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Abstract: The review will focus on the aspects of combinatorial chemistry and technologies that are more 
relevant in the modern pharmaceutical process. An historical, critical introduction is followed by three 

chapters, dealing with the use of combinatorial chemistry/high throughput synthesis in medicinal chemistry; 

the rational design of combinatorial libraries using computer-assisted combinatorial drug design; and the use 
of combinatorial technologies in biotechnology. The impact of “combinatorial thinking” in drug discovery 

in general, and in the examples reported in details, is critically discussed. Finally, an expert opinion on 

current and future trends in combinatorial chemistry and combinatorial technologies is provided. 
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1. Introduction 
 

The expression “combinatorial chemistry” (“combichem”) became extremely 

popular in the late ‘90s-early ‘00s, according to its recurrence in publications. A 

SciFinder search in early November 2013 shows that “combinatorial chemistry” is 

referenced significantly (>50 citations per year) since 1995 (n=60); then, it climbs 

steadily through 100 (1996, n=126), 500 (1999, n=592), 750 (2000, n=787) and 1000 

citations (2002 and 2003, respectively n=1199 and 1203). During 2004 the decrease 

starts (n=995), gently continues to 800 (2010, n=791) and more steeply to ≈500 (2012, 

n=529). Partial data for 2013 (n=246, Jan to Oct) confirm the tendency. This decrease 

mirrors the rise and the fall for several key technologies in the past: the breakthrough 

reports in the late ‘80s (the seminal – and often forgotten – papers from FURKA et al. 

(1988; 1991), the first combinatorial libraries to fulfil HTS expectations in terms of 

chemical diversity by GEYSEN et al. (1984; 1985), HOUGHTEN (HOUGHTEN, 

1985; HOUGHTEN et al., 1991), LAM et al. (1991), ELLMAN (BUNIN et al., 1994) 

and PIRRUNG (FODOR et al., 1991), its fast spreading into the pharma community 
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around mid ‘90s (synthesis/biosynthesis and characterization of large libraries, new 

automated instrumentation, new library formats), the first concerns about quality and 

diversity representation in the early ‘00s (large peptide libraries, mix-and-split 

formats, false positives and negatives in screening), the “extraction” of useful bits and 

pieces from combichem around mid-late ‘00s (high throughput synthesis and 

purification of discrete libraries, solid-supported scavengers/reagents/purifying agents, 

computer-assisted diversity selection, virtual HTS, display libraries). Combinatorial 

chemistry fell from the early breakthrough technology status to the current not-so-

popular/useful tool for drug discovery. 

No one denies that the stumbling progress during the early combichem years led to 

excessive expectations in the scientific and industrial community. No one, though, 

should neglect how even routine operations today are available through discoveries 

made and technologies developed by combi-chemists. We will provide here a 

sampling of examples of today’s combichem usefulness and applications. This 

contribution is divided into three Sections, according to the main applications for 

combinatorial chemistry in synthetic/medicinal chemistry, computer-assisted 

combichem and biotechnology. 

 

2. Combichem in synthetic/medicinal chemistry 
 

Two recent reviews provide an articulate description of what combichem in 

medicinal chemistry was, is and will be. The former (KODADEK, 2011) highlights 

how key questions (library size and format, HTS screening technologies, 

“developability” of hits from combichem libraries) should be addressed to take 

advantage of combinatorial chemistry without improperly making it the focus of drug 

discovery projects. The latter (MERRITT, 2012) is a detailed account of high 

throughput chemistry in drug discovery that describes combichem-derived techniques, 

strategies and synthetic methodologies in use in many industrial drug discovery labs 

today. They provide a balanced view of the usefulness and the opportunities provided 

by combichem in pharmaceutical research. 

Let’s examine here two examples of important achievements attained through the 

use of a combinatorial chemistry-biased approach in a drug discovery project. 

 

3. Target identification and validation 
 

Histone deacetylases (HDACs) are zinc hydrolases that modulate gene expression 

through deacetylation of the N-acetyl lysine residues of histone proteins. Eleven 

HDAC isoforms belong to four sub-classes (GROZINGER and SCHREIBER, 2002). 

They are involved in many cellular pathways, and it is crucial to link their effects with 

specific isoforms. In 2001, naturally occurring unselective HDAC inhibitors 

trichostatin A (TSUJI et al., 1976) and trapoxin (KIJIMA et al., 1993) were known, 

but isoform-specific HDAC inhibitors were unavailable. The X-ray structure of the 

complex between TSA and an HDAC ortholog (HOUGHTEN, 1985) suggested the 

variation of the the dimethylaminophenyl radical in TSA to identify isoform-specific 

molecular interactions. 
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Schreiber performed the SP synthesis of a 7,392 membered pool library of zinc-

binding carboxylates, hydroxamates and o-aminoanilides analogues (respectively L1-

L3, Fig. 1) (STERNSON et al., 2001). The three zinc-binding groups are connected to 

a linker region made by a C3-C6 alkyl chain ending with an amide bond. A bulky cap 

region, indeed capping each library individual, is composed of a disubstituted chiral 

1,3-dioxane core anchored onto the linker via an o-, m- or p-phenyl group. Chemical 

diversity is introduced in one of the chiral 1,3-dioxane substitutions, while the other 

substituent is determined by final resin cleavage (STERNSON et  al., 2001). The 

library was prepared using chemical encoding on polystyrene macrobeads, taking 

advantage of a sophisticated library synthesis/quality control/HTS platform 

(BLACKWELL et al., 2001; CLEMONS et al., 2001). 
 

m = 0,1

n = 2-5

L1   ZBP = OH

L2   ZBP = NHOH

L3   ZBP = 

L1 - L3

 
Fig. 1. Structure of carboxylate (L1), hydroxamate (L2) and o-aminoanilide (L3) libraries. 

 

The library was conceived to identify selective inhibitors of histone deacetylases 

(HDACs), and to eventually validate one or more HDACs as therapeutical targets. The 

library was tested on HTS cellular assays (HAGGARTY et al., 2003), determining a) 

the inhibition of histone (HDAC1-like) and α-tubulin (HDAC6-like) deacetylation; b) 

the selectivity of an inhibitor for either deacetylation reaction; and c) a preliminary 

SAR. 

617 library individuals, i.e. ≈8% of the library, inhibit HDAC deacetylation (point 

a). 475 compounds inhibit α-tubulin and 344 inhibit histone deacetylation (202 being 

dual deacetylase inhibitors); according to the zinc-binding motifs (ZBMs), 18 

o-aminoanilides, up to 80 carboxylates, and up to 519 hydroxamates (points b and c) 

inhibit one or both enzymatic activities. Further profiling of inhibitors identified 

tubacin (tubulin acetylation inducer, 1, Fig. 2), the first HDAC6-selective small 

molecule inhibitor (HAGGARTY et al., 2003). Its use allowed the dissection of 

HDAC6-selective physiological and pathological events in cells, and in models of 

cancer (ALDANA-MASANGKAY et al., 2011), neurodegeneration (D´YDEWALLE 

et al., 2011) and inflammation (DE ZOETEN et al., 2011). It also allowed the 

rationalization of HDAC6-selective structural features (ESTIU et al., 2008), the design 

and structural optimization of second generation, drug-like HDAC6 inhibitors 

(WONG et al., 2003).  
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Libraries L1-L3 are a strongly biased chemical diversity effort (few ZBM-linker 

variations, one substituent on a position of the 1,3-dioxane ring, wide substituent 

sampling on the other). Nevertheless, the exploitation via combinatorial chemistry of 

synthetically accessible modifications of scaffolds inspired by the structure of 

biologically active natural products allowed the characterization of HDAC isoforms, 

and the subsequent identification of drug-like, selective HDAC6 inhibitors (KALIN 

and BERGMAN, 2013).  Similar examples are available in literature; others could 

stem from a mixed “serendipitous/rational” approach, inspired by Schreiber’s efforts. 

1

 
Fig. 2 Structures of HDAC6-selective tubacin (1). 

 

4. Chemical tools 
 

The 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene nucleus (BODIPY, 2, Fig. 3) is a 

fluorescent probe for biological applications (LOUDET and BURGESS, 2007). It 

conjugates excellent photophysical properties with lack of toxicity, and the decoration 

of its nucleus provides specificity for single molecular targets. BODIPY-based probes 

were reported in the past (BOENS et al., 2012), but a thorough exploration of the 

chemical space around 2 required a combinatorial chemistry approach. 

-

2  
Fig. 3. The BODIPY scaffold (2). 

 

Chang reported the library L4 of 317 mono-styryl BODIPY analogues, obtained 

via microwave-assisted Knoevenagel condensation on the asymmetric scaffold 3 (Fig. 

4) (LEE et al., 2009; LEE et al., 2011). 
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-

-

5

4

-

L4

Fig. 4. Structure of the 317-membered mono-styryl BODIPY library L4, of a BSA-selective (4) and a 

dopamine-selective (5) BODIPY-based fluorescent probe from L4. 

 

The library was tested on 94 biomolecules in intracellular-like conditions, 

observing the fluorescence variations at four concentrations (317 compounds, 94 

biomolecules, 4 concentrations = 117,192 data points). A SAR map was obtained, 

determining the highest response for proteins; the high fluorescence changes at low pH 

for p-benzylamine- or heterocycle-decorated library members; and their fluorescence 

decrease in presence of negatively charged biomolecules (DNA, RNA) (LEE et al., 

2011). Two compounds showed excellent turn on (4, Fig. 4, binding to bovine serum 

albumin/BSA with a 212-fold fluorescence increase) and turn off properties (5, Fig. 4, 

binding to dopamine with a 10-fold fluorescence emission decrease), with good 

correlations between fluorescence modulation and concentration of the binding partner 

(LEE et al., 2011).  

L7
8, R1 = H, R2 = Ph

-

-

L6
7, R1 = p-Ph-B(OH)2

-

L5
6, R1 = p-CH=CH-Ph

 
Fig. 5. Structures of the BODIPY libraries L5-L7, of a IgG-selective (6), a fructose-selective (7), and a 
human serum albumin-selective (8) BODIPY-based fluorescent probe. 
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Other library/active pairs (Fig. 5) include L5/6 (VENDRELL et al., 2011) (160 

library members, solid-phase synthesis, 6 showing a 75-fold fluorescence increase 

with immunoglobulin IgG); L6/7 (ZHAI et al., 2012) (160 library members, 7 showing 

a 24-fold fluorescence increase with fructose); and L7/8 (ER et al., 2013) (120 library 

members, 8 showing a 220-fold fluorescence increase with human serum albumin). 

BODIPY sensors 4-8 show excellent selectivity for their target biomolecule, and 

similar targets (i.e., albumins from animals for 4 and 8; saccharides for 7) do not cause 

comparable fluorescence changes.  

 

9

10

-

-

-

-

-

11

141312

-
-

 
 
Fig. 6. Structures of the isocyanate 9, and of BODIPY-based adducts resulting from the Passerini (10), 

Bienaymè-Blackburn-Groebke (11), 4-MCR (12) and 3-MCR Ugi (13,14) reactions. 
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Modern combinatorial chemistry shifts its attention towards diversity, rather than 

numerosity. A small number of BODIPY analogues are prepared from diversity-

multiplying multicomponent reactions (MCRs) on the isocyanate intermediate 9 

(VAZQUEZ-ROMERO et al., 2013) (Fig. 6). 3-MCR Passerini (BANFI and RIVA, 

2005), 3-MCR Bienaymè-Blackburn-Groebcke (BIENAYMÉ and BOUZID, 1998), 

and 3- and 4-MCR Ugi (UGI et al., 1996) protocols were used to prepare 10-14 (Fig. 

6). Each compound could lead to a combinatorial library of analogues. Compound 14 

(PhagoGreen) is a cell-permeable, non-toxic, pH-sensitive fluorescent probe to image 

phagosomal acidification in macrophages with sensitivity and specificity (VAZQUEZ-

ROMERO et al., 2013). 

 

5. Computer-assisted combinatorial drug design 

 
Combinatorial chemistry has revolutionized the drug discovery process in both 

academic and industrial settings. In the early years of the combinatorial boom drug 

design relied mainly on the screening of large diversity libraries. However, the initial 

screening results have been disappointing in terms of the achieved hit rates. In 

addition, the screening often produced hits with undesirable molecular properties, 

which were not suitable as lead compounds (GILLET, 2002; LEACH and HANN, 

2000). Although the number of compounds synthesised and screened has increased by 

several orders of magnitude, the quantity of new chemical entities per year remained 

virtually unchanged. It was soon recognized that the diversity libraries are more 

appropriate for initial screening of compounds against a range of biological targets to 

identify biological activities pertinent to the portion of chemistry space covered by the 

library. An increased rate of identification of drug-like hits was observed when the 

libraries were rationally designed and focused by applying compound filtering and 

selection methods. Application of the Lipinski’s rule-of five for the identification of 

analogues, to avoid insufficient oral bioavailability, was a first step in this direction. 

Training of neural networks with drugs and chemicals, performed in industrial 

research laboratories resulted in the design of combinatorial libraries with a higher 

content of biologically active compounds (KUBINYI, 2002). It became apparent that 

incorporation of relevant information on the targeted biomolecule or knowledge about 

active compounds affecting the target is beneficial for the library design. Thus focused 

(targeted) libraries were designed to cover restricted regions of the chemistry space 

with boundaries defined by the available information on the biological target. 

Additional restraints dictated by computed ligand-receptor interaction energies, 

structures of known active molecules and ADMET (absorption, distribution, 

metabolism, excretion and toxicity) properties shifted the emphasize from drug-like 

libraries to more biologically focused lead-like libraries (ROSE and STEVENS, 2003; 

OPREA, 2002). Moreover, it has turned out to be more cost effective to design and in 

silico screen virtual libraries of molecular models to identify subsets of the chemistry 

space that contain promising molecules, before going to the synthesis of compounds 

and to their high-throughput screening. Computational modelling led to an increased 

hit rate of drug-like molecules in combinatorial libraries, and focused the synthetic 

efforts onto those synthetically accessible molecules that are most likely to bind to the 
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target, as predicted by a computational algorithm. Later on, computer-assisted drug 

design methods such as generation of virtual libraries, analogue docking and in silico 

screening against a three-dimensional model of a targeted biomolecule or a 

pharmacophore derived from active analogues, became the standard procedure 

routinely used in medicinal chemistry. This blend of combinatorial chemistry and 

structure-based design (also referred to as combinatorial docking) (BÖHM and 

STAHL, 2000) has emerged as a new and promising approach to drug discovery.  

Today, similarity searching, clustering, nonlinear mapping and other established 

virtual screening tools are used to aid in the selection of the most interesting library 

subsets. A new approach to generation of drug-like libraries was introduced by the 

CombiGen program (WOLBER and LANGER, 2001). This approach combined 

several hundreds of ‘privileged’ drug-specific fragments to produce structurally 

diverse virtual combinatorial libraries with an elevated content of drug-like molecules. 

If the 3D structure of the biological target is known, methods of flexible docking, 

which simultaneously consider the flexibility of the ligand and the binding site, are 

applied for compounds selection. Another successful strategy is the combinatorial 

design of ligands within the receptor binding site (BÖHM et al., 1999; ERLANSON, 

2006; VILLAR et al., 2004; BLUNDELL and PATEL, 2004). Instead of docking 

thousands of individual analogues from a combinatorial library to a receptor model, 

this approach constructs the whole library directly within the receptor binding site. 

In an attempt to increase the hit rates, the emphasis in computational and medicinal 

chemistry has shifted toward the rational design of small focused libraries that are 

biased toward one specific biological target. A greater understanding of new 

biochemical targets through genomics and chemical biology has also increased the 

number of novel drug targets for which biological screens are being developed. 

Libraries are now being focused, through the use of computer-assisted design 

strategies intended to hit a single specific therapeutic target. Results from docking and 

in silico screening of a virtual library and/or predictions of activity from a QSAR 

(quantitative structure-activity relationships) analysis or 3D pharmacophore models 

are now routinely used for selection of combinatorial subsets of targeted libraries. 

Focus on biological targets represents one aspect of a multi-objective optimisation 

design process, which considers also synthetic feasibility, availability and cost of 

reagents, diversity, drug- or lead-likeness, ADMET properties and other commercial 

factors (GILLET et al., 2002; AGRAFIOTIS, 2002).  

From a methodological point of view, structure-based combinatorial library design 

is an extension of traditional structure-based drug design, with the design and 

screening applied to virtual libraries of analogues instead of individual compounds 

(BEAVERS and CHEN, 2002). Consequently, the major computational strategies that 

have been developed for structure-based library design originate from the field of 

small molecule docking and scoring (BÖHM et al., 1999), or alternatively from library 

searching for analogues that match a pharmacophore model (ROLLINGER et al., 

2008; GRIFFITH et al., 2005). The frequently used focussing strategy is 

straightforward. All possible members of a virtual library are first enumerated, 

according to the available reagents and established synthetic scheme. Individual 

members are then separately docked into the binding site of a receptor and finally, a 
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library subset is selected for synthesis, based on the ranking of their docking scores 

and/or predicted ADMET properties (KITCHEN et al., 2004). Alternatively only the 

substituents (fragments) may be scored by attaching them to the common scaffold 

docked to the receptor binding site (BEAVERS and CHEN, 2002; ZHOU, 2008). 

Docking combined with the use of a scoring function is a fast method for ranking 

compounds in terms of binding potency, or complementarity to a biological target 

which can be used for relatively large libraries. During the docking, ligand poses are 

generated by fitting conformers of the ligand into three-dimensional model of the 

binding pocket of the macromolecular receptor. Then, poses are evaluated based on a 

scoring function, which yields estimates of binding affinity to the receptor. Docking 

algorithms may perform systematic or random searches for ligand conformations and 

then map them to the three-dimensional structure of the receptor. Many scoring 

functions have been developed, and they may score using a force field-based, 

empirically based, knowledge- based, or consensus-based algorithms. There are two 

key requirements of all computational algorithms for combinatorial docking: first, the 

ability to correctly predict the conformation of the docked ligand; and second, the 

ability to correctly predict the binding affinity of a putative ligand. It is clear that 

getting the geometry correct is a prerequisite for being able to predict binding affinities 

(BÖHM and STAHL, 2000; KITCHEN et al., 2004; ZHOU, 2008; RUPASINGHE 

and SPALLER, 2006; DUFFY et al., 2012; MCINNES, 2007).  

Often only a single rigid receptor conformation is used to dock and score a ligand 

for the sake of computational efficiency. However, there are ways in which docking 

programs can account for the receptor flexibility. Protein flexibility namely plays a 

major role in biomolecular recognition. Structural changes associated with ligand 

binding can be significant, with deviations in overall backbone structure of the 

receptor, or they can be more subtle such as side-chain rotations. Either way, the 

algorithms that predict the affinity of biomolecular binding require relatively accurate 

predictions of the bound structure to give an accurate assessment of the energy 

involved in ligand-receptor association. More accurate algorithms were subsequently 

developed, that accommodate the receptor flexibility during ligand docking algorithms 

and also explore enhanced sampling techniques. The understanding and allowance for 

receptor flexibility are helping to make the predictions of ligand protein binding more 

accurate (SINKO et al., 2013; HEIKAMP and BAJORATH, 2013; DAWIS et al., 

2009). Two theories have been proposed to describe the receptor configurational 

change upon ligand interaction. The first is conformational selection, in which all 

conformations are present in the unbound receptor, but the populations of each 

configuration change in the bound form (MA et al., 1999). The second theory is the 

induced fit, in which a single receptor configuration is forced into another one by the 

ligand binding event (SHERMAN et al., 2006). 

Besides receptor flexibility, other tools are available to improve the estimates of 

ligand binding affinities of virtual libraries. In our laboratories, we tested the 

performance of implicit solvent effect (FRECER et al., 1998) and implementation of 

target-specific scoring functions. These are generic scoring functions adjusted to 

predict binding free energies to a specific protein receptor, by assuming a linear 

relationship between the computed score and predicted inhibition constants, with 
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coefficients of this linear dependence derived by linear regression from a QSAR 

analysis. The QSAR model is typically obtained for a training set of homologous 

molecules, for which binding affinities to the targeted macromolecule were 

experimentally determined. This approach was used to design peptidomimetic and 

cyclic urea inhibitors of HIV-1 protease, non-peptidic inhibitors of enoyl-acyl carrier 

protein of P. falciparum, of neuraminidase from influenza H5N1 virus, as well as 

peptidomimetic inhibitors of NS2B-NS3 protease from dengue virus (FRECER et al., 

2005; FRECER et al., 2009; RUNGROTMONGKOL et al., 2009; FRECER and 

MIERTUS, 2010; FRECER et al., 2011). 

Another popular and powerful tool for lead discovery and optimization is the 

fragment-based drug design (ERLANSON, 2006; VILLAR et al., 2004; BLUNDELL 

and PATEL, 2004; ZHOU, 2008; HAJDUK and GREER, 2007; HUBBARD et al., 

2007). In this approach, libraries of small fragments are screened experimentally by 

either NMR spectroscopy, crystallography or other biophysical techniques to find low 

affinity hits (small molecules, fragments). When the 3D structure of the target is 

known, screening of libraries for active fragment hits can also be done 

computationally. In the next step, for the hits that occupy different subpockets of the 

receptor binding, site proper linkers connecting these hits while maintaining their 

relative positions in the subpockets are designed. High affinity leads can be found by 

linking two to three suitable fragments or alternatively, individual fragment hits can be 

grown into leads by step-by-step functionalization (MORTIER et al., 2012; 

SANCINETO et al., 2013).  

 

6. Combinatorial approaches in biotechnology 
 

Combinatorial chemistry significantly accelerated the development of a whole set 

of combinatorial tools comprising efficient synthetic methods, reagents for solid phase 

synthesis, linkers, addressing strategies, screening methods, etc. This is a clear 

indication of the importance of the combinatorial approach in chemistry - especially 

medicinal chemistry -, but “combinatorial thinking” quickly spread to many other 

branches of pure and applied science. For example, combinatorial technologies are 

now primary tools in very different and apparently unrelated fields of research such as 

catalyst development (WOO, 2007; DOMINGUEZ, 2005) and material science 

(MAIER et al., 2007). The growing interest for combinatorial technologies and their 

efficacy in producing valuable results, especially when coupled to molecular 

modelling, makes it difficult to foresee the real number of their possible applications. 

Biotechnology is among the main impacted areas, as we will see below. 

 

7. Biological libraries 
 

The generation of molecular diversity can take advantage of the biochemical 

mechanisms evolved by biological systems. The immune system is an outstanding 

example of combinatorial chemistry embodied in living organisms, and antibody 

libraries can be considered naturally evolved combinatorial libraries. The libraries of 

antibodies generated as the result of antigenic challenges to the immune system 
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invariably contain high affinity binders or receptors. This feature of the immune 

response was also exploited to evolve antibodies against transition state analogues, 

thus generating antibodies endowed with catalytic activity (TANAKA, 2002; 

KOCHETKOV, 1998). Another way to exploit the biology of living organisms to 

generate combinatorial libraries is the biological display technology, which allows the 

preparation of random peptides fused to proteins normally expressed on the surface of 

microorganisms. Biological display of peptides requires the introduction of the genetic 

information (DNA) that codes for the peptides into a microorganism. Typically, 

chosen organisms are bacteriophages (SMITH and PETRENKO, 1997; SMITH, 1985; 

STEMBERG and HOESS, 1995) or bacteria (JOSE, 2006; LEVIN and WEISS, 2006). 

Once inside the microorganism, the DNA is transcribed and translated into proteins, 

according to the genetic code. The DNA fragment coding for the peptides is inserted 

into specific DNA molecules called vectors. In phage display the vector is constituted 

by the viral genome, while in bacterial display an extra-chromosomal circular DNA, 

called plasmid, is used. Vectors are usually genetically modified to allow the insertion 

of DNA fragments at specific sites and, sometimes, genes or regulatory regions are 

deleted or inserted. Phage display is nowadays a mature technology, and pre-made 

libraries and cloning vectors are available from standard suppliers. Peptides of 

different length and topology, spanning between linear 7-12mers and cyclic peptides 

comprising a disulfide bond, can be readily expressed. Antibodies can also be 

expressed on the surface of filamentous bacteriophages. In peptide phage display, the 

randomized peptide sequences are expressed at the N-terminus of the minor coat 

protein pIII which is located on the top of the filamentous phage. From a general point 

of view, a peptide displaying phage could be considered a “bio-bead” with peptides 

bound to its surface and carrying a tag, the DNA, coding for them.   
The success of this approach is related to the efficacy of the method used for the 

selection of phages displaying the peptide with the highest affinity for the target 
molecules (panning). The pool of phages displaying the random peptide library is 
allowed to interact with a solid support coated with the target molecules. The unbound 

phages are removed by washing the support, and the specifically bound phages are 
eluted in more stringent conditions. The eluted phages are amplified by propagation in 
E.coli, and the new pool is allowed to interact again with the target molecule 
immobilised on solid support. After each cycle of binding/amplification, the pool of 
phages is enriched with clones displaying peptides with highest affinity for the target 

molecule. Usually after 3-4 rounds, individual clones are characterized by DNA 
sequencing and immunochemical assays. Of course, this approach allows the 
preparation of peptides made of proteinogenic aminoacids, even though the 
introduction of unnatural amino acids was reported (TIAM et al., 2004). Phage display 

libraries have been used for many applications, such as epitope mapping or 
identification of peptide ligands for several receptors. Usually both purified target 
molecules or intact cells expressing the target molecule on the cell surface can be used 
in the panning procedure (TINOCO et al., 2002; STRATMANN et al., 2002; 
GAZOULI et al., 2002). Rasmussen and co-workers reported a successful phage 

display approach for tumour cell-targeting, in particular, the authors identified phage 
clones able to selectively bind to colorectal WiDr tumour cell lines (RASMUSSEN et 
al., 2002).  
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One of  most exciting potential of phage displayed combinatorial peptide libraries 

is to obtain small peptide molecules that mimic an antigen, at least with respect to a 

particular epitope. In addition to their interest as research tools, such mimotopes could 

in principle be useful as diagnostic tools or for eliciting antibodies to a predefined 

epitope. However, the reduction of the phage insert sequence to a short peptide that 

can compete with the antigenic and in particular with the immunogenic properties of 

the natural antigen faces considerable difficulties. The difficulties to use mimotopes to 

induce antibodies that bind to the natural antigen (crossreactive immunogenicity) and 

the considerable discrepancy between antigenicity and immunogenicity of phage-

derived peptides have been bypassed by peptides selected with antibodies from phage 

displayed random peptide libraries.  Such peptides may represent low molecular 

weight substitutes of the natural antigen, not only for proteins, but also carbohydrates 

and nucleic acids, and thus are now being developed as vaccines for some pathological 

situations including cancer (ASHOK et al., 2003). 

Combinatorial phage peptide libraries are also useful for identification of the 

specific substrates of various proteases. A substrate phage library has a random 

peptide sequence at the N-terminus of the phage coat protein and an additional tag 

sequence that enables attachment of the phage to an immobile phase. When these 

libraries are incubated with a specific enzyme, such as a protease, the uncleaved phage 

is excluded from the solution with tag-binding macromolecules. This provides a novel 

approach to define substrate specificity (NIXON, 2002).  The delineation of the 

substrate specificity of proteases will help to elucidate the enzymatic properties and 

the physiological roles of these enzymes. Comprehensive screening of very large 

numbers of potential substrate sequences is possible with substrate phage libraries. 

Thus, this approach allows novel substrate sequences and previously unknown target 

molecules to be defined. 

Last but not least, combinatorial approaches, based on many different biological 

methods, have been used  to increase enzyme stability or to refine enzyme specificity 

(COBB et al., 2013) but the most challenging application in biotechnology is the 

selection of enzymes with  novel catalytic properties (ACEVEDO-ROCHA et al., 

2014). 
 

8. Combinatorial ProteomicTM 
 

The naturally generated diversity of antibody libraries has been used to develop an 

innovative platform technology named Combinatorial ProteomicTM, which allows to 

profile the expression and function of protein families in complex proteomes. The use 

of antibodies allows the detection of iper and ipo-expressed proteins even at picomolar 

concentrations, overcoming one of the main limitations of proteomics: the difficulty in 

detecting low abundance proteins (CORTHALS et al., 2000; LOPEZ, 2000). 

Combinatorial ProteomicTM shares with “classical” proteomics the goals of 

developing and applying technologies for the global analysis of protein expression and 

function. Its key advantage lies in the comparison of cells from normal tissue with 

those representing a disease state. Such comparisons enable the identification of 

disease-specific biomarkers that could be used for diagnostic tests, or to target proteins 

that have the potential for drug intervention. The striking feature of Combinatorial 
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ProteomicTM is to exploit the diversity of antibody libraries in order to select specific 

antibodies with high avidity for selected protein families. A single individual may 

produce a population of antibody specificities, an antibody repertoire, which is a 

reflection of all the B cell clones (lymphocyte repertoire) capable of immunoglobulin 

(Ig) synthesis and secretion in response to antigenic stimulation, but also in absence of 

exposure to environmental pathogens (CASALI and SCHETTINO, 1996). Natural 

antibodies, in fact, are germ line-encoded molecules produced by a distinct population 

of peritoneal B cells bearing the cell surface marker CD5 and are present in the sera 

and interstitial fluids of healthy individuals (KASAIAN et al., 1992; GREENBERG, 

1985; KASAIAN and CASALI, 1993). The majority of natural antibodies are 

polyvalent immunoglobulin M (IgM) isotypes with varying – usually low – affinities. 

They nevertheless bind very tightly to multivalent antigens, because many low-affinity 

interactions can produce a single high-avidity interaction. Such a feature of IgM makes 

it the most suitable molecule to be used in the Combinatorial ProteomicTM 

technology. 

Combinatorial ProteomicTM comprises the following steps:  

1. in silico analysis of human proteome using the pattern matcher PatScan and 

Prosite database; 

2. combinatorial synthesis of selected signature libraries by standard Fmoc 

chemistry and mix-split methods; 

3. immobilization on solid support of selected signature libraries; 

4. purification of signature-specific IgM antibodies by affinity chromatography 

experiments; 

5. differential analysis of cellular protein expression levels. 

Comparative analysis of protein and peptide levels can be conducted by a 

differential ELISA assay on biological samples from affected and healthy individuals. 

Theoretically, any disease could be studied by using molecular profiling. Specific 

clinical goals derived from such studies include screening tests for early disease 

detection, improved diagnostic markers, improved prognostic markers, new 

therapeutic targets, markers to evaluate therapeutic efficacy and new approaches and 

technologies for less invasive screening and diagnosis. 

 

9. Ligands for bio-macromolecules 

 
Monoclonal antibodies for therapeutic use are one of the main products deriving 

from biotechnology. In the quest for a synthetic ligand able to bind to monoclonal 

antibodies, and suitable for affinity-chromatographic applications at the industrial 

level, the synthesis and screening of combinatorial libraries of peptide dendrimers 

(FASSINA et al., 1996) has been exploited. Previous studies have shown that peptide 

ligand multimerisation enhances retention of recognition properties after 

immobilization on solid supports for the preparation of affinity columns (FASSINA, 

1992; FOURNIER et al., 1992; BUTZ et al., 1994). Based on these considerations, a 

tetrameric peptide library has been designed, where four identical peptide chains are 

assembled starting from a tetradentate lysine core. The process is similar to that used 

for the production of multimeric antigenic peptides (TAM, 1988). The multimeric 
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library, composed of 5832 (183) randomized tripeptide tetramers, has been realized by 

solid-phase peptide synthesis, following a simple manual procedure (RUVO et al., 

1994). Screening of the activity of the multimeric library in terms of antibody 

recognition has been carried out by measuring the ability to interfere with the 

interaction between Protein A and biotinylated immunoglobulins, monitored on a solid 

phase by ELISA.  

The screening cycles allowed the final identification of the most active multimer as 

(Arg–Thr–Tyr)4–K2–K–G, named PAM (Protein A Mimetic ligand). PAM can be 

synthesized by solution or solid-phase methods in high yield and at limited costs. Its 

affinity constant for IgG, as determined by optical biosensor determinations, is close to 

0.3 µM. The tetrameric ligand PAM can be easily immobilized on pre-activated solid 

supports, since the presence of the symmetric central core and the four peptide chains 

allow an oriented immobilization and the support-bound chain acts as a built-in spacer. 

The peptide was found to interact with other immunoglobulins such as IgE 

(PALOMBO et al., 1998) and IgY (VERDOLIVA et al., 2000). A partial inverso 

analogue of the PAM ligand was found to impair the interaction between IgG and the 

Fcγ receptor (MARINO et al., 2000). Following a similar approach, a cyclic peptide 

able to bind to immunoglobulins was discovered as well. Linear peptides derived from 

the screening of combinatorial libraries, often do not display enough structural rigidity 

to provide recognition surfaces sufficiently selective for biotechnological or 

pharmaceutical applications. Cyclic peptides, on the other hand, show increased 

resistance to enzymatic degradation and constrained flexibility compared with the 

linear form. By screening dimeric tripeptide libraries, produced by starting from a 

bifunctional lysine residue at the C-terminus, and structurally constrained by the 

presence of a disulfide bond formed by two cysteine residues at the N-terminus 

(FASSINA et al., 1995), a ligand for mouse IgG purification has been identified. The 

screening assay has been performed by immobilizing the library, as a set of 

sublibraries on microtiter plates for ELISA determination by noncovalent adsorption 

and then treating the microtiter plate wells with a fixed concentration of mouse 

monoclonal antibody. The presence of bound antibody was detected by a subsequent 

treatment with a goat anti-mouse IgG, labeled with peroxidase, followed by 

chromogenic reaction with ABTS. This screening strategy led to the identification of 

Peptide H, a cyclic dimeric peptide of formula (C–F–H–H)2K-G, where the two 

cysteine residues at the N-terminus are covalently linked by a disulfide bridge. When 

tested in affinity chromatography experiments, this ligand proved useful for mouse 

and rat IgG purification (MARINO et al., 1999). The use of combinatorial libraries to 

identify synthetic ligands to be used in affinity chromatography for the purification of 

antibodies (NAIK et al., 2011; MENEGATTI et al., 2013) or proteins (NOPPE et al., 

2006; JACOBSEN et al., 2007) remains today one of the most promising applications 

in biotechnology. 
 

9. Conclusions 
 

How many drugs, or at least clinical candidates, have benefited from combichem? 

That’s usually the question causing endless debates. If you try to find hard evidence 

from the literature, you won’t find any: no one is compelled to say if at any point of a 
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drug discovery project combichem was employed. If one thinks, though, of how many 

papers now mention that a first hit series originated either from “wet” or virtual HTS, 

there’s your answer: compound libraries usually are made with a heavy combichem 

contribution, while computer-assisted computational drug design is of a great 

assistance to assemble meaningful virtual collections for in silico HTS. 

Several small-medium enterprises (SMEs) have today a strong commitment in 

combinatorial technologies applied to catalysis, biotechnology, material sciences, 

biomedical devices and pharmaceutical research. The robustness and relative 

affordability of combinatorial methodologies that survived the disposal of less-than-

perfect approaches is now widely accepted, although rarely recognized. Combinatorial 

libraries composed of inorganics, metallo-organics, peptides, oligonucleotides, or 

small molecules represent different tools for innovative research, all of them either as 

the products of combinatorial technologies or as part of a proprietary technology. 

Some SME devise, and will continue to devise their own combinatorial technologies 

as platforms for research and product development.  

One should not see “combinatorial” and “rational” approaches as being juxtaposed 

concepts. For example, pharmaceutical companies now often work on small, target-

focused solution-phase combinatorial libraries, where good computational design has 

significant impact to design the “best” library members, and is essential to increase the 

chances of a successful outcome – hits to be progressed to leads and candidates. 

“Combinatorial thinking” represents a tool and a mindset, which – when applied to 

a project where rational design drives the planning and execution of activities – allows 

to increase productivity, to explore the meaningful diversity space, and consequently 

to maximize the probability to extract useful information (and industrially applicable 

products) from the project itself. 
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