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Abstract 
Indoor air pollution is a significant problem today because the release of various contaminants into the indoor air has 
created a major health threat for humans occupying indoors. Volatile Organic Compounds (VOCs) are pollutants released 
into the environment and persist in the atmosphere due to its low boiling point values. Various types of indoor activities, 
sources, and exposure to outdoor environments enhance indoor VOCs. This poor indoor air quality leads to adverse 
negative impacts on the people in the indoor environment. Many physical and chemical methods have been developed to 
remove or decompose these compounds from  indoors. However, those methods are interrupted by many environmental 
and other factors in the indoor atmosphere, thus limit the applications. Therefore, there is a global need to develop an 
effective, promising, economical, and environmentally friendly alternatives to the problem. The use of the plant and 
associated microflora significantly impact reducing the environmental VOC gases, inorganic gases, particulate matter, and 
other pollutants contained in the air. Placing potted plants in indoor environments not only helps to remove indoor air 
pollutants but also to boost the mood, productivity, concentration, and creativity of the occupants and reduces stress, 
fatigue, sore throat, and cold.  Plants normally uptake air pollutants through the roots and leaves, then metabolize, 
sequestrate, and excrete them. Plant-associated microorganisms help to degrade, detoxify, or sequestrate the pollutants, the 
air remediation, and promote plant growth. Further studies on the plant varieties and microorganisms help develop eco-
friendly and environmentally friendly indoor air purifying sources. 
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Introduction 
People spend the bulk of their lifetime indoors, either in 

residential or public areas. Number of pollutants in the 

indoor air are higher than the outdoor air; hence poor 

air quality in these indoor environments will lead to 

several health issues.  Today, it has become one of the 

biggest environmental threats [1]. Therefore, most 

studies have been disclosed the connection between 

indoor air pollution and associated adverse health 

effects [2,3]. Continuous exposure of individuals to poor 

indoor air quality can lead to "sick building syndrome" 

(SBS);  health problems such as headache, fatigue, eye 

and skin irritation, or respiratory illnesses, etc. [4]. In 

2012, World Health Organization (WHO) reported that 

indoor air pollution by households cooking over coal, 

wood, and biomass stoves caused about 4.3 million 

deaths worldwide [5].  

Indoor air contaminants are generated through several 

sources such as occupational activities, household 

products, chemical reactions indoors, pets, materials, 

underground garages, and outside air sources [6,7]. 

Particles, biological agents, radon, asbestos, and gaseous 

contaminants such as CO, CO2, NOx, SOx, aldehydes, 

and Volatile Organic Compounds (VOC) are released as 

main indoor air contaminants from the sources as 

mentioned above [8]. Removing the pollutant 

generating sources from indoors, increasing the 

ventilation rates, improving air distribution and 

cleaning the indoor air, etc. are the primary air purifying 

principles at indoors. Increasing the ventilation rate is 

the easiest way to reduce indoor air pollutants. 

However, it is usually affected by outdoor weather and 

external pollution condition [9]. Other current strategies 

used to remove indoor air pollutants are filtration, 

electrostatic precipitator with ionization, adsorption, 

ozonization, photolysis, photocatalysis etc. [8]. Among 

the above mentioned treatment strategies, some are very 

much expensive and complex methods. However, 

biological purification is a simple, low cost, and 

environmental friendly technique. Therefore has been 

investigated in many studies [10,11]. This review covers 

the potential use of plant and plant associated 

microflora for indoor air pollutant removal and 

degradation. 
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Indoor Air Quality 
An average person needs 30 lb of air per day to live. 

However, he needs only 1.360 kg (3 lb) and 0.680 kg (1.5 

lb) of water and food per day [12]. It indicates why air 

becomes the foremost necessary thing for the survival of 

humans and other living beings.  According to the U.S. 

National Institute for Occupational Safety and Health 

(NIOSH) reports in 2007, the average total VOCs 

concentration in air samples could reach 2.90 mg 

m−3[13].  Inadequate building ventilation is the leading 

cause of the high level of pollutant content indoors [14], 

and high pollutant content also causes severe public 

health threats [1]. Humans spend most of their time 

indoors, thus more researches are focused on indoor air 

quality and related studies.  

Ambient air is often contaminated with high amounts of 

indoor air pollutants like particulate matter (PM), VOCs 

like benzene, toluene, ethylbenzene, xylene, 

polyaromatic hydrocarbons (PAHs), formaldehyde, and 

inorganic pollutants as sulfur dioxide (SO2), nitrogen 

oxides (NOx), carbon monoxide (CO), carbon dioxide 

(CO2) and Ozone (O3). Although many of those 

compounds are outdoor air pollutants, can also be 

found indoors in higher amounts than outdoors [15]. 

Benzene is a ubiquitous trace element in indoor air [16], 

and its indoor concentration is higher than outdoors. A 

safe level for benzene exposure cannot be 

recommended. PAHs presence in the atmosphere is 

typically attached to air particles and present as 

complex mixtures. Therefore, the composition of PAH 

may vary from site to site. However, WHO (2000) 

reported that 8.7×10-5 ng/m3 of PAHs have a risk for 

lung cancers.  Exposure of 0.01 mg/m-3 Naphthalene is 

described as a safe level. Still, long term inhalation can 

cause respiratory tract lesions leading to inflammation 

and malignancy of animals. Formaldehyde exposure of 

0.36 mg/m-3 for 04 hours causes sensory irritations of 

the eyes in humans [17]. Furniture, carpets, construction 

materials, sprays, cleaning, restoration activities, and 

surrounded industries are the foremost sources of the 

various volatile organic compounds, aliphatic and 

aromatic hydrocarbons, alcohols, and aldehydes, and 

chlorinated compounds [6,7,18,19]. Inorganic gaseous 

pollutants, SO2, NOx, CO, and CO2 are generated 

through the combustion of fossil fuels, gas fired 

appliances (stoves and ovens), kerosene heaters, tobacco 

smoking [7,20,21], and outdoor sources exposure [22]. 

Potential health hazards  
The presence of toxic volatiles and other pollutants in 

indoor air can cause various illnesses in humans. The 

European Environmental Agency has shown that indoor 

air quality is one of the priority considerations in 

children’s health [23]. Prevalence of SBS is higher in 

buildings with air conditioners than in natural 

ventilation systems [24]. Typically this has been 

reported in offices, schools, aged care homes, and 

apartments like building-associated environments [2]. 

SBS is often associated with various symptoms such as 

headache and nausea, nasal congestion (runny nose, 

stuffy nose, shortness of breath, wheezing,  sneezing, 

sinus, chest tightness, and chest congestion), throat 

problems (dry throat, sore throat, hoarseness), eye 

problems (dry eye, itching, tearing, blurry vision, 

burning eyes, sore eyes, and problems with contact 

lenses), fatigue (sleepiness, or drowsiness and unusual 

tiredness,), chill and fever, muscle pain (aching muscles 

or joints, pain or stiffness in the lower back, pain or 

stiffness in the upper back, and pain or numbness in 

shoulder/neck), and even neurological symptoms 

(feeling depressed, difficulty remembering or 

concentrating, and tension or nervousness), dry skin, 

and dizziness as well [25].  

Apart from these illnesses, sometimes poor indoor air 

conditions also cause adverse health effects like 

respiratory tract illnesses, lung cancers, and heart 

diseases [26]. Potential harmful effects of benzene, 

toluene, xylene, and formaldehyde exposure were 

summarized below (Table 01). Prevalence of illnesses 

due to indoor air contaminants depends on factors like 

individual sensitivity to the contaminant, concentration 

of the contaminant,  current physical health state of the 

individual, and also  duration of exposure to the 

contaminant [27]. According to the International Agency 

for Research on Cancer (IARC), benzene is a  toxic 

chemical proven as a carcinogen [28]. Benzene can cause 

most hematological diseases, such as acute and chronic 

lymphocytic leukemia,  acute and myeloid leukemia, 

non-Hodgkin’s lymphoma, multiple myeloma, and 

aplastic anemia even at the low dose of exposure [29–

31]. The safe level for benzene exposure is still 

unknown, but the European Union recommended in 

2000 that the benzene concentration in the ambient air 

should not exceed 5 µg m-3 [32]. Impure indoor air with 

particulate matter (PM≤10 µm) is often correlated with 

cardiovascular or respiratory disorders, and recently it 

is revealed that exposure to PM during the period of 

pregnancy or early life may cause autism spectrum 

disorder (ASM) [33,34]. These potential health hazards 

associated with poor indoor air quality highlight the 

need to review indoor air pollution and purification 

methods more seriously. 
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How to avoid indoor air pollutants? 
Many strategies can be used for the reduction of indoor 

air pollutants. Those are supported by several efforts, 

such as removing the pollutant source from indoors, 

enhancing the ventilation rate, improving indoor air 

distribution, and cleaning [37]. Many industries have 

taken steps to scale down the usage of possible sources 

of indoor air pollutants during their product 

manufacturing cycle.  

Current strategies applied to remove or reduce indoor 

air pollutants are filtration, electronic precipitator with 

ionization, adsorption, ozonation, photolysis, and 

photocatalysis [8,38]. Manipulation of filtration is 

suitable for particle removal in indoor air [39]. However 

microbial colonization on the filters will hinder the 

filtration. During electrostatic precipitation, by 

generating an electrical field, charged particles of air can 

be trapped. However, there is a risk of generating 

hazardous charged particles. Removing air pollutants 

using adsorption might be a highly specific technique, 

which is used as a post-treatment. The problem 

associated with oxidizing the pollutant may be the 

generation of unhealthy toxic products. Researchers are 

still proposing strategies to address this case with non-

adverse impacts. Membrane separation, enzymatic 

oxidation, botanical purification, biofilters, and 

biotrickling filters are number of those strategies. Out of 

those plants and plant associated microflora, lowering 

the toxicity of contaminants in indoor environments is 

becoming a popular alternative as an economical air 

restoration technology [38]. 

Indoor pollutant removal capability of plants 
Plants remove VOC, through aerial plant parts and 

plant associated microflora. Growing media and plant 

roots are also capable of removing VOC in the air. 

Recent studies showed that plants are one of the best air 

pollutant absorbing and metabolizing agents [40]. Plant 

volatile organic matter removal or degradation rate and 

efficiency rely upon the plant species, light, 

temperature, growing media, and VOC (concentration, 

identity, and VOC mixture effects). Stomata, cuticle, and 

adsorption to the plant wax layer are the critical VOC 

removal sites of the aerial plant parts. After entering 

into the leaf, the compound often undergoes 

degradation, storage, excretion, and translocation to 

alternative plant elements. Microorganisms present in 

the plant pot soil and plant root also can remove VOC 

from indoor air [41]. These plant pollutant removal and 

degradation strategies have been confirmed using 

several plant species using radiolabeling [42,43]. Several 

studies on plants with 14C labeled aromatic 

hydrocarbons revealed that aromatic rings of those 

hydrocarbons were cleaved during their metabolic 

transformations and utilization of aromatic 

hydrocarbons under sterile conditions [44].  

Plants can sink air pollutants through their large surface 

area of foliage and canopies because it provides a 

surface for the pollutant substances. Also, plant leaves 

can sorb several gaseous substances as nutrients or as 

micronutrients [45]. The plant uses processes like 

complexation, precipitation, and oxidation-reduction to 

detoxify or utilize those substances as nutrients. These 

plant and atmospheric interactions result in the 

reduction of these harmful particulate substances and 

VOC’s [46]. VOCs removal and degradation capability 

of many indoor and outdoor plant species have been 

recorded in the literature.  As reported in the literature, 

Table 1 Potential health hazards - Benzene, Toluene, Xylene, and formaldehyde exposure. 

VOCs 
Limit of Exposure (µg m-3) 

Potential health hazards 
Ref 

Short term Long term 

Toluene 15,000 (8h) 
2,300 
(one day 
average) 

Short-term exposure – Eye, nose, and throat irritation, dizziness, 
headaches, and feelings of intoxication. 
Long term exposure –Neurological effects including reduced 
scores in tests of short-term memory, attention, and 
concentration 

[35] 

Benzene 

No safe level 
of exposure 
recommended
. 

No safe level of 
exposure 
recommended 

Carcinogenic  chemical (Group1) to humans- Cause adult acute 
myeloid leukaemia. Positive associations have been observed 
for non-Hodgkin lymphoma, chronic lymphoid leukaemia, 
multiple myeloma, chronic myeloid leukaemia, acute myeloid 
leukaemia in children Lung cancer 

[36] 

Xylene 
- 100 (1year) 

Irritation to the lungs, throat, and nose. Severe inhalation 
exposure can cause dizziness, headache, confusion, liver and 
kidney damage, heart problems, and coma 

[35] 

Formaldehyde 100 (30 min) 10 (1year) 

Sensory irritation of  eyes, nose, and throatexposure-dependent 
discomfort, lachrymation, sneezing, coughing, nausea, and 
dyspnoea. Human carcinogenic chemical. Long-term exposure 
linked to nasal cancer. 

[36] 
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plant species and their potential in removing or 

detoxifying toluene (Table 2), benzene (Table 3), xylene 

(Table 4), and formaldehyde (Table 5) removal or 

degradation are summarized below.  

However, there could be some deleterious effects like 

impairment of plant physiological activity and plant 

injuries due to these chemicals. Chronic exposure to  

higher concentrations of air pollutant substances can 

affect plant photosynthesis, vitality, and productivity. 

This stress makes the plant more susceptible to diseases 

and insect infections [47] 

Table 2 Plant species and their potential for Toluene removal. 

Plant species Results Ref 

Zamioculcas zamiifolia 
Toluene uptake per unit area of Z. zamiifolia plant leaf at 72 h of exposure 
0.93±0.02 mmol m−2 

[48] 

Hemigraphis alternate, Hedera helix, Hoya 
carnosa, Asparagus densifloru 
Tradescantia pallida, Fittonia argyroneura 

Removal efficiency of toluene and total VOC by twenty-eight selected 
ornamental plants varied substantially among the species tested, 
Range of pollutant removal,  Toluene - 1.54 - 9.63 µg m–3 m–2 h–1      
 Total VOC - 5.55 -44.04 µg m–3 m–2 h–1. 

[6] 

O. microdasys, D. dermensis 
 Time taken for the complete removal of 2 ppm toluene from an airtight 
chamber was 55 h and 120 h, respectively for O. microdasys and D. 
dermensis plants. 

[49] 

Dieffenbachia maculate, Spathiphyllum wallisii 
Asparagus densiflorus 

Toluene removal rate constant ranged from 3.4 to 5.7 L h−1m−2 leaf area 
when exposed to 20.0 mg m−3 of toluene 

[50] 

Hedera helix ,Spathiphyllum wallisii  
Syngonium podophyllum, Cissus rhombifolia 

Toluene (initial 1 μL L–1 ) removal efficiencies of 
H. helix -220.2 ± 31.8 ng m–3 h–1 cm–2 
S. podophyllum, - 161.6 ± 19.2 ng m–3 h–1 cm–2 
 S. wallisii - 203.7 ± 24.3 ng m–3 h–1 cm–2 
Lowest efficiency - C. rhobifolia. - 85.7 ng m–3 h–1 cm–2 

[51] 

Herbs 
Aloysia triphylla, Brittonz Melissa officinalis 
Mentha piperita , Mentha piperita  
Mentha suaveolens ,Mentha suaveolens  
Pelargonium graveolens, 
Plectranthus tomentosus  
Rosmarinus officinalis ,Salvia elegans  
Herbaceous foliage plants  
Begonia maculata ,Davallia mariesii 
Farfugium japonicum, Fittonia verschaffeltii  
Hedera helix  Philodendron spp. 
Soleirolia soleirolii  
Woody foliage plants 
Ardisia crenata , Ardisia japonica 
Ardisia pusilla, Cinnamomum camphora  
Schefflera elegantissima, Eurya emarginata , 
Ilex cornuta, Ligustrum japonicum, 
Pinus densiflora, Pittosporum tobira, 
Rhododendron fauriei 

Efficiency of toluene removal ranged from 378 to 16.6 µg m–3 h–1 m–2 [52] 

Fatsia japonica, Draceana fragrans 
Volatile toluene and xylene removal efficiencies were increased as the 
plant’s root zone volume increased. 

[53] 

Schefflera actinophylla, Ficus benghalensis 

Toluene and total xylene (m, p, o) removal efficiency of leaf area over a 24h 
period in  
S. actinophylla,  - 13.3 μg m−3 m−2   
F. benghalensis  -  7.0 μg m−3 m−2 

[54] 

Phoenix roebelenii 
Purification capability (Pa) increased with an increase in room temperature 
from 21 to 26°C , reaching a range of 15–35 (V/h) 
Initial toluene 1.5 ppm, Pa for toluene was 6.5 (V/h) 

[55] 

Azalea indica Time taken to remove 339 mg m-3 of Toluene 76 h [56] 

 Epipremnum aureum, Spathiphyllum Removal rate for TVOC was 74%, and  68%respectively [57] 

Epipremnum  aureum, Davallia fejeensis 
Epipremnum  aureum plant had a positive impact on mixed VOC(decane, 
toluene, 2 ethylhexanol, benzene, octane, xylene, α- pinene)  filtration than 
Davallia fejeensis 

[58] 
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Diversity of plant associated microflora 

Microbial reservoirs like soil, rhizosphere, phyllosphere, 

anthosphere (external environment of flower), 

spermosphere (the exterior of germinating spores), and 

carposphere (external area of the fruit) indicate plant 

microbial relationships [77]. Diverse groups of bacterial 

taxa namely proteobacteria, acidobacteria, 

actinobacteria, bacteroidetes, Verrucomicrobia, 

Planctomycetes, Cloroflexi, Firmicutes, and 

Gemmatimonatedes are present as root endophytes 

[78,79]. Among those, a representative amount of taxa 

have been derived from the soil environments [80]. 

Plant root microbiota is mostly transferred horizontally. 

However, bacteria can sometimes be transferred via 

seeds by relocating microorganisms to proliferating 

plants [81,82]. The narrow layer of soil on plant roots 

has high microbial diversity, it’s one of the most 

complex ecosystems and is called as a rhizosphere [83]. 

Root exudate containing organic acids, phenolic 

compounds, plant growth regulators, sugars, sterols, 

vitamins, amino acids, fatty acids, and nucleotides 

ensures good microbial growth around roots [84,85]. 

Plant root endophytes enter into tissues through passive 

mechanisms (root cracks or emerging points of lateral 

roots) or active mechanisms [86].  

Aerial plant tissues are different in ecology from 

belowground parts; however, it’s a good source for 

phyllosphere and endosphere bacteria. Normally 

endophytes spread systemically to the leaves, fruits, and 

stems via the xylem. In addition, endophytes enter plant 

tissues through aerial plant parts; as fruits and flowers. 

Phyllosphereic bacterial community is highly dependent  

Table 3 Plant species and their potential for Benzene removal. 

Plant species Results Ref 
Howea forsteriana, Spathiphyllum floribundu, 
Dracaena deremensis , Spathiphyllum sensation, 
Dracaena marginata, Epipremnum aureum , 
Scheflera actinophylla  

From seven potted plant species, benzene removal was 
ranged from 12-28 ppm day-1. 

[59] 

Dracaena deremensis, Spathiphyllum wallisii 

Benzene removal per leaf area of  
Dracaena deremensis  - 606 ± 155 mg m−3 d−1 m−2  
Spathiphyllum wallisii 686 ±73 mg m-3 d-1 m-2;   
Howea forsteriana 537± 69 mg m-3 d-1 m-2.  

[60] 

Zamioculcas zamiifolia 
Benzene uptake per unit area of Z. zamiifolia leaf was 
0.96± 0.01 mmol m−2 

[48] 

Crassula portulacea, Hydrangea macrophylla, 
Cymbidium, Ficus microcarpa var. fuyuensis, 
Dendranthema morifolium, Citrus medica var. sarcodactylis, 
Dieffenbachia amoena, Spathiphyllum, Nephrolepis exaltata,  
Dracaena deremensis  

Removal of benzene was in the range of  22.1- 561.3 µg 
m-2 min-1 

[61] 

Superior removal efficiency 
Hemigraphis alternate, Hedera helix 
Tradescantia pallida, Asparagus densifloru 
Hoya carnosa 
Intermediate removal efficiency 
Ficus benjamina, Polyscias fruticose, 
Fittonia argyroneura, Sansevieria trifasciata 
Guzmania spp., Anthurium andreanum, 
Schefflera elegantissima 

Benzene removal efficiency of  
Hemigraphis alternata -5.54 µg m–3 m–2 h–1 

Tradescantia pallida- 3.86 µg m–3 m–2 h–1 
Hedera helix - 3.63 µg m–3 m–2 h–1 
Fittonia argyroneura -2.74 µg m–3 m–2 h–1 
Asparagus densiflorus,- 2.65 µg m–3 m–2 h–1 
Hoya carnosa -  2.21 µg m–3 m–2 h–1 

[6] 

Dracaena deremensis  
Opuntia microdasy 

Removal rates of  2 ppm of benzene from the test 
chambers by  
O. microdasys -3.2 mg/ m3 d1 
D. dermensis  - 1.46 mg/ m3d1 

[49] 

Hedera helix, Spathiphyllum wallisii  
Syngonium podophyllum, Cissus rhombifolia  

Highest removal efficiency -S. wallisii.  
Medium level removal efficiency - S. podophyllum and 
H. helix lowest removal efficiency - C. rhombifolia  

[51] 

Chamaedorea seifrizii, Scindapsus aureus 
Sansevieria trifasciata, Philodendron domesticum 
Ixoraebarbata craib, Monster acuminate 
Epipremnum aureum, Dracaena sanderiana 

highest benzene uptake  
D. sanderiana - 10.00 ±1.04 mmol of benzene at 72 h 
Crude wax 46 % and stomata 54 % 
 

[62] 

Syngonium podophyllum 
Benzene removal - 25 ppmv from the test chambers 
within 7 days 

[63] 

Epipremnum  aureum, Davallia fejeensis 

Epipremnum  aureum plant had a positive impact on 
mixed VOC (decane, toluene, 2 ethylhexanol, benzene, 
octane, xylene, α- pinene)  filtration than Davallia 
fejeensis 

[58] 
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Table 4. Plant species and their potential for Xylene removal. 

Plant species Results Ref 

Alternanthera bettzickiana,Drimiopsis botryoides, 
Aloe vera, Chlorophytum comosum,  
Aglaonema commutatum, Cordyline fruticose, 
Philodendron martianum, Sansevieria hyacinthoides, 
Aglaonema rotundum, Fittonia albivenis, 
Muehlenbeckia platyclada, Tradescantia spathacea, 
Guzmania lingulata, Zamioculcas zamiifolia, 
Cyperus alternifolius 

best xylene removing plant - Zamioculcas zamiifolia  
88% xylene removal within 72 hours.  
xylene uptake was 0.81 ±0.01 mmol m−2 leaf area 
 as  
 

[64] 

Zamioculcas zamiifolia 
At 72 h of xylene exposure, Z. zamiifolia leaf uptake about 
0.86±0.07 mmol m−2 per unit area. 

[48] 

D. deremensis 
O. microdasys  

Time taken for complete removal of 2 ppm xylene from the 
airtight chamber of O. microdasys and D. dermensis plants 
were respectively 47 hours and 98 hours.   

[49] 

xora coccinea, Muraya paniculat, Ficus benjamina, 
Euphorbia milii, Adenium obesum, Millingtonia hortensis, 
Dalbergia cochinchinensis, Pterocarpus indicus, 
Phyllanthus acidus, Cassia fistula, B. buttiana, Gardenia 
jasminoides, Ehretia microphyllaLam 

Uptake of xylene by B. buttiana plant parts 
   stems 53.1±1.9% 
   epicuticular waxes 32.3±0.9% 
   plant stomata - 14.6±0.0% 

[65] 

Fatsia japonica 
Draceana fragrans 

Volatile toluene and xylene removal efficiencies were 
increased as the plant’s root zone volume increased. 

[53] 

Schefflera actinophylla 
Ficus benghalensis 

Toluene and total xylene (m, p, o) removal efficiency leaf 
area over a 24-h period was  in  
    S. actinophylla- 13.3 μg m−3 m−2 and 7.0 μg m−3 m−2 
   F. benghalensis -  13.0 μg m−3 m−2  and 7.3 μg m−3 m−2 
 

[54] 

Phoenix roebelenii 
Purification capability (Pa) increased with an increase in 
room temperature from 21 to 26 °C, reaching a range of 15–
35 (V/h) 

[55] 

Epipremnum aureum 
Spathiphyllum 

Removal rate for  
TVOC -74%  
Odor - 68%. 

[57] 

Epipremnum  aureum 
Davallia fejeensis 

Epipremnum  aureum plant had a positive impact on mixed 
VOC (decane, toluene, 2 ethylhexanol, benzene, octane, 
xylene, α- pinene)  filtration than Davallia fejeensis 
 

[58] 

Table 5. Plant species and their potential for Formaldehyde removal. 

Plant species Results Ref 

Osmunda japonica, Selaginella tamariscina, 
Davallia mariesii, Polypodium formosanum, 
Psidium guajava, Lavandula spp.,Pteris dispar, 
Pteris multifidi, Pelargonium spp 

Formaldehyde removal 86 plant species were analyzed and 
Osmunda japonica showed the best 6.64 µg m–3 
formaldehyde/cm2 of leaf area over 5 h 

[66] 

Hedera helix, Chrysanthemum morifolium 
Dieffenbachia compacta Epipremnum aureum 

90% removal by -Hedera Helix, Chrysanthemum morifolium, 
Dieffenbachia compacta, Epipremnum aurenum (from the initial 
amount of 1.63 ppm within 24 hours).  

[67] 

Fatsia japonica  
Ficus benjamina 
 

Time interval required to reduce 50% of benzene from the 
initial concentration (2 µL L-1)  
     F. japonica - 96 min  
     F. benjamina.- 123 min 

[68] 

Tillandsia velutina 
The plant decreased Formaldehyde concentration by 22.51 % 
in 12 h 

[69] 

Phoenix roebelenii 
Purification capability (Pa) increased with an increase in 
room temperature from 21 to 26 ℃, reaching a range of 15–
35 (V/h) 

[55] 

Schefflera arboricola Nephrolepis exaltata These plants reported a high air purification ability [70] 

Fatsia japonica 
Reducing rate, 
225 μg m−3 the first 2 h  
around 80 μg·m−3 for the final 3 h. 

[71] 

Epipremnum aureum Removal rate for  [57] 
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Spathiphyllum  TVOC - 74% 
 Odor - 68%. 

Nicotiana tabacum Transgenic plants increase formaldehyde removal by 20 % [72] 

Chlorphytum comosum 
Aloe vera 
Epipremnum aureum 

Formaldehyde removal efficiencies; spider plant-soil system 
at the light intensities of 90%, 92%, and 95% were 
respectively 80 µmolm−2s−1, 160 µmol m−2 s−1, and 240 µmol 
m−2 s−1 in the daytime. 

[73] 

Aglaonema commutatum, Spathiphyllum floribundum, 
Commutatum, Agave potatorum, Dracaena fragrans, 
D. reflexa, Cordyline fruticose, Gasteria gracilis, 
D. angustifolia , D. sanderiana, D. deremensis, 
Sansevieria trifasciata, A.commutatum ,  
Alocasia macrorrhiza, S. trifasciata, Aloe nobilis, 
Scindapsus aureus, D. amoena, A.commutatum, 
Scindapsus pictus, Philodendron sodiroi, 
Syngonium podophyllum , Asparagus setaceus, 
Aloe aristata, Chlorophytum comosum, 
Philodendron martianum , Zamioculcas zamiifolia, 
Philodendron selloum  

Scindapsus aureus, Asparagus setaceus, S. trifasciata, C. 
comosum, A. commutatum, A. commutatum , A. commutatum, S. 
pictus, G. gracilis, and P. sodiroi reported a high formaldehyde 
purification capabilities with less damages. 

[74] 

Chamaedorea elegans 
Initial formaldehyde concentration - 14.6 mg m-3 

Maximum formaldehyde elimination capacity of 1.47 
mg/m2h  

[75] 

Hedera helix 
Hedera helix reported a  70% reduction of the required time to 
reach 0.5 ppm of gaseous HCHO when compared with 
natural dissipation 

[76] 

on environmental factors such as temperature, 

humidity, and air pollutants [87,88]. Plant associated 

microflora plays a crucial role in VOC degradation by 

increasing the bioavailability of VOCs to plants via the 

production of biosurfactants and the formation of 

biofilms [89]. These microbial associations with plants 

increase the ability of microorganisms to metabolize 

large numbers and varieties of organic compounds, 

together with improving plant strength of VOC 

remediation. Therefore, many studies have focused on 

the ability of microbial air remediation and its potential 

applications. 

Role of microflora during air pollutant 
removal and degradation 
Plant associated microbial flora helps the growth and 

development of the plant by enhancing the availability  

 of nutrients through the production of siderophores, 

organic acids, and plant growth promoters (Indole 

Acetic Acid (IAA)). It helps the plant’s survival in biotic 

and abiotic stress conditions. As an example, during 

stressful conditions, ethylene is produced from 1-

aminocyclopropane-1-carboxylate (ACC). Bacteria can 

produce 1-amino cyclopropane-1-carboxylatedeaminase 

and degrades ACC into ammonia and α-ketobutyrate 

and lowers the amount of ACC inside the plant 

resulting in the reduction of ethylene production and 

stress [10,90,91]. They not only support 

phytoremediation; through the detoxification, 

degradation, and sequestration of the contaminants, but 

also promote plant growth [92]. Phyllosphere bacteria 

facilitate the absorption of pollutants into the plants. 

Endophytes and phyllosphere bacteria can degrade 

absorbed pollutants by detoxification, transformation, or 

sequestration [93]. In soil pollution, root endophytes can 

decrease phytotoxicity by enhancing the pollutant 

accumulation inside the plant [94]. Biological nitrogen 

fixation of Rhizobium bacteria incorporate carbon and 

nitrogen into the soil. These plant root nodule associated 

bacterial flora provide nutrients to plants. Natural 

behaviors of bacteria improve the nutrient availability to 

the plant and the environmental tolerance [95] through 

remediation of organic and metal contaminants by 

absorbing, accumulating, detoxifying, and degrading 

those pollutants [94]. Plant associated microflora 

detoxifies the PM, which the host plant absorbs. PM 

activates Reactive Oxygen Species (ROS) that adversely 

affect bacteria, but bacteria have mechanisms to detoxify 

ROS toxicity [96,97]. Microorganisms have degradation 

pathways to degrade and reduce the phytotoxicity of 

pollutants. Therefore it reduces the evapotranspiration 

of volatile pollutants [93].  

In some cases, plants produce biogenic volatile organic 

compounds. Thus VOC degrading microorganisms 

should present in the phyllosphere. However, a limited 

number of studies are available about phyllosphere 

microflora since they are transient flora that occupies the 

phyllosphere temporarily, and the diversity changes 

depending on various factors. Therefore, the study of 

this transient flora is somewhat difficult. Many root 
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associated VOC degrading microflora are used to treat 

groundwater and soil and air remediation [10,92,98,99]. 

Air-remediation through soil is somewhat different; 

there are trapped air and moisture inside the soil 

particles. Once soil contains low moisture conditions air 

particles with pollutants penetrates through the soil so 

that the soil microflora can degrade those pollutants. 

After the water is supplied to the soil, cleaned air is 

released into the atmosphere. This is how soil and 

rhizosphere microflora contribute to removing indoor 

air pollution [59]. Microbial pollutant degrading 

capabilities are enhanced when they are associated with 

plants [100].  Air pollution due to inorganic pollutants 

(NOx, SOx, and O3, etc.) also remediated through the 

microorganisms. It is a well understood fact that 

chemoorganotrophic bacteria (nitrogen producers, 

sulfur depositors, photosynthetic bacteria) use these 

inorganic compounds to generate energy. Ozone is a 

toxic compound to bacteria, and it is used as a 

bactericidal agent. Therefore the use of bacteria in 

detoxifying ozone is difficult [96,97]. 

Metabolic activities of bacteria in 
bioremediation of air pollutants  
Several aromatic compounds have become significant 

air pollutants. Their persistence and widespread 

occurrence throughout the environment are facilitated 

by the thermodynamic stability of the benzene ring 

[101]. Microorganisms adapted to use these pollutants 

as their carbon sources through their catabolic pathways 

[102]. During aerobic respiration of microbes, oxygen is 

the final electron acceptor, and it provides energy yield 

to the cell. In addition, oxygen helps to activate the 

substrates via oxygenation reactions [103]. Most of the 

Pseudomonas sp. are aerobic therefore, many studies 

have been conducted on its ability to degrade many 

environmental contaminants aerobically [104].   

Bacterial biodegradation of VOC relies on the type of 

degrading enzymes and the microorganisms [105]. In 

the aerobic catabolic funnel, most of the peripheral 

pathways involve oxygenation reactions which are 

carried out by monooxygenases and hydroxylating 

dioxygenases and generate dihydroxy aromatic 

compounds such as catechol, homogentisate,  

protocatechuate, gentisate, homoprotocatechuate, 

hydroquinone, and hydroxyquinol. These intermediate 

compounds are the substrates for ring cleavage 

enzymes. These enzymes use oxygen to open the 

aromatic ring between the two hydroxyl groups like 

ortho cleavage, catalyzed by intradiol dioxygenases or 

proximal to at least one of the two hydroxyl groups 

(catalyzed by extradiol dioxygenases, and meta 

cleavage) [102]. 

According to Murray (1972) and Williams (1974), 

Pseudomonas putida mt-2 strain utilizing toluene also 

grown on the substrates like 1,2,4-trimethylbenzenem-

ethyltoluene, m-xylene, and p-xylene and oxidize all 

these substrates to corresponding benzylalcohols, 

benzaldehydes [106,107]. Subsequently, the above 

products were mineralized by meta-cleavage pathways. 

P.mendocina KR1, Ralstonia picketti PKO1, and 

Burkholderia vietnamiensis G4  reported degradation of 

benzene as well as toluene using toluene-4-

monooxygenase  (TmoA), toluene 3-monooxygenase 

(TbuA1), and toluene 2-monoocygenase (TomA), 

respectively [108–110]. Nitrosomonas europea produced 

amminomonooxygenase enzyme, which activates by 

ammonia and oxidize BTEX compounds [111]. 

Bacterial mobile genetic elements like plasmids and 

transposons contain genes responsible for these 

catabolic activities. Once bacteria are exposed to the 

contaminated environment, they facilitate the horizontal 

gene transformation and rapid adaptation to utilize the 

pollutants [104]. Bacterial natural adaptations and 

pollutant remediation is a slow and time-consuming 

process. However, their utilization for in-situ 

bioremediation of polluted sites, and biotransformation 

of toxic compounds into non-toxic compounds such as 

fine chemicals and other value added products, 

development of in-situ high sensitive biomonitoring 

devices such as biosensors are the techniques that can be 

used to enhance the remediation process [112–114]. 

Conclusion  
Several methods have been proposed to reduce the 

indoor air pollution caused by various chemicals 

released into the air due to anthropogenic activities 

occurring indoors. Although chemical and physical 

methods are available, most of them have issues in 

efficiency, short-life span, high cost, need for recovery 

systems, high maintenance demand, and secondary 

pollutants generated during VOC removal. Use of 

plants and their associated microflora provides a 

solution to these issues as an economical and 

environmentally friendly alternative. This review 

provides an overview of the use of ornamental plants 

and their associated microflora in removing the air 

pollutants indoors. According to the literature 

Zamioculcas zamiifolia, Spathiphyllum wallisii, Sansevieria 

trifasciata, Hedera helix, and Ficus benjamina plants can be 

suggested as the effective plants for benzene, toluene, 



Nepal J Biotechnol. 2021  Jul ;9 (1):63 -7 4     Gunasinghe et al.  

©NJB, BSN  71 

xylene, and formaldehyde removal.  Microbial 

associations with plants benefit in VOC remediation 

because it increases the microbial capability in 

metabolizing large numbers and varieties of organic 

compounds. Also microflora influence the plant 

strength during VOC remediation. More laboratory and 

field studies are needed to increase the efficiency in 

using plants for indoor air purification as well as to 

understand their mechanisms of air purification.  
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