study of
Fraser et al. (2020). It may be necessary to replace the
present inoculum trapping method by a more sensitive
procedure in future studies. Less inoculum during a
low disease year may explain the reduced infection
during the second phase of the exchange plant study, as
determined by qPCR analysis supported by symptom
expression. The very localized distribution of the disease
may have also had an impact, with symptoms often not
developing on canopy trees directly above the exchange
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seedlings, but on other canopy trees nearby. There is
increasing evidence that most RNC inoculum remains
local and disperses over only a short distance from its
source (Hood etal. 2017).

The severity of a polycyclic epidemic is governed by
the level of initial inoculum and the apparent rate of
infection as the disease develops (Van der Plank 1963).
For RNC we are still hampered by limited knowledge on
both aspects, including the way the pathogens survive
between outbreaks and the manner that spores are
produced when the epidemic is initiated. Phytophthora
pluvialis and P. kernoviae may survive in roots and/or soil
(Gardner etal. 2015; Scott et al. 2019). It cannot be ruled
out that in this study exchange seedlings positioned on
the ground may have been exposed to some inoculum
from this source as well as from the canopy. Phytophthora
pluvialis does not appear to form resistant oospores
readily in radiata pine needles (Hood et al. 2014; Scott
etal. 2019), but it seems possible that a residue of viable
infection persisting in tree crowns between disease
events may serve as initial inoculum for a new disease
episode when conditions are suitable. In this study,
symptoms were present on some exchange and field
control seedlings as late as January (regardless of when
this foliage actually became infected), and Fraser et al.
(2020) trapped inoculum in January in one trial year.
Does a small level of infection continue on in plantation
trees during the lull period between mid-summer and
mid-autumn? It is noticeable that some disease appears
to recur on the same groups of trees in successive years
(I.A. Hood, unpublished data), although this observation
may have other explanations. Control of the disease
may eventually be achieved by both destruction of
initial inoculum and reduction in the infection rate.
Recent research indicates that one or two aerial spray
applications of copper fungicide as early as November in
the disease cycle are effective in reducing disease levels,
as also are later applications (Fraser et al. 2022). The
factors regulating disease outbreak years are still being
determined, but it may ultimately be possible to advise
when or when not to spray if weather conditions prior
to the development of an epidemic govern the amount
of initial inoculum. However, if weather variables during
the development of an epidemic are more influential, or
if aspects other than weather are also involved, this may
not be achievable. Ultimately, a definitive outcome will
alsorely on further aerial fungicidal timing trials in ayear
when there is sufficient disease, in order to prescribe a
recommended fungicide application programme.

Conclusions

Red needle cast proceeds epidemically as a seasonal
polycyclic disease in stands of radiata pine in the Central
North Island of New Zealand. During two mild disease
years, infection of potted seedlings by the pathogens
P. pluvialis and P. kernoviae occurred predominantly
between mid-autumn and early spring. At this time
of year, air and soil temperatures, solar radiation and
evapotranspirationwereattheirlowest, relative humidity
at its maximum, and rainfall, though intermittent was
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generally plentiful. However, additional work is required
to determine which of these weather variables have the
greatest impact on sporulation, spore dispersal, infection
and symptom development. Modelling predicted that
air and soil temperatures approximately six months,
and relative humidity approximately 10 months prior
to infection were the most influential variables tested.
Further studies to resolve the epidemiology of RNC in
order to support disease control research are underway.
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FIGURE S1: Dot plot showing development of RNC symptoms on exchange plants by time of year and period after exposure
to inoculum. Horizontal axis: time of year when exposed. Vertical axis: period after return from field when symptoms
first observed (in 2-week units; unit 1 indicates the first assessment made immediately on return, two weeks after initial
placement in the field). Key: N=number of plants. During 2018, mean period before symptoms appeared prior to August
(2.9 two-weekly intervals) was significantly longer than that after August (1.3 two-weekly intervals; t = 5.584, P < 0.001).
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TABLE S2: Importance values measured (>1) calculated by residual sum of squares averaged over all trees of a gradient
boosting model (gbm). All variables included in the gradient boosting model are listed in Table S1. Note: “temp.” is daily
soil temperature, while “minTemp.” and “maxTemp.” refer to air temperature.

variable gbm.influence
temp.15 19.6820476
temp.14 10.2376401
minTemp.1 9.76337065
temp.13 5.35050889
minTemp 4.89797575
maxTemp.14 4.06793042
Rh 3.74165727
minTemp.4 2.8242143
rh.20 2.08245243
maxTemp.1 2.07143618
wind.18 1.94416014
rh.1 1.7698712
temp.17 1.73657758
rain.11 1.50218216
temp.1 1.4983119
evapoTrans 1.22943857
maxTemp.25 1.20768374
solar.18 1.20758296
temp.3 1.02308348
maxTemp.15 1.02027098
temp.2 1.01524595




