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Abstract. 
Chromium is a transition metal with a wide range of applications in leather tanning, textile, electroplating, stainless steel 
production, inorganic chemical production and wood preservation industries due to yellow colouration, corrosion resistance, 
higher melting-point and crystalline structure with raging of oxidation states from 0 to +6. Trivalent and hexavalent 
chromium are the most abundant forms of chromium discharged into the aquatic environment by industries. It has been 
reported that hexavalent chromium is highly toxic than trivalent chromium due to the higher solubility, mobility and 
tendency to accumulate in higher trophic levels, which, therefore, become bioavailable and causes carcinogenic, mutagenic 
and teratogenic effects on most microorganisms and animals, growth inhibition, morphological and physiological changes 
and yield reductions in plants. Therefore, it is essential to detoxify the above hazardous pollutants up to permissible limits, 
which local and international authorities have legislated concerning its threat towards biotic components. Hexavalent 
chromium detoxification is possible to achieve using three methods i.e. physical, chemical and biological methods. These 
remediation processes can eliminate highly toxic hexavalent chromium or transform it into a less toxic form of trivalent 
chromium, completely or partially by adsorption and reduction. Biological remediation is considered a cost-effective and eco-
friendly method compared to physical and chemical remediation. Further, many biological agents have been identified as 
agents that can tolerate the hexavalent chromium toxicity up to certain higher levels depending on the internal and external 
environmental factors, indicating different metal tolerance mechanisms that are assumed to be applied in metal remediation 
aspects. According to the testimonies of novel bioremediation studies, some hexavalent chromium tolerant organisms such 
as plants, bacteria, unicellular and multicellular fungi and algae are promising eco-friendly alternatives in detoxification and 
hexavalent chromium removal perspective. This article reviews the bioremediation approaches available for hexavalent 
chromium detoxification and removal and highlights the strengths and weaknesses of current bioremediation methods.  
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Introduction 
Chromium is a highly valued industrial raw material 

with a wide range of industrial applications such as 

pigment production for paints, inks and plastics, anti-

corrosion coating production, stainless steel production, 

wood preservation and leather tannins which are 

discharged both trivalent chromium (Cr(III)) and 

hexavalent chromium (Cr(VI)) in higher quantities [1,2]. 

According to toxicological studies, Cr(VI) is 100 times 

more toxic than Cr(III) due to solubility, mobility and 

permeability in biota [3–7]. From the view of toxicology, 

prolonged exposure to Cr(VI) can lead to carcinogenic, 

mutagenic and teratogenic effects on animals which has 

been clinically proved, and morphological and 

physiological effects on plants, algae and other 

microorganisms [8–12]. The working community in 

chromium based industries, including chrome mining, 

has the highest potential for chromium poisoning [8,13–

16]. Therefore, international authorities for the 

occupational community, such as Occupational Safety 

and Health Administration (OSHA), has set the 

maximum limit for Cr(VI) exposures as similar to the 

conventional public health concerning local and 

international authorities; World Health Organization 

(WHO), United States Environmental Protection Agency 

(US EPA). The minimization and detoxification of Cr(VI) 

in industrial effluents can be achieved by Physical, 

Chemical, and biological methods. Among the above 

methods, biological remediation is considered the most 

cost-effective and environmentally friendly method. [17–

20].  

Chemical nature and uses of Chromium. 
Chromium is the 21st most abundant element in earth’s 

crust, which belongs to d-block in the periodic table with 

a molar mass of 51.9961 g mol-1 with a wide range of 

industrial applications based on chemical and physical 

properties such as inert nature, hardness, strength, high-

temperature resistance and corrosion resistance etc. [21]. 
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Cr(III) and Cr(VI) are the most stable and domain 

oxidation forms of chromium that exists in nature among 

the other oxidation forms of metallic chromium (Cr(0)), 

divalent chromium (Cr(II)), tetravalent chromium 

(Cr(IV)) and pentavalent chromium (Cr(V)).  

The majority of chromium is used for metallurgical (67%) 

and refractories (18%), while the rest of 15 % are used for 

chromium induced chemical production, which is used 

for wood preservation, leather tanning, metal finishing, 

pigment production and textile industry as a raw 

material [2] (Table 1). 

Table 1 – Industrial applications of Cr(0), Cr(III) and Cr(VI). 

Oxidation 

state 
Industrial application Reference  

Cr (0) Stainless steel production 

Alloy production  

Metal manufacturing  

[2] 

Cr (III) Metal and alloy production 

Textile and leather tanning 

Copy machine toners  

Brick lining 

Chrome plating  

Catalysts production 

Paint production 

[2,22] 

Cr (VI) Chrome plating 

Leather tanning 

Textile industry 

Copy machine toners 

Dye/paint pigment 

production 

Wood preservation 

High temperature battery 

production 

Metal finishing 

Catalyst production 

Stainless steel production 

Plastic production 

[2,22,23] 

Toxicity of Chromium.  
Among the most stable oxidation states of chromium in 

nature, Cr(III) is considered an essential micronutrient of 

higher organisms with less toxic effects due to lower 

solubility and impermeability [6,24]. Further, it has been 

reported that Cr(III) can assist in regulating the glucose 

level of the human body [25]. In contrast, Cr(VI) has been 

categorized as a carcinogenic agent by the USEPA and 

International Agency for Research on Cancer (IARC) due 

to high water solubility and mobility [26].  

Toxicity of Cr(VI) to humans. 
Prolonged Cr(VI) exposes through breathing, ingesting, 

and skin contacts can cause nasal irritations, nasal 

perforations, skin irritations, skin ulcerations, skin 

allergies, lung cancers, stomach upsets, convulsions, 

kidney and liver damages [2]. 

The working community in chromium-based industries 

(leather tanning, electroplating, mining and pigment 

production, etc.) has a high tendency to be affected by 

Cr(VI) toxicity. Cr(VI) can produce highly reactive 

hydroxyl radicals in blood vessels during the reduction 

into Cr(III), which can cause blood cell damages with 

organ degradations and cellular activity interruption by 

metal-DNA bindings [27]. Further it believes that  Cr(VI) 

is responsible for causing teratogenic effects in human as 

it has proven with animal model trials [28]. 

Toxicity of Cr(VI) to plants.  
Chromium being a non-essential element it does not have 

a specific mechanism of uptake into plants. It is believed 

that, the plants use a passive process to uptake Cr(III) and 

an active process for uptake Cr(VI) with carriers 

competing with iron, sulphur and phosphorus [29]. Part 

of the Cr(VI) is taken up into plants after reducing into Cr 

(III) on the root surface, and the rest of the  Cr(VI) is taken 

up by plants by dissolving in water and without reducing 

[29,30]. In the toxicological point of view, Cr(VI) affect 

plants both morphologically and physiologically. It has 

been found that, high concentrations of Cr(VI) affect the 

seed germination negatively due to the depressive effects 

on enzyme activity and sugar transport to embryo axes 

[31,32], It also reduces the root growth due to inhibition 

of water absorption [33], and shoot growth due to 

chromium transportation in aerial parts [31]. 

Toxicological Studies done else ware using Oryza sativa, 

Acacia holosericea, Leucaena leucocephala and Albizia lebbek 

and Phaseolus vulgaris reported that leaf area and biomass 

can be adversely affected by Cr(VI) [31,34]. 

Plant physiological studies revealed that Cr(VI) can lead 

to yield reduction by decreasing chlorophyll a, 

chlorophyll b and carotenoid pigments and affecting 

water and mineral transportation due to high oxidative 

potential [31,35]. 

Toxicity of Cr(VI) to microorganisms.  
Microorganisms are commonly exposed to many 

pollutants, including toxic metals, as they are widely 

dispersed in the environment, causing many toxic effects. 

Cr(VI) can become toxic to most bacterial strains causing 

cell enlargements, cell elongations and cell division 

inhibitions [23]. Cr(VI) can rapidly enter into the bacterial 

cytoplasm and reduces to lower oxidation states which 

are free radicals such as Cr(V), which leads to genotoxic 

effects by causing oxidative damages to DNA. Moreover, 

it has been found 400 – 800 𝜇g of Cr(VI) can directly 
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interact with bacterial DNA causing frameshift 

mutations and base-pair replacements [36]. 

The Cr(VI) tolerance limits of bacteria have not clearly 

been defined as it can depend on several factors, 

including the type of the strain and physio-chemical 

conditions of the habitat, nature of the waste etc. 

Providing evidence to the above assumption a study of  

reported that 10 – 12 mg/L of Cr(VI) was adequate to 

inhibit most soil bacteria [22], while some strains in 

activated sludge can tolerate up to 80 mg/L of Cr(VI) 

[37]. Further, they have reported that Cr (VI) was able to 

stimulate bacterial growth up to 25 mg/L of Cr(VI). 

Compered to bacteria, fungi are less sensitive to Cr(VI) 

due to the decreased uptake and production of 

antioxidants [38,39,39–41]. However, some studies 

describe that, Cr(VI) can  cause genotoxic and mutagenic 

effects on several strains of fungi, including 

Saccharomyces cerevisiae, Sclerotium rolfsii and Pycnoporus 

sanguineus leading to complex physiological changes and 

functional changes such as inhibition of oxygen uptake, 

induction of petite mutations and inducing 

mitochondrial functional damages [24,42–44]. Further 

studies on fungi have shown that effects of Chromium 

toxicity vary on the nature of carbon substrate [45].  

Cr(VI) can affect PS II reaction centers of algae, which 

leads to inhibition of photosynthesis and cause 

significant morphological changes in some genera, 

including Chlorella, Scenedesmas, Ulva, Isochrysis, 

Micrasterias, and Chlamydomonas [36,46–51]. 

Disposal and remediation process of 
Chromium wastes. 
The chromium-based industries i.e., electroplating, 

tanning, water cooling, textile, wood preservation, alloy 

manufacturing, dye and pigment production discharge 

large quantities of contaminated chromium containing 

waste to soil, air and water annually. Considerable 

proportions of used chromium as a raw material and / or 

a reagent for industries including tannery (40%), chrome 

plating (35%), academic, research and industry 

laboratories (100%) discharge Cr(III) and Cr(VI) as 

effluents [52].  

These chromium contaminated effluents should be 

remediated before discharging into the environment, due 

to toxicity of chromium to the environment and public 

health. Therefore, rules and regulations have been 

legislated and implemented by national and international 

authorized bodies such as WHO, US EPA, and national 

environmental acts of host countries for industrial 

wastewater and drinking water. 

According to the US EPA and WHO standards maximum 

permissible level of Cr(VI) in drinking water and 

industrial wastewater have been legislated to 0.05 mg/L 

and 0.10 mg/L, respectively. Considering the health 

hazard to the occupational community in chromium-

based industries, Occupational Safety and Health 

Administration (OSHA) has set the maximum limit for 

Cr(VI) compounds for 8-hour work shifts and 40-hour 

workweeks as 0.052 mg/L [23,53]. 

Based on these regulations, Cr(VI) contaminated wastes 

should be remediated before being discharged into the 

environment. Remediation of chromium containing 

waste can be carried out using three (03) methods i.e. 

chemical, physical and biological which are summarized 

in the Table 2. 

Chemical methods of Cr(VI) remediation. 
Chemical reduction and photocatalysis are the most 

common chemical remediation methods that have been 

applied in chemical remediation processes. The chemical 

reduction uses reducing agents such as sulfur dioxide 

(SO2), calcium polysulfide (CaS5), ferrous sulfate (FeSO4), 

sodium metabisulfite (NaHSO3), sodium sulfite 

(Na2SO3), barium sulfite (BaSO3), hydrazine hydrate 

(N2H4), hydrogen peroxide (H2O2) and, calcium 

carbonate (Na2CO3) [19,54–56]. Redox reactions of above 

mentioned reducing agents are kinetically slow at low 

Cr(VI) concentrations [57]. Therefore, it may require 

different methods to remediate residual Cr(VI), which 

are even higher than the discharge limits. Further, it has 

been found that this reduction process is also influenced 

by physical and chemical characteristics of the 

discharging sites (pH, conductivity, soil type and texture, 

presence of transition metals) [58,59].  

Semiconductor based photocatalysis is a developing 

technology for toxic metal remediation such as Cr(VI), 

Hg(II), As(V), Cu(II), and Pb(II) [62]. This technology is 

more advantageous as there are no requirements for 

secondary disposal methods. Titania based 

photocatalysts such as TiO2 and La2Ti2O7 are extensively 

used for photocatalytic reduction of Cr(VI) in specific 

values [19,61]. But these Titania based photocatalysts 

cannot be applied practically to mass-scale commercial 

reactor systems due to high cost and operational 

disturbances due to sunlight irradiation and highly acidic 

conditions [62]. 

Physical methods of Cr(VI) removal. 
Physical remediation is achieved by techniques such as 

adsorption, electrolysis, ion exchange, membrane 

filtration and capping [19,63,64]. Adsorption is widely 

used for chromium removal in wastewater, consisting of 
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significant advantages such as low cost, profitability, 

availability, high efficiency, and minimum effort 

operation than other physio-chemical methods. A range 

of synthetic and natural adsorbents, including activated 

carbon, zeolite, chitosan, treated wastes, biological 

materials of coconut shell, wood husk, orange peel, 

hazelnut shell, sawdust, are used for Cr(VI) removal with 

a wide range of removal percentages under different pH 

values which are mostly laid on the extreme acidic range 

[65–69]. As some of the above adsorbents are freely 

available in nature, so that, adsorption is considered as 

one of the cost-effective methods of physical remediation. 

Membrane filtration technology is implemented with 

reverse osmosis, which is considered as one of the best 

available technology for removing all forms of chromium 

[70–72]. Literature shows that different membrane 

technology modifications to enhance Cr(VI) removal 

effectiveness, including micellar enhanced ultrafiltration, 

polymer inclusion membranes, ion exchange membranes 

and nanofiltration [73,74]. However, membrane 

technology is considered as a costly method with 

generating a large volume of concentrated liquid toxic 

wastes [72]. 

The acidic and basic ion exchange resins have also 

reported as effective Cr(VI) removal methods from 

chromium contaminated wastewater.  A study of [75] 

have developed a complete Cr (VI) removal process from 

real wastewater by using a strongly basic synthetic 

Dowex 2-X4 resin without affecting pH. Further studies 

of [57] indicate 99.5% of Cr(VI) removal from “synthetic 

wastewater” using solvent impregnated resins which are 

acidic. 

Biological methods of Cr(VI) removal. 
Remediation of chromium contaminated sources using 

biological agents including bacteria, fungi, algae, and 

plants play an important role in remediation approaches. 

Bacteria and fungi have shown efficient remediation 

agents than other agents. It has shown that organisms 

that can survive in a contaminated site may have the 

ability to remediate the contaminated site by themselves 

up to a certain level by transforming toxic pollutants into 

nontoxic forms [19,76–81]. This detoxification is achieved 

through biosorption, bioaccumulation and 

biotransformation. 

Bioremediation is affected by several physio-chemical 

factors including, energy source (electron donors), 

electron acceptors, nutrients, pH, temperature and 

inhibitory substrates or metabolites [82]. Bioremediation 

of chromium is implemented in both in situ and ex situ 

depending on the nature and requirements of the 

contaminated site [83,84]. 

Biological methods are considered as more advantageous 

from the economic and environmental point of view as 

they are cost-effective due to low installation and 

operational cost, eco-friendly with generating much less 

secondary pollutants, convenient and straightforward 

operation compared to physiochemical methods [63,85–

87]. 

Bioremediation of Cr(VI) by bacteria. 
Bacterial bioremediation of Cr(VI) is explained in terms 

of chromium tolerance mechanisms such as biosorption 

and biotransformation/ bioreduction in both Gram-

positive and Gram-negative strains [19]. During the 

bioreduction, highly toxic Cr(VI) is reduced into lesser 

toxic Cr (III) inside the bacterial cytoplasm, cell wall, or 

in both. The bacterial strains that can reduce Cr (VI) are 

usually named Chromium Reducing Bacteria (CRB). It is 

believed that Gram-positive CRB have a significant high 

tolerance to high Cr(VI) concentrations than gram-

negative CRB [88].  

According to previous studies, bacterial genera such as 

Pseudomonas, Bacillus, Enterobacter, Deinococcus, 

Shewanella, Agrobacterium, Escherichia, Thermus, 

Microbacterium, Desulfovibrio, Deinococcus, Brucella, 

and Staphylococcus have the potential to reduce Cr(VI) 

“directly” with enzymes and “indirectly” with metabolic 

end products [88–92]. It has also been reported that 

chromium tolerance and reduction are independent 

properties of bacteria, which means not all Cr(VI) 

resistant bacteria can reduce Cr(VI) into Cr(III) [88,93].  

Bacterial Cr(VI) reduction is achieved under aerobic, 

anaerobic and both conditions [94]. Aerobic reduction is 

associated with soluble proteins and NADH as electron 

donors to enhance the reduction process, while anaerobic 

Cr(VI) reduction is associated with cell membrane bound 

reductase (flavin reductase, cytochromase, 

hydrogenases) and soluble reductase or both [95,96]. 

Bacterial bioreduction rate of Cr(VI) is influenced by 

initial cell density/ concentration, initial chromium 

concentration, initial pH, temperature, electron donors, 

oxyanions, salt concentration, presence of other heavy 

metals, metabolic inhibitors and oxidation-reduction 

potential of culture [96,97]. Further, the bacterial strains 

in the same species have different Cr(VI) tolerance and 

removal potentials depending on the level of the 

contaminants in the environment. This phenomena was 

evidenced in a comparative study carried out between 

uncontaminated and Cr(VI) polluted environments [98].  
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Table 2. Chemical, physical and biological method of Cr(VI) removal 

Method Technique Mechanism 

Type of 
contaminated 

source 
(Tested) 

Cr, Cr 
(VI) 

removal 
percentag

e 

Time pH 
Temp. 

(C) 
Reference 

Chemical 

Reduction 
Cr(VI) reduction and 

adsorption by ED-
RGO. 

Synthetic 
wastewater 

100% 24 hrs. 2.0 N/A [120] 

Reduction 
Cr(VI) reduction by 
Calcium polysulfide 

(CaSx). 

Contaminated 
ground water 

90% 4 days 
8 -

12.5 
N/A [121] 

Reduction 
and 

biosorption 

Cr(VI) reduction and 
biosorption by 

chemically treated 
brown seaweed 

(Ecklonia sp.). 

Synthetic 
wastewater 

100% 12 hrs. 2.0 25 [122] 

Reduction 
Cr(VI) removal by 

chemically and 
electrochemically. 

Synthetic 
wastewater 

99.99% 10 min. 
8.5 – 
10.0 

N/A [123] 

Reduction 

Cr(VI) reduction by 
Sodium 

corboxymethyl 
stabilized nanoscale 

zero valent iron. 

Synthetic 
waste soil 

sample 
80% 72 hrs. 

4.73 – 
7.36 

N/A [124] 

Reduction 
and 

coagulation 

Cr(VI) removal by 
Ferrous sulfate 

(FeSO4). 

Spiked ground 
water 

95% 46 hrs. > 7.5 N/A [125] 

Physical 

Adsorption 
Chromium Removal 

by fly ash. 
Industrial 

waste 
97.86% 12 hrs. N/A 25 [126] 

Adsorption 
Cr(VI) removal by 
Ragi husk powder. 

Synthetic 
wastewater 

81.34% 2 hrs. 1.75 N/A [127] 

Adsorption 
Cr(VI) removal by 

green algae and 
activated carbon. 

Waste water 99.52% 2 hrs. 1.0 25 [110] 

Adsorption 
Cr(VI) removal by 

treated waste 
newspaper (TWNP). 

Synthetic 
wastewater 

64% 1 hrs. 3.0 25 [65] 

Adsorption 
Cr(VI) removal by 

green coconut shell. 
Synthetic 

wastewater 
95% 30 min. 6.5 28 [66] 

Adsorption 

Cr(VI) removal by 
agriculture wastes. 

Maize corncob. 
Cane bagasse. 

Jatrophica oil cake. 

Synthetic 
wastewater 

 
 

62% 
92% 
97% 

 
 
 

1 hrs. 

 
 
 

2.0 

 
 
 

30 

[128] 

Adsorption 
Cr(VI) removal by 

Mangifera indica 
leaves. 

Synthetic 
wastewater 

91% 2 hrs. 2.0 30 [129] 

Retention/ 
filtration 

Cr(VI) removal by 
Aromatic polymide 
thin film membrane. 

Synthetic 
wastewater 

77% N/A 8.0 25 [73] 

Adsorption 
Cr(VI) removal by 

anion exchange 
resins. 

Synthetic 
wastewater 

99.4% 30 min. 3.0 – 5.0 
25  
60 

[130] 

Adsorption 
Cr(VI) removal by 
hydrophobic resin. 

Synthetic 
wastewater 

99.5% 
92% 

24 hrs. 3.0 25 [131] 

Adsorption 
Cr(VI) removal by 
boiled rice husk. 

Synthetic 
wastewater 

71% 3 hrs. 2.0 27 [132] 

Adsorption 
Cr(VI) removal by 

formaldehyde treated 
rice husk. 

Synthetic 
wastewater 

76.5% 3 hrs. 2.0 27 [132] 
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Physical 

Adsorption 

Cr(VI) removal by 
modified 

montmorillonite clay 
nanocomposite. 

Synthetic 
wastewater 

99.9% 24 hrs. 
2.0 - 
6.6 

25 [133] 

Adsorption 
Cr(VI) removal by Fe-

2O3/ graphene 
adsorbents. 

Synthetic 
wastewater 

70.33% N/A 3 - 4 25 [134] 

Adsorption 

Cr(VI) removal by 
synthesized 

hydroxyapatite 
microfibrillated 

cellulose 
(CHA/MFC) 

Synthetic 
wastewater 

94% 5 min. 7  - 5 25 [135] 

Adsorption 
Cr(VI) removal by 

Magnetite 
nanoparticles 

Synthetic 
wastewater 

66% 2 hrs. 3.0 25 [136] 

Adsorption 
Cr(VI) removal by 

mixed waste tea and 
coffee ground 

Synthetic 
wastewater 

95% 3 hrs. 2.0 50 - 65 [137] 

Adsorption 

Cr(VI) removal by 
natural adsorbents. 

Wool 
Olive cake 
Sawdust 

Pine needles 
Almond 

Coal 
Cactus 

Synthetic 
wastewater 

 
 

69.3% 
47.1% 
53.5% 
42.9% 
23.5% 
23.6% 
19.8% 

2 hrs. 2.0 30 

[138] 
 
 
 
 
 
 
 
 

Adsorption 
Polypyrrole –

montmorillonite clay 
composite 

Synthetic 
wastewater 

100% 24 hrs. 2.0 25 [139] 

Adsorption 
Nanocomposite of 
ZnO with cotton 

stalks biochar 

Synthetic 
wastewater 

96.19% 1 hr. 2-4 25 [140] 

Filtration 
Green emulsion 

liquid membrane 
Synthetic 

wastewater 
97-99% 0.5 hrs. 0.45 30 [71] 

Filtration 
Green synthesized 
CuO nanoparticles 

Synthetic 
wastewater 

88.08% 2 hrs. 6.9 25 [70] 

Biological 

Reduction 
Cr (VI) bioreduction 
by effluent bacteria 
Staphylococcus cohnii 

Synthetic 
wastewater 

90% 96 hrs. 7.2 37 [141] 

Reduction 
Cr (VI) bioreduction 

by Pseudomonas 
umsongensis 

Synthetic 
wastewater 

93.9% 72 hrs. 7.0 30 [142] 

Reduction 
Adsorption 

Cr (VI) bioreduction 
and biosorption by 

Bacillus sp. 

Synthetic 
wastewater 

97.04% 96 hrs. 7.0 37 [143] 

Reduction 
Cr (VI) bioreduction 

by Aeromonas 
hydrophila 

Synthetic 
wastewater 

88% 72 hrs. 7.2 30 [144] 

Reduction 
Cr(VI) reduction by 
Bacillus thuringiensis 

Synthetic 
wastewater 

86.42% 96 hrs. 7.0 35 [91] 

Reduction 
Cr(VI) reduction by 
Staphylococcus capitis 

Synthetic 
wastewater 

97.34% 96 hrs. 7.0 35 [91] 

Reduction 
Cr(VI) reduction by 

Bacillus cereus 
Synthetic 

wastewater 
98.5% 72 hrs. 7.1 26 [98] 
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Reduction 
Sorption 

Cr(VI) reduction and 
sorption by 

Enterobacter sp. 

Synthetic 
wastewater 

99.1% 25 hrs. 6.0 45 [145] 

Reduction 
Cr(VI) reduction by 
Morganella morganii 

Synthetic 
wastewater 

 
Raw tannery 

effluent 

92% 
 
 

90% 

48 hrs. 
 
 

48 hrs. 

7.0 
 
 

7.0 
 

37 
 
 

37 

[146] 

Reduction 
Sorption 

Cr(VI) reduction and 
sorption by 

Stenotrophomonas 
rhizophila 

Synthetic 
wastewater 

100% 28 hrs. 7.5 30 [147] 

Reduction 
Cr(VI) reduction by 

Cellulosimicrobium sp. 
Synthetic 

wastewater 
100% 48 hrs. 7.0 30 [148] 

Reduction 
Cr(VI) reduction by 

Geobacter 
sulfurreducens 

Synthetic 
wastewater 

99% 2hrs. N/A 30 [149] 

Reduction 
Cr(VI) reduction by 

Pseudomonas 
aeruginosa 

Synthetic 
wastewater 

93% 96 hrs. 7-8 30 [150] 

Sorption 
Cr(VI) biosorption by 
Shewanella putrefaciens 

Synthetic 
wastewater 

85.68% 17 hrs. 8.0 38.44 [151] 

Reduction 
Cr(VI) bioreduction 
by mixed bacterial 

consortium. 

Synthetic 
wastewater 

100% 
120 
hrs. 

8.0 30 [152] 

Reduction 
Adsorption 

Cr(VI) bioreduction 
and biodorption by 

Corynebacterium 
paurometabolum, 

Synthetic 
wastewater 

55% 2 hrs. 3.0 30 [153] 

Reduction 
 

Cr(VI) bioreduction 
by Cellulosimicrobium 

funkei 

Synthetic 
wastewater 

80.43% 
120 
hrs. 

7.0 35 [154] 

Biological 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reduction 
 

Cr(VI) bioreduction 
by Pseudomonas 

stutzeri 

Synthetic 
wastewater 

97% 24 hrs. 7.0 37 [155] 

Reduction 
Cr(VI) bioreduction 

by Acinetobacter 
baumannii 

Synthetic 
wastewater 

99.58% 24 hrs. 8.0 37 [155] 

Reduction 
Cr(VI) bioreduction 
by Ochrobactrum sp. 

Synthetic 
wastewater 

96.5% N/A 7.0 30 [156] 

Adsorption 
Cr(VI) biosorption by 

Trichoderma sp. 
Synthetic 

wastewater 
97.39% 2 hrs. 5.5 25 [103] 

Reduction 
Adsorption 

Cr(VI) biosorption 
and bioreduction by 
Paecilomyces lilacinus 

Synthetic 
wastewater 

100% 
120 
hrs. 

5.5 25 [157] 

Adsorption 
Cr(VI) biosorption by 

Phanerochaete 
chrysosporium 

Synthetic 
wastewater 

99.7% 72 hrs. 7.0 40 [158] 

Adsorption 
Cr(VI) biosorption by 

Pleurotus ostreatus 
Synthetic 

wastewater 
80% 12 hrs. 

2.0 – 
11.0 

65 [159] 

Adsorption 

Cr(VI) adsorption by 
Cationic surfactant-

modified, 
Kazachstania 
yasuniensis 

Kodamaea transpacifica 
Saturnispora quitensis 

Saccharomyces 
cerevisiae 

Synthetic 
wastewater 

 
 

80.70% 
85.80% 

 
85.40% 
75.80% 

4 hrs. 4.5 25 [105] 
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Biological 

Adsorption 

Cr(VI) adsorption by 
a hydroxyl-

functionalized 
magnetic Aspergillus 
niger nanocomposite 

Synthetic 
wastewater 

64.91% 4 hrs. 5.0 50 [160] 

Adsorption 
Cr (VI) adsorption by 
Chlorella sorokiniana. 

Synthetic 
waste water 

99.68% 72 hrs. 7.0 40 [161] 

Reduction 
Adsorption 

Cr (VI) removal by 
green algal strain 
Cladophora albida 

Synthetic 
waste water 

industrial 
waste water 

100% 
120 
hrs. 

0.5 25 [162] 

 
Adsorption 

Cr(VI) removal by 
marine algae 

Turbinaria ornata 

Synthetic 
wastewater 

95.25% 3.5 hrs. 4.7 33.6 [163] 

N/A – Not applicable 

Table 3. Microorganisms and substrates used in biofilm formation for bioremediation of Cr(VI) 

Organism Adhesion substrate 
Cr (VI) removal 
percentage (%) 

pH 
Temp. 

(℃) 
Time Reference 

Arthrobacter viscosus 
Granular activated 

carbon 
99.9% 5 – 5.5 28 30 days [190] 

Pseudomonas sp. 
Bacillus sp. 
Azotobacter sp. 
Acremonium sp. 

Glass wool 90% 5.6-6.1 30 10 days [172] 

Streptomyces strain CG252 Glass bead 100% N/A 30 
48 – 72 

hrs. 
[191] 

Arthrobacter sp. 
Gravel packed bed 

reactors 
100% N/A 30 26 hrs. [192] 

Morganella morganii STB5 
Polystyrene 
Polysulfone 

99.47% 
90.78% 

7.0 30 72 hrs. [193] 

Arthrobacter sp. SUK 1205 Glass beads 100% 7.0 37 96 hrs. [194] 

Halomonas sp. Pumic particle stones 94.5% 6.5 28 48 hrs. [195] 

Bacillus subtilis 
Escherichia coil 
Acinetobacter junii 

Alginate bead 97.84% 7.0 25 7 hrs. [196] 

Wickerhamomyces anomalus Wood husk 92.5% 3.72 30 N/A [171] 

Acinetobacter haemolyticus Wood husk 97% 7.0 25 72 hrs. [69] 

Streptococcus salivarius Stainless steel AISI 316L 42% N/A 37 72 hrs. [197] 
Pseudomonas fluorescens LB 
300 

Glass beads 100% 6.8-7.0 30 8 days [198] 

Cellulosimicrobium sp. 

PVC 
Rubber tubing 

Sand 
Small stone 

99.5% 
90.0% 
96% 

88.4% 

N/A 25 11 days [199] 

Escherichia coli Kaolin 100% 4.6-5.1 37 10 days [200] 

Nostoc sp. Polystyrene 86.49% 7.0 25 7 days [201] 

Shewanella xiamenensis Zeolite 100% 3.0 22-25 35 days [202] 

Cunninghamella elegans 
Stainless steel 

compression springs 
98.6% 7.0-3.0 28 40 hrs. [203] 

Arthrobacter sp. SUK 1201 Glass beads 100% 7.0 37 3 days [204] 

Lysinibacillus sphaericus 
RTA-01 

Glass slide 82.8% 5.2 37 72 hrs. [205] 

Ochrobactrum 
pseudintermedium ADV31 

Polyurethane foam 82% 7.0 45 5 days [206] 

N/A – Not applicable 
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Bioremediation of Cr(VI) by fungi. 
Similar to the bacterial remediation of toxic metals, some 

fungal strains have been investigated for bioremediation 

with the same metal removal techniques used with 

bacteria, i.e. biosorption, bioaccumulation and 

biotransformation/ bioreduction. 

Fungi Aspergillus sp. was reported to remove chromium 

through bioreduction from contaminated effluents [99]. 

This study also indicates 65% of chromium removal from 

tannery effluent and 85% of Cr(VI) removal from the 

synthetic medium at pH 6 within 07 days. The similar 

bioreduction of Cr(VI) has been also reported by [19,100–

102] with  Hypocrea tawa, Trichoderma inhamatum and 

isolated Yeast strains. However, the Cr(VI) reduction 

capability of fungal strains can be changed with the initial 

Cr(VI) concentration and initial biomass of the strain.  

Fusarium oxysporum and Trichoderma sp. have shown to 

adsorb Cr(VI) on to their cell surface by forming chemical 

bonds with cell surface proteins with analytically verified 

evidence using FT-IR spectrum [19,103]. Comparison of 

Cr(VI) removal in synthetic and raw wastes  was found 

to be 77% and 85% of Cr(VI) removal respectively, with 

200-1000 mg/L of initial Cr(VI) concentrations using 

immobilized Baker’s yeast strain (Saccharomyces 

cerevisiae) in Biomass/Polymer Matrices Beads (BPMM) 

through biosorption [104]. A study comparing Cr(VI) 

biosorption by native Ecuadorian yeast species, reported 

that Kazachstania yasuniensis, Kodamaea transpacifica, and 

Saturnispora quitensis have the ability to remove Cr(VI). 

Furthermore, they have reported that efficient Cr(VI) 

removal can be achieved by inducing belzalkonium 

chloride (BZK) to cell surface as a chemical modification 

to the applying bio agent  [105]. 

Bioremediation of Cr(VI) by algae. 
It is evident that both freshwater and marine algal species 

such as  Cladophora sp., Selenastrum sp., Spirogyra sp., 

Ceramium sp, Chlorella sp. and Ulva sp. can be used to 

remediate chromium contaminated wastewater by 

applying as cultures or incorporating with other physio-

chemical methods following biosorption and 

bioreduction [19,106–109]. Unlike other organisms, algae 

have been used in both living and non-living forms for 

Cr(VI) remediation. Introducing an efficient Cr(VI) 

removal method [110] reports that dried Ulva lactuca 

incorporated into activated carbon can be used to 

remediate highly acidic and halophilic wastewater.  

Chlorella sp. has been used in most Cr(VI) algal 

remediation bioreactors as it is widely dispersed in the 

aquatic environment with higher Cr(VI) tolerance 

[109,111–114]. Constructing a hybrid remediation system 

[115] has introduced efficient and reusable alumina 

hollow fibers immobilized with TiO2 and Chlorella 

vulgaris cells. Additionally, this hybrid system has been 

achieved greater than 90% of Cr(VI) removal after five 

sequential reuses.  

However, similar to bacterial bioremediation, algal 

Cr(VI) bioremediation is influenced by physio-chemical 

parameters including pH, temperature, initial biomass, 

initial Cr(VI) concentration, light intensity, contact time 

of cells and wastes of the treatment process 

bioremediation [19,116].  

Bioremediation of Cr(VI) by plants. 
Limited studies have reported that the Cr(VI) 

detoxification and removal potential of plants compared 

to the other biological agents. Green plants detoxify 

many pollutants using various mechanisms followed by 

uptake, known as phytoremediation [117]. Plants can 

either store heavy metals in roots or partially translocate 

to shoot through the xylem after getting diffused into the 

root system. Further, it has been reported that upward 

translocation of heavy metals is retarded by the cation 

exchange process in plant tissues and leads to 

considerable heavy metal accumulation in roots 

compared to axial parts of plants.  In the point of view of 

Cr(VI) and other chromium forms, this phenomenon has 

been reported else ware using Phragmitus australis, 

Ailantus altissima and Salix viminalis [118]. This may be 

due to the encapsulation in vacuoles of root cells based 

on natural counteraction of plants against chromium 

toxicity [119]. According to observations over 360 days, a 

study suggests that Salix viminalis used for large scale 

phytoremediation application for removal of Cr(VI) and 

other chromium forms from contaminated sources as 

S.viminalis were removed 70% of total chromium and 

90% of Cr(VI) removal with indicating higher 

translocation capacity [118]. 

In vitro study of Nopalea cochenillifera found that it has the 

potential to accumulate a wide range of Cr(VI) (600 – 

26,000 mg/ Kg) from the growth medium. As N. 

cochenillifera is a non-consuming plant for diets, the risk 

of bioaccumulation can be avoided in the ecosystem. 

Furthermore, the above study has also reported plant 

species with different chromium accumulation potentials 

including Gynura pseudochina, Brassica napus, Prospis 

juliflora, Leersia hexandra, Urtica dioica, Salix matsudana, 

Brassica napus, Helianthus annuus, Lycopersicon 

lycopersicum and Saponaria officinalis perhaps considered 

for the phytoremediation [117]. 
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Biofilms 
An aggregated community of prokaryotic and eukaryotic 

microorganisms adhering to substance/matrix surface 

and submerged/embedded in self-produced 

extracellular polymeric substances (EPS) is termed a 

"biofilm" [164,165]. These aggregates are omnipresent in 

the biosphere, including soil, water, plant and animal 

tissues, abiotic substances like pipelines, ship hulls and 

filters. These biofilms can be developed in solid–water, 

water–air and solid–air interfaces with composing EPS, 

multivalent cations, biogenic particles, colloidal and 

dissolved compounds [166]. Biofilms are comprised of 

both single and multiple microbial species. Among them, 

multiple species biofilms are the most dispersed biofilm 

type in the environment [167]. 

Biofilm formation is a subsequent process that consists of 

03 main steps; surface attachment, biofilm maturation 

and dispersal [165]. In surface attachment, microbial cells 

undergo reversible attachment at cell poles by involving 

cell appendages (flagella, pilli and fimbriae) followed by 

irreversible attachment. After the reversible attachment 

stage, microbial cells can be adapted to biofilm lifestyle 

or left the matrix. During the irreversible attachment, 

stage cells adhere to the matrix by EPS and surface 

proteins (Sad B and Lap A). 

Biofilm maturation starts after the irreversible 

attachment with developing microcolonies. At this stage, 

previous microbial cells are assembled and proliferated 

along with producing EPS. Further studies explain that 

biofilm structure, including thickness and cell density, is 

dynamically changed according to environmental 

conditions such as temperature, presence of oxygen, pH 

and amounts of nutrients [164,165]. 

The immobilized microbial cells are transferred back to 

planktonic growth as the final stage of the biofilm 

lifecycle and as an initial step of a naval forming biofilm. 

This dispersal can be happened “actively” by cell motility 

and EPS degradation or “passively” by external physical 

forces. 

Environmental applications of biofilms 
Even though free-living microorganisms are capable of 

bioremediating polluted environments, the remediation 

process can be disrupted due to high concentrated toxic 

compounds, availability of nutrients and environmental 

stress. Applying sessile or floating biofilms for 

remediation is highly advantageous as biofilm 

communities have higher tolerance towards 

environmental stress, including lack of nutrient 

availability, high concentrated chemical exposures, pH 

and temperature fluctuations, lack of moisture content 

than free-living microorganisms [168].  

When selecting biofilms for remediation purposes, 

several factors must be considered: the capability to 

tolerate environmental stress, exchange of genetic 

materials, growth rates, metabolic diversity, and 

symbiotic relationships. Based on above factors bacterial, 

algal and fungal biofilms are used in bioreactors to 

remediate contaminated sources by a wide range of 

pollutants including, organic pollutants (polyaromatic 

hydrocarbons, chlorinated aromatic compounds, 

aromatic amine compounds, polyethylene and 

polythene), heavy metals (Cu, Zn, Cd, Ni, As, Fe, Hg, 

Mn), inorganic pollutants (nitrate ions and synthetic 

dyes) contaminates which can adversely affect the  eco-

systems [168–170].  

Cr(VI) remediation by biofilms 
Cr(VI) bioremediation is achieved using bacterial, algal 

and fungal single species and multi-species biofilms 

growing on either natural or artificial substrates through 

bioremediation and biosorption techniques [171–174].  

Biofilms are more effective for Cr(VI) remediation than 

planktonic cells. The study investigating Streptomyces sp. 

strain CG252 and Pseudomonas aeruginosa A2Chr, 

respectively, reported evidence for the above phenomena 

[102,175]. Another study using three (03) different 

biosorbents including lyophilized Escherichia coli AUS 7 

cells, granulated activated carbon (GAC) and biofilm of 

Escherichia coli AUS 7 on GAC  exhibited that biofilms are 

able to achieve a higher adsorption of Cr(VI) than GAC 

and lyophilized cells in according to Langmuir and 

Freundlich isotherm models from aqueous solutions 

under acidic conditions [176]. However, contradictory 

results were also reported else ware, that the planktonic 

cells have more significant potential for Cr(VI) reduction 

than biofilms based on their study of Bacillus subtilis 

ATCC-6633. Furthermore above study revealed that, 

biofilm debris are susceptible to immobilized reduced 

Cr(III) ions completely [177]. 

Compared to bacteria, reports on Cr(VI) remediation by 

fungal biofilms are scarce in the literature.  Immobilized 

cells of Aspergillus niger, Coriolus versicolor, Saccharomyces 

cerevisiae, and Lentinus sajorcaju have been used in 

sorption and reduction techniques  [99,178–180]. 

Moreover, immobilized algal cells on different matrixes 

have been used for Cr(VI) remediation by sorption of 

metal ions to the cell wall components [181–185]. 

Algal-bacterial biofilms/consortia have also been used 

for Cr(VI) bioremediation. Further, it is reported that 

these consortia have symbiotic effects on each other by 
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supplying each other’s nutritional needs such as O2 for 

aerobic bacteria by algae and CO2 for algae by bacteria 

during the remediation process. Therefore, algal-

bacterial consortia are termed as a self-sustaining system 

[186–188]. The algal-bacterial system has the potential to 

remove higher Cr(VI) contents such as 100 mg/L, 75 

mg/L and 50 mg/L providing a carbon source to the 

mixed consortium of chromium reducing bacterial (CRB) 

cultures of Escherichia coli, Bacillus thermoamylovorans and 

Citrobacter sedakii from the algal strain of Chlamdomonas 

reinhartii. Furthermore, the above study suggests that the 

algal-biofilm consortia as a cost-effective method that 

prevents cost of carbon sources as it fulfils by algae even 

though algal-bacterial consortia takes a longer time 

duration for the Cr(VI) removal [189].   Table 3 illustrates 

some of the   microorganisms   and substrates used in 

bioremediation of Cr(VI). 

Limitations and remedial actions of the 
current bioremediation methods in Cr(VI) 
removal 
The notable limitations of biological methods available 

for Cr(VI) removal have been identified including, 

varying Cr(VI) tolerance and removal levels 

environmental conditions and nutritional requirements 

of biological components used, toxic substances present 

in wastewater which can interfere with the biological 

components, disposal of the accumulated Cr in the 

biological component, and practical difficulties in 

extrapolating bench/pilot-scale to full-scale field 

application [207–209]. Customized solutions need to be 

sought by assessing the remediation requirements at 

individual level, because the environmental conditions 

and the nutritional requirements of the biological 

component vary depending on the contaminated site. 

Moreover, to overcome the Cr disposal after 

bioremediation, it is possible to percolate the 

biotransformed Cr(III) through reduction at low pH 

conditions and tend to be reoxidised to Cr(VI) in the 

presence of manganese oxide and chlorine in treated 

effluent or discharging environment [210,211]. In order to 

prevent the discharge of higher amounts of chromium 

and to enhance the sorption capacity of biomasses, the 

metal desorption process should be followed. This 

desorption can be done by acid digestions [212–215] and 

alkaline treatments [216–220] as a hybrid Cr(VI) 

remediation process, which has many benefits such as 

reduction of generation of secondary pollutants and 

recovery of valuable metals. These recovered Cr(VI) and 

Cr(III) can be applied for tannery and chromium-based 

chemical production as raw materials [221]. 

Conclusion 
The wide industrial and research application of 

Chromium followed by emitting considerable amounts 

of Cr(VI), coupled with the fact that it leads to serious 

problems to all components of the ecosystem. Therefore, 

it has been legislated to remediate Cr(VI) contaminated 

effluents by national and international authorities before 

it being discharged to the environment. This remediation 

is carried out by chemical, physical and biological 

methods. Biological remediation is considered as the 

most environment-friendly and cost-effective method 

rather than chemical and physical remediation. 

However, considering the limitations of the current 

bioremediation processes, hybrid remediation processes 

combining the bioremediation with other chemical and 

physical methods are being used for the effective 

remediation of Cr(VI) in aquatic systems. 
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