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Abstract: Amylolytic enzymes represent a group of starch hydrolases and related enzymes that are active
towards the a-glycosidic bonds in starch and related poly- and oligosaccharides. The three best known
amylolytic enzymes are o-amylase, f-amylase and glucoamylase that, however, differ from each other by
their amino acid sequences, three-dimensional structures, reaction mechanisms and catalytic machineries. In
the sequence-based classification of all glycoside hydrolases (GHs) they have therefore been classified into
the three independent families: GH13 (0-amylases), GH14 (B-amylases) and GH15 (glucoamylases). Some
amylolytic enzymes have been placed to the families GH31 and GH57. The family GH13 together with the
families GH70 and GH77 constitutes the clan GH-H, well-known as the a-amylase family. It contains more
than 6,000 sequences and covers 30 various enzyme specificities sharing the conserved sequence regions,
catalytic TIM-barrel fold, retaining reaction mechanism and catalytic triad. Among the GH13 a-amylases,
those produced by plants and archaebacteria exhibit common sequence similarities that distinguish them
from the a-amylases of the remaining taxonomic sources. Despite the close evolutionary relatedness
between the plant and archaeal a-amylases, there are also specific differences that discriminate them from
each other. These specific differences could be used in an effort to reveal the sequence-structural features
responsible for the high thermostability of the a-amylases from Archaea.

Key words: a-amylase, glycoside hydrolase families, sequence-structural features, archaebacteria, plants,
evolutionary relatedness.

1. Introduction

Starch is an important source of energy for a wide spectrum of animals (including
humans), plants and microorganisms. It consists exclusively from glucose monomers
that are linked by a-1,4- and a-1,6-glycosidic linkages. Amylose (15-25% of starch) is
formed by o-1,4-linearly bound glucoses, whereas amylopectin (75-85% of starch)
contains also the branching points with the a-1,6-linked glucoses (LEVEQUE et al.,
2000b; BERTOLDO and ANTRANIKIAN, 2002).

Starch industry covers many well-developed and also recently established
sophisticated technologies that utilize amylolytic enzymes. These amylases represent
approximately 30% of the worldwide industrial enzyme production, the starch
hydrolysis being considered to be the main way of their use (VAN DER MAAREL et
al.,2002).

2. Amylolytic enzymes

With regard to a complex structure of starch and related oligo- and
polysaccharides the starch-degrading organisms have to dispose by relevant
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combination of starch hydrolases and related enzymes (LEGIN et al, 1998;
BERTOLDO and ANTRANIKIAN, 2002). These enzymes are in general called
amylases.

The amylolytic enzymes form a large group of starch hydrolases and related
enzymes that are active towards starch, pullulan, glycogen and other related oligo- and
polysaccharides (VIHINEN and MANTSALA, 1989; PANDEY et al., 2000;
JANECEK, 2009). It is a common way of binding of a glucose residue of the substrate
in the enzyme active centre, termed conventionally as a substrate-binding subsite
(DAVIES et al., 1997), that is responsible for the activity of amylolytic enzymes. Most
of them belong to glycoside hydrolases (GHs) that constitute the individual GH
enzyme families without mutual sequence similarities (HENRISSAT, 1991). Now the
GH families are part of the CAZy web-server (CANTAREL et al., 2009) that covers
also other carbohydrate-active enzymes (Fig. 1).
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Fig. 1. Carbohydrate-Active enZyme (CAZy) classification (http://www.cazy.org/). The individual proteins
and enzymes are within the CAZy server classified into four main groups of sequence-based families: (i)
GH, glycoside hydrolases; (ii) GT, glycosyl transferases; (iii) PL, polysaccharide lyases; and (iv) CE,
carbohydrate esterases. The CBM stands for the family classification of carbohydrate-binding modules. For
details, see CANTAREL et al. (2009).

The most known amylolytic enzymes are a-amylase (EC 3.2.1.1), B-amylase (EC
3.2.1.2) and glucoamylase (EC 3.2.1.3) that are, however, quite different from each
other. They differ not only in their primary and tertiary structures, but also in their
catalytic machineries and reaction mechanisms employed (JANECEK, 1994a;
PUJADAS et al., 1996; COUTINHO and REILLY, 1997). They have therefore been
classified into different GH families: GHI3 - a-amylases, GH14 - B-amylases, and
GH15 - glucoamylases (HENRISSAT, 1991).
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The enzymatic hydrolysis of a glycosidic bond can be characterized by a general
acid catalysis that requires two essential components: a proton donor (an acid) and a
nucleophile (a base). According to the anomeric configuration of the resulting
hydroxyl group with regard to conformation of the cleaved O-glycosidic linkage, two
basic mechanisms exist for this hydrolysis (Fig. 2): retaining or inverting
(MCCARTER and WITHERS, 1994). Whereas a-amylase employs retaining
mechanism (i.e. the products of its action are a-glucans), both B-amylase and
glucoamylase are inverting hydrolases (i.e. they produce B-glucans).
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Fig. 2. (a) Retaining reaction mechanism of glycoside hydrolases (MACGREGOR et al., 2001). The proton
donor protonates the glycosidic oxygen and the catalytic nucleophile attacks at C1 leading to formation of
the first transition state. The catalytic base promotes the attack of the incoming molecule ROH (water in
hydrolysis or another sugar molecule in trasnglycosylation) on the formation of the covalent intermediate
resulting in a second transition state, leading to hydrolysis or transglycosylation product. (b) Inverting
reaction mechanism of glycoside hydrolases (SAUER et al., 2000). The catalytic base (top) and acid
(bottom) in the water-assisted hydrolysis of substrate leading to inversion of the configuration of the
anomeric carbon.

From the structural point of view (Fig. 3), both a-amylase and B-amylase rank
among the TIM-barrel enzymes, i.e. they possess the (B/a)s-barrel catalytic domain,
while glucoamylase adopts a helical version of catalytic TIM-barrel, the so-called
(a/a)¢-barrel. Within the CAZy classification the a-amylases from the family GH13
with closely related families GH70 and GH77 constitute the clan GH-H that is well-
known as the a-amylase family (MACGREGOR et al., 2001; CANTAREL et al.
2009). It is worth mentioning that some a-amylases with sequences and structures
different from the main GH13 a-amylases have been placed to the family GH57
(JANECEK, 2005) and some amylolytic enzymes are present also in the family GH31
(NAKALI et al. 2005; KANG et al., 2008).
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Fig. 3. Three-dimensional structures of amylases. (a) GH13 a-amylase from Aspergillus oryzae (PDB code:
2TAA; Matsuura et al., 1984); (b) GH14 B-amylase from soybean (IBYA; Mikami et al., 1993) and (c)
GH15 glucoamylase from Aspergillus awamori (1AGM; Aleshin et al., 1992).

The catalytic machineries of GH13, GH14 and GH15 a-amylases, f-amylase and
glucoamylases, respectively, are also different: whereas the enzymes from the family
GHI13 possess a catalytic triad formed by two aspartates and one glutamate
(UITDEHAAG et al, 1999), both B-amylases (MIKAMI et al., 1993) and
glucoamylases (ALESHIN et al., 1992) have their catalytic machineries formed by
two glutamic acid residues that are, however, not alignable due to mutual amino acid
sequence differences (PUJADAS et al., 1996; COUTINHO and REILLY, 1997).

It thus could be summarised that amylases and related enzymes classified into the
families GH13 (forming with GH70 and GH77 the clan GH-H), GH14, GH15 as well
as GH31 and GHS57 differ from each other by their amino acid sequences, three-
dimensional structures, catalytic machineries and reaction mechanism (JANECEK,
2009).

3. a-Amylase enzyme family

Most of amylolytic enzymes are grouped in the a-amylase family (MACGREGOR
et al., 2001). It was originally recognised as a group of starch hydrolases and related
enzymes (such as a-amylase, cyclodextrin glucanotransferase, neopullulanase, etc.)
that exhibited sequence similarities and commonly predicted TIM-barrel fold
(MACGREGOR and SVENSSON, 1989; TAKATA et al, 1992). Within the
sequence-based classification of GHs, it was originally established as the family GH13
(HENRISSAT, 1991), but later the families GH70 and GH77 were added to form the
presently well-accepted GH-H clan (MACGREGOR, 2005; JANECEK, 2009).
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3.1. Clan GH-H

The above-mentioned families GH13, GH70 and GH77 form the clan GH-H, i.e.
the a-amylase family, which at present consists of 30 various enzyme specificities
(Table 1) and contains more than 6,000 sequences (CANTAREL et al., 2009). The
members of the a-amylase family are not only hydrolases, but also transferases and
isomerases. Based on amino acid sequence similarities, even some heteromeric amino
acid transporter proteins may be considered to be the non-amylolytic members of the
clan GH-H (JANECEK et al., 1997) (Fig. 4).

Not all family enzymes attack the glycosidic bonds in starch; they are active
towards the analogous bonds in glycogen, pullulan and other related poly- and
oligosaccharides, like trehalose, sucrose, etc. (MACGREGOR et al., 2001). Whereas
the family GH77 is a monospecific family, i.e. it contains only one enzyme specificity
- amylomaltase (alternative names 4-a-glucanotransferase or disproportionating
enzyme; EC 2.4.1.25), the family GH70 consists of two specificties -
glucosyltransferase (glucansucrase; EC 2.4.1.5) and alternansucrase (EC 2.4.1.140),
and the family GH13 is formed by all the remaining enzyme specificies (amylomaltase
being also present). GH13 is thus taken as the main a-amylase family (MACGREGOR
etal.,2001).

Enzymes that are members of the a-amylase family have to obey the following
four criteria (KURIKI and IMANAKA, 1999; MACGREGOR er al, 2001,
JANECEK, 2002; VAN DER MAAREL et al., 2002): (i) they act on a-glucosidic
bonds (not only the a-1,4- and a-1,6-linkages); (ii) they employ the retaining reaction
mechanism; (iii) they contain from 4 up to 7 conserved sequence regions; and (iv) they
possess the same catalytic machinery within the catalytic TIM-barrel fold consisting of
the aspartate residue near the end of the strand B4 (catalytic nucleophile), glutamate
residue near the end of the strand B5 (proton donor) and aspartate residue near the end
of the strand 7 (transition-state stabiliser).

The conserved sequence regions (Fig. 4) represent the short stretches of amino acid
sequence that can be found in every a-amylase family member in equivalent positions
and that contain the catalytic triad (Asp206, Glu230 and Asp297; Aspergillus oryzae
a-amylase numbering; MATSUURA et al., 1984) and other functionally important
residues (NAKAJIMA et al., 1986; JANECEK, 2002). These conserved sequence
regions - common for the entire clan GH-H - may also be used as the sequence
“fingerprints” since they contain amino acid residues exclusively specific for the
individual enzyme specificities (JANECEK, 2008).

3.2. Glycoside hydrolase family GH13

a-Amylase is the most known and widely used enzyme of the GH-H clan. In
general, a-amylases are endo-enzymes specific towards the a-1,4-glucosidic bonds,
but there are also related GH13 exo-amylases, the so-called maltooligosaccharide-
producing amylases (maltogenic a-amylase, maltotriohydrolase, maltotetraohydrolase,
etc.), preferentially active at one side of the polysaccharide chain producing small
oligosaccharides, such as maltose, maltotriose, maltotetraose, etc. (MACGREGOR et
al.,2001).
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The a-amylase family members are multidomain proteins (Fig. 3a) containing the
main catalytic domain in the form of a parallel (B/a)s-barrel (domain A) that is
interrupted by a usually small domain in the place of the loop 3 connecting the strand
B3 with the helix a3 (domain B) and succeeded by the antiparallel B-sandwich domain
(domain C). The a-amylase-type of the barrel was confirmed in all members of the a-
amylase family whose three-dimensional structure has already been determined (Fig.
4). The (P/a)g-barrel of a-amylases was first revealed in the structure of Taka-amylase
A (MATSUURA ef al., 1984), i.e. in the structure of the a-amylase from Aspergillus
oryzae. Since this type of fold was first identified in triose-phosphate isomerase
(TIM), the (B/a)s-barrel is often simply called TIM-barrel (FARBER and PETSKO,
1990). It is a barrel of eight inner parallel B-strands surrounded outside by eight a-
helices (Fig. 3a,b).

Table 1. The members of the a-amylase family (clan GH-H).

Enzyme class Enzyme EC GH
Hydrolases a-Amylase 32.1.1 13
Oligo-1,6-glucosidase 3.2.1.10 13
a-Glucosidase 3.2.1.20 13
Pullulanase 3.2.141 13
Amylopullulanase 3.2.1.1/41 13
Cyclomaltodextrinase 32.1.54 13
Maltotetraohydrolase 3.2.1.60 13
Isoamylase 3.2.1.68 13
Dextran glucosidase 3.2.1.70 13
Trehalose-6-phosphate hydrolase 3.2.1.93 13
Maltohexaohydrolase 3.2.1.98 13
Maltotriohydrolase 3.2.1.116 13
Maltogenic a-amylase 3.2.1.133 13
Maltogenic amylase 3.2.1.133 13
Neopullulanase 3.2.1.135 13
Maltooligosyltrehalose hydrolase 3.2.1.141 13
Maltopentaohydrolase 3.2.1.- 13
Sucrose hydrolase 3.2.1.- 13
Transferases Amylosucrase 24.1.4 13
Glucansucrase 24.15 70
Sucrose phosphorylase 24.1.7 13
Glucan branching enzyme 24.1.18 13
Cyclodextrin glucanotransferase 2.4.1.19 13
4-0-Glucanotransferase (Amylomaltase) 2.4.1.25 13,77
Glucan debranching enzyme 2.4.1.25/3.2.1.33 13
Alternansucrase 2.4.1.140 70
Maltosyltransferase 24.1.- 13
Isomerases Isomaltulose synthase 5.4.99.11 13
Maltooligosyltrehalose synthase 5.4.99.15 13
Trehalose synthase 5.4.99.16 13
HATs’ rBAT protein - 13
4F2hc antigen - 13

“ HATSs means the heteromeric amino acid transporter proteins. Adapted from JANECEK (2009).
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The active site of these enzymes is localised at the C-terminal end of the TIM-
barrel (MATSUURA et al., 1984, QIAN et al., 1993; KADZIOLA et al, 1994;
LINDEN et al., 2003). Comparison of known tertiary structures of various o-amylase
family members with sequence alignments have shown that differences in specificity
result from different variation of substrate binding at the B->a loops (SVENSSON,
1994; JANECEK, 1997). Also the active-site cleft is not of the same shape in each
case (KAMITORI et al., 1999; PRZYLAS et al., 2000), despite the fact it always
contains the same catalytic triad accompanied, however, by several additional residues
depending on a given enzyme specificity (MATSUURA, 2002). Differences especially
in the length, sequence and secondary structure have also been seen within the domain
B protruding out of the catalytic TIM-barrel in the place of the loop 3 (JESPERSEN et
al., 1991, 1993). It was pointed out that these differences may be directly related to
enzyme specificity (JANECEK et al., 1997). With regard to domain C succeeding the
catalytic TIM-barrel, this domain could contribute to the overall catalytic domain
stability by shielding the hydrophobic residues of the barrel (KATSUYA et al., 1998).

As far as the conserved sequence regions of the a-amylase family are concerned
(Fig. 4), four of them (the regions I, II, III and IV) belong to the best known regions
established more than 20 years ago, whereas the three additional ones (the regions V,
VI and VII) were identified more recently. The former regions (FRIEDBERG, 1983;
NAKAIJIMA et al., 1986; MACGREGOR ef al., 2001), positioned near the C-termini
of the B-strands B3, B4, B5S and B7 of the catalytic TIM-barrel, contain most of the
functionally important residues including the catalytic triad (Fig. 4). The latter regions
(JANECEK, 1992, 1994a,b, 1995, 2002), located near the C-terminal end of domain B
and of B-strands 2 and B8, cover the features distinguishing the individual enzyme
specificities from each other. Even the absence of the fifth conserved sequence region,
for example, may be used as a feature characteristic of a given specificity (JANECEK,
2000).

Although the basic arrangement of the o-amylase family members is the same
counting the three domains A, B and C (Fig. 3a), it should be taken into account that
there are some family members that contain additional C- and/or N-terminal domains,
for example cyclodextrin glucanotransferase (KLEIN and SCHULZ, 1991) and
neopullulanase (HONDOH et al.,, 2003). They may play various and still not
completely recognised functions, but most of them have been anticipated to be
involved in binding starch (glycogen, pullulan) and related substrate analogues. These
non-catalytic domains were in many cases confirmed to have this property and thus
have been called starch-binding domains (PENNINGA et al., 1995; SORIMACHI et
al., 1997). It was found that starch-binding domain disrupts the starch surface and thus
increases the effect of the amylolytic hydrolysis (SOUTHALL et al., 1999). Within the
CAZy server (Fig. 1), these motifs have been classified into the CBM (carbohydrate-
binding module) families (CANTAREL et al., 2009). At present, nine families of
starch-binding domains are known: CBM20, CBM21, CBM25, CBM26, CBM34,
CBM41, CBM45, CBM48, and CBM53. The motifs from the family CBM20 belong
to most intensively studied starch-binding domains (SVENSSON ef al., 1989;
JANECEK and SEVCIK, 1999; RODRIGUEZ-SANOIJA et al., 2005; MACHOVIC
and JANECEK, 2006a). Based on a detailed bioinformatics analysis it was suggested
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to establish a common CBM clan from the families CBM20 and CBMZ21
(MACHOVIC et al., 2005) and the motifs classified recently into the families CBM48
and CBMS53 could also join the proposed CBM clan (MACHOVIC and JANECEK,
2006b, 2008).

3.3. Glycoside hydrolase families GH70 and GH77

The family GH70 contains the sucrose-utilising glucosyltransferases
(glucansucrase and alternansucrase) that possess a circularly permuted version of the
a-amylase-type catalytic TIM-barrel (MACGREGOR et al., 1996). The first element
of the GH70-type barrel is the a-helix equivalent to helix o3 of the a-amylase-type
TIM-barrel, whereas the last element is the B-strand equivalent to strand B3 of a-
amylases (Fig. 5). This means that instead of E1-H1-E2-H2....E8-H8 present in a-
amylases (and overall in both the families GH13 and GH77), in GH70
glucosyltransferases there is H3-E4-H4-ES....H2-E3, where E and H stand for f-
strand and a-helix, respectively (MACGREGOR et al., 1996). The glucansucrases are
usually large multidomain proteins occurring exclusively in lactic acid bacteria (VAN
HIJUM et al., 2006).

@)

GH13
GH77

N-terminal end .
C-terminal end

Helix No. 1 2 3 4 5 6 7 8
C-terminal end N-terminal end
(b)
GH70

Fig. 5. The arrangement of the secondary structure elements in GH70 with respect to GH13 a-amylase type
TIM-barrel. (a) Typical “ordinary” TIM-barrel present in the members of the family GH13 (and also GH77);
(b) circularly permuted version of the family GH70. The helices are represented by black rectangles and the
strands are shown as arrows. The order of the helices in the GH13 (and GH77) is 12345678 from the N-
terminal end of the protein, whereas in the GH70 the order is 34567812. Adapted from MACGREGOR
(2005).

The structure/function relationships within the family GH70 and its relatedness to
the main a-amylase family GH13 were recently elucidated by determining the tertiary
structure of the GH70 glucansucrase from Leuconostoc mesenteroides (PIINING et
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al., 2008) that has confirmed the previous predictions concerning the circular
permutation (Fig. 5). The solved structure interestingly revealed that the enzyme
adopts the so-called “U-fold” domain arrangement so that 4 of the 5 domains are
formed by combining an N- and a C-terminal part of the polypeptide chain
(DIJKSTRA et al., 2007).

The family GH77 contains only one enzyme specificity, the amylomaltase (Table
1), known also as 4-a-glucanotransferase in bacteria (TERADA et al., 1999) and
archacons (KAPER et al., 2005) or disproportionating enzyme (D-enzyme) in plants
(TAKAHA et al., 1993). They exhibit a lower degree of sequence similarity to the
family GH13 (Fig. 4) and the main feature characteristic for the GH77 members is the
lack of domain C (PRZYLAS et al., 2000) succeeding typically the catalytic TIM-
barrel in GHI3 (Fig. 3). The GH77 structure contains several, mainly o-helical
insertions that can be divided into three subdomains (Fig. 6): (i) subdomain Bl
corresponds with GH13 domain B; (ii)) subdomain B2 is unique for the GH77
amylomaltases; and (iii) subdomain B3 is equivalent to GH13 domain C (STRATER
etal., 2002).

- Subdomain B2

2 (
(B/a)s-Barrel | Subdomain B3

v/ vw

Fig. 6. Three-dimensional structure of GH77 amylomaltase from Thermus aquaticus (1CWY; Przylas et al.,
2000).

The interest in the family GH77 was recently increased by revealing the putative
amylomaltases from a few borreliae that exhibited in their amino acid sequences the
non-GH77 features (GODANY et al., 2008). It was especially the arginine positioned
two residues before the catalytic nucleophile in the conserved sequence region II (Fig.
4) that was recognized to be replaced naturally by a lysine in the GH77 amylomaltase-
like protein from Borrelia burgdorferi (MACHOVIC and JANECEK, 2003). This
arginine was otherwise considered to belong to the four residues conserved invariantly
throughout the a-amylase family, i.e. the entire clan GH-H (JANECEK, 2002). The
exclusive (i.e. the non-GH77) sequence features present in GH77-like proteins from
borreliae have already been confirmed as well as it was determined that the B.



Nova Biotechnologica 9-1 (2009) 15

burgdorferi GH77 amylomaltase-like protein exhibits a typical amylomaltase activity,
i.e. the enzyme catalyzes both the hydrolysis of maltooligosaccharides and formation
of their transglycosylation products (GODANY et al., 2008). Based on the
bioinformatics analysis of various GH77 real and hypothetical amylomaltases, some of
the borrelial GH77-like proteins were suggested to exhibit an intermediary character
within this family (JANECEK, 2008).

3.4. Glycoside hydrolase families GH31 and GH57

The families GH31 and GH57 are not the members of the clan GH-H, i.e. they do
not belong to the a-amylase family in terms as it is widely accepted (MACGREGOR
et al., 2001), but they both deserve some attention here since they contain similar
enzyme  specificities  (a-amylase, a-glucosidase, amylopullulanase, 4-a-
glucanotransferase, branching enzyme, etc.).

The family GH31 contains, in addition to the above-mentioned o-glucosidases (EC
3.2.1.20 similar to GH13), also a-xylosidases and a-glucan lyases (FRANDSEN and
SVENSSON, 1998; LEE et al., 2005; KANG et al., 2008). Although it employs the
retaining mechanism (Fig. 2a) and its members adopt the catalytic TIM-barrel domain
(Fig. 7a) similar to that adopting in the a-amylase family (LOVERING et al., 2005;

@)

Domain ,-N‘ f —
A YT
7~ i

5

D in B
omain / >

L

pomainc % 4= -
(proximal) ~, — £

ﬂ% Domain C

W/  (distal)

Fig. 7. Three-dimensional structure of (a) GH31 a-xylosidase from Escherichia coli (1XSI; Lovering ef al.,
2005) and (b) GH57 4-a-glucanotransferase from Thermococcus litoralis (1K1W; Imamura et al., 2003).

ERNST et al., 2006; SIM et al, 2008) with even the corresponding catalytic
nucleophile (RIGDEN, 2002), the family GH31 has not joined the clan GH-H. One of
the reasons is the difference in the proton donors used in GH31 and GH-H
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(MATSUURA et al., 1984; UITDEHAAG et al., 1999; LOVERING et al., 2005).
Based on a detailed bioinformatics study, an idea on the so-called remote homologies
between the family GH31 and clan GH-H was proposed recently (JANECEK et al.,
2007) indicating a possibility to create a level of evolutionary hierarchy higher than a
clan.

As far as the family GHS7 is concerned, it contains several enzyme specificities
that are also members of the main o-amylase family, only the a-galactosidase (EC
3.2.1.22) being different (JANECEK, 2005; MURAKAMI et al., 2006). It also
employs the retaining mechanism, but due to a different catalytic domain - an
incomplete version of a TIM-barrel, i.e. a (B/a);-barrel (Fig. 7b) and catalytic
machinery (IMAMURA et al., 2003; DICKMANNS et al., 2006) - it should be
evolutionarily more distantly related to GH13 than is the family GH31 (JANECEK,
1998). Moreover, GH57 exhibits its own conserved sequence regions (ZONA et al.,
2004) that are different from those characteristic for the clan GH-H (JANECEK,
2002).

4. a-Amylases from archaebacteria and plants

At present it is well-known and accepted that plant and archaeal a-amylases from
the family GH13 are sequentially similar and evolutionarily related. This remarkable
finding was first observed ten years ago (JANECEK et al., 1999; JONES et al., 1999).
Before the first GH13 a-amylases from Archaea became available, the plant a-
amylases were positioned in the evolutionary tree (Fig. 8) on a branch next to the
cluster of bacterial liquefying and intracellular a-amylases represented by bacilli and
enterobacteria, respectively (JANECEK, 1994b).

4.1. Similarities and differences

The first detailed bioinformatics study focused on the archaeal a-amylases and
their counterparts from a wide spectrum of remaining living organisms from Bacteria
and Eucarya revealed (JANECEK et al., 1999) that the sequence features exclusive for
the a-amylases from hyperthermophilic archaeons are present also and almost only in
the plant a-amylases (Fig. 9). These features are as follows (JANECEK et al., 1999):
(1) Nel07 (Thermococcus hydrothermalis a-amylase numbering; LEVEQUE et al.,
2000a) succeeding the conserved aspartate in the conserved sequence region region I
(strand B3); (ii) (Ala194)-Trp195 at the beginning, Tyr199 in the middle and Gly202 at
the end of the region II (strand B4); (iii) Ala219 succeeding the conserved tryptophane
and Tyr223-Trp224 succeeding the catalytic proton donor (Glu222) in the region III
(strand B5); (iv) Ala286 in the region IV (strand B7); (v) Ile196 in the region V
(located within the loop3, i.e. domain B); (vi) Ile42 succeeding the conserved glycine
at the beginning and dipeptide Pro48-Pro49 at the end of the region VI (strand 2); and
(vii) GIn309 succeeding the conserved glycine at the beginning, tripeptide Ile312-
Phe313-Tyr314 in the middle and Asp316 at the end of the region VII (strand 8). It is
worth mentioning that some of the above-mentioned residues have already been
recognised as functionally important residues (KADZIOLA et al., 1998; LINDEN e¢
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Fig. 8. The evolutionary tree of microbial (including fungi and yeasts), plant and animal a-amylases. The
bacterial sources are abbreviated as follows: Dicth, Dictyoglomus thermophilum; Micsp, Micrococcus sp.;
Bacme, Bacillus megaterium; Escco, Escherichia coli; Salty, Salmonella typhimurium; Bacst, Bacillus
stearothermophilus; Bacam, Bacillus amyloliquefaciens; Bacli, Bacillus licheniformis; Bacsu, Bacillus
subtilis; Butfi, Butyrivibrio fibrisolvens, Xanca, Xanthomonas campestris; Aerhy, Aeromonas hydrophila.
The tree does not contain any archaeal a-amylase since at the beginning of 90s of the previous century no
sequence of an archaeal a-amylase was available. The red arrow indicates the the cluster of plant o-
amylases. Adapted from JANECEK (1994b).
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al., 2003). Thus for example the glycine from the region II (Gly202 of the archaeal a-
amylase) serves as a specific ligand for calcium ion and the tryptophane from the
region III (Trp224 of the archaeal a-amylase) forms a stacking interaction with one of
the acarbose rings bound in the active site in the complex structure of barley a-
amylase with acarbose (KADZIOLA et al., 1998). These residues should play the
same roles in the structure of the archaeal o-amylase from Pyrococcus woesei
(LINDEN et al., 2003).

The close sequence similarity between the a-amylases from Archaea and plants has
evoked the idea on a possibility to reveal the factors responsible for the high
thermostability of the archaeal a-amylases that exhibit the temperature optima around
and above 80 °C (LEVEQUE et al., 2000b; BERTOLDO and ANTRANIKIAN,
2002). The plant enzymes are generally substantially less thermostable. It is worth
mentioning that on the one side the archaeal and plant a-amylases contain the common
sequence features that discriminate them from the remaining sources, but on the other
side they have to possess the additional sequence features that should enable one to
distinguish them from each other, e.g., the alanine from the region IV (Ala286 of the
archaeal a-amylase) that has no correspondence in the plant counterparts (Fig. 4). Such
specific differences could be utilized in an effort to identify the molecular basis of
high thermostability of the archaeal a-amylases via the approaches of site-directed
mutagenesis and protein design.

Fig. 10. The evolutionary tree of a-amylases. The tree reflects the conserved sequence fingerprints of o-
amylases (Fig. 9). Adapted from JANECEK (2008).



Nova Biotechnologica 9-1 (2009) 19

4.2. Evolutionary relatedness

The close evolutionary relatedness of the a-amylases from Archaea and plants
from the family GH13 is shown in Figure 10. The GH13 as one of the largest GH
families (CANTAREL et al., 2009) has recently been divided into the subfamilies
(STAM et al., 2006), the plant and archaeal a-amylases being placed into the
subfamilies GH13 6 and GH13 7, respectively. With regard to the a-amylases most
closely related to those from plants and Archaea (Fig. 10), these are the bacterial
enzymes from Bacillus licheniformis (YUUKI et al., 1985) and Escherichia coli
(RAHA et al, 1992) that represent the liquefying and intracellular a-amylases,
respectively, as observed originally (JANECEK, 1994b). It should be noted, however,
that the close evolutionary relationships between the a-amylases from Archaea and
plants illustrated here only for a limited sample of living organisms (Fig. 10) has been
confirmed also in the more recent evolutionary trees comparing a wider spectrum of
taxonomic sources including novel groups of a-amylases from bacteria (DA LAGE et
al., 2004) and fungi (VAN DER KAAIJ et al., 2007).
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