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Abstract

Purpose of this paper is to describe the possible usage of artificial neural networks
for Abelian Sandpile model research. For developing neural networks, Neuroph Studio
has been chosen, and Abelian sandpile model has been considered on 2-dimensional
grid.
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1. Introduction

The structure and function of neural networks (NN) are based on our current understanding
of the biological nervous system. NNs are built on a large number of simple and adaptable
processing units (PU) which are interconnected in such a way that they can store expe-
riential knowledge through learning from examples and, like biological systems, have the
ability to take in hazy information from the outside world and process it without an explicit
set of rules. This approach (parallel and distributed) is in contrast to the traditional com-
puting approach which processes information sequentially according to a set of exact rules.
Also, their structure and function provide a typical example of the applications of systems
perspective concept which puts much emphasis on, in addition to the individual elements
and their operations, the relationships among the elements and how they influence each
other within the system (Wu, 1992). Perhaps due to some of the difficulties that have been
experienced with the traditional expert system applications, and because of the rapid devel-
opment and introduction of NN system development tools, NNs have created a substantial
amount of interest in the manufacturing arena, with systems and techiques being developed
for organization, operational, as well as machine-level applications.

The concept of self-organized criticality was first introduced by Bak, Tang andWiesenfeld
in 1987 [1], and gave rise to growing interest in the study of self-organizing systems. Bak
et al. argued that in many natural phenomena, the dissipative dynamics of the system is
such that it drives the system to a critical state, thereby leading to ubiquitous power law
behaviors. This mechanism has been invoked to understand the power law distributions
observed in turbulent fluids, earthquakes, distribution of visible matter in the universe, solar
flares and surface roughening of growing interfaces. The Sandpile models, being a class of
cellular automata, are among the simplest theoretical models, which exhibit self-organized
criticality. A special subclass of interest consists of so called Abelian sandpile models (ASM).
The Abelian property means that the final stable state of the CA is independent of the order
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in which the updates of cells are carried out. This property plays a key role during the
numerical, as well as analytical studies of the ASM [2]–[5]. In this paper we describe the
usage of neural networks in the research of Abelian Sandpile model on 2-dimensional grid.
The problem statement is considered in the ”Problem of interest” section.

2. Basic Structure of NNs and Neuroph Studio

As mentioned above, artificial neural networks consist of processing units (PU), which are
the building bricks of NNs. PUs usually take the form shown in Fig.1, and emulate (as-
sumingly) the function of a neuron in the brain. Basically, PUs are logic processing devices
endowed with a fundamental function over the sum of their weighted inputs and a certain
threshold value. Mathematically, this is expressed as:

yi = fi

(

n
∑

j=1

wijxj − si

)

= fi(ai), (1)

where yi, wij, xj and si stand for the PU output signal, the weight of the j to i intercon-
nection, input value from PUj and the threshold value of PUi, respectively. The input to
PUi can be either the output from other PUs or directly from outside the NN , i.e., input
to the NN . The output from PUi can be used either as an input to the subsequent PUs or
as an output from the NN . The value of wij determines how strongly the output of PUj

influences the activity of PUi. The magnitude of a weight can be changed over time. During
a training operation, it is mainly through this mechanism that the PU is made adaptive to
new information put to it, and the learning process is accomplished. As will become clear
later, the total weight matrix W of an NN encompasses and reflects the NN ′s knowledge
and skills that it has learnt through previous training, and is therefore referred to as its
long-term memory.

Fig 1. The processing unit.

The threshold si acts as a filter for incoming signals. The term inside the brackets in
Equation 1, ai, is known as the activation of PUi, which provides temporary and local
information around it. This is therefore referred to as the PU ′s short-term memory.

The value of ai is transformed by the PU ′s output function, fi, to determine the mag-
nitude of its current output signal. A number of activation functions have been used to
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construct NNs, of which the step function is the simplest and the most straightforward
(Fig. 2a). With the step activation function, a PU produces an output signal of either ′1′ or
′0′ depending on whether or not the level of its activation is above a certain threshold value.
That is:

yi =

{

1 if ai > 0
0 otherwise

where

ai =
n
∑

j=1

wijxj − si

However, in order to filter out the noise and hence enhance the ability of achieving a true
steady state of operation, for some NNs a sigmoid activation is usually used in practice,
expressed in the form of:

Fig. 2. Activation functions: (a) step activation function; (b) sigmoid activation function.
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yi = fi(ai) =
1

1 + e−cai
,

where,

ai =
n
∑

j=1

wijxj − si.

Here c is a constant which determines the degree of ’uncertainty’ introduced into PUi activ-
ity.
The general shape of this function is as shown in Fig. 2b. Some of the advantages offered by
this type of function will become clear later in the text (1/c is also known as the ’tempera-
ture’). In some cases its value can be set at an artificially high level initially to ’shake’ the
NN so that it has a better chance of achieving its true stable state. This is then gradually
reduced to allow it to cool down to the ideal state, i.e. step function with zero degree of
temperature. This is known as simulated annealing).

Neuroph Studio is lightweight Java neural network framework to develop common neural
network architectures. It contains a well-designed, open-source Java library with a small
number of basic classes, which correspond to basic NN concepts. It also has a nice GUI as
neural network editor to quickly create Java neural network components. For creating and
testing neural networks over cellular automata, Neuroph Studio has been chosen.

3. Sandpile Model

Consider an undirected graph G = (V,E) described with the set of vertices V =
{v1, v2, . . . , vN} and the set of edges E. Each vertex vi ∈ V is assigned a variable hi, which
takes integer values and represents the height of the sand at that vertex. hmax

i denotes the
maximal allowed height for the vertex vi in the graph G. For a d-dimensional lattice, we
take hmax

i = 2d + 1. CT denotes the set of heights hi, which determines the configuration
of the system at a given discrete time T . A configuration is called stable, if all heights
satisfy hi < hmax

i . The vertex vi is called closed, if hmax
i = deg(vi), where deg(vi) indicates

the degree of vi. The dynamics of the system is defined by the following rules. Consider
a stable configuration CT at a given time T . We add a grain of sand to a random vertex
vi ∈ V by setting hi to hi+1 (we assume that the vertex is chosen randomly with a uniform
distribution on the set V ). This new configuration, if stable, defines CT+1. If hi ≥ hmax

i ,
then the vi becomes unstable and topples losing hmax

i grains of sand, while all neighbors of vi
receive one grain. Note that if the vertex is open, then the system loses grains. During the
toppling of the closed vertices, the number of grains is conserved. Note also that toppling
of a vertex may cause some of its neighboring vertices to become unstable. In this case,
those vertices also topple according to the same toppling rule. Once all unstable vertices are
toppled, a new stable configuration CT+1 is obtained. If the finite connected graph G has
at least one open vertex, then all vertices become stable after a finite number of topplings.
Moreover, the new stable configuration is independent of the toppling order. Let âi be an
operator, which acts on sandpile configurations and adds a grain to vertex i. It can be easily
shown that âiâj = âjâi. This is the reason why the sandpile model is called Abelian.
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4. Problem of Interest

The research problem concerns the Abelian Sandpile model over a 2 dimensional square
lattice of size (n ∗ n), where n stands for the number of nodes on each lattice line. Consider
n− > ∞. ri,j will be called the distance between Vi and Vj, or in other words, the minimum
count of edges, which is needed to pass between Vi and Vj. Ci,j will be the min count of
grains, that by toppling that much grains on Vi, and letting the model to become stable, we
can make sure that at least one grain has reached the node Vj, in oder words hj ≥ 1. Let’s
consider a 2-dimensional lattice, where hi = 0, ∀i, 0 ≤ i ≤ n2. Let’s choose any Vi node on
the lattice. The problem is to find a formula describing connection between ri,j and Ci,j.
There are articles [6], [7] regarding this problem. It should be noted that an exact formula
describing C0,J dependency on j does not exist, also all the results obtained up to date are
interpreted via approximation formulas only.

In order to obtain correct results for C0,j , wherej > 0, a software program has been cre-
ated which simulates the sandpile model and produces the data for neural network learning.

4.1 Results

In this subsection we give a comparative analysis of the results obtained by the applications
of newly created software package and the ones that gave neural networks. As an example
of a neural network, a so-called ”multilayer perceptron” with one input neuron and one
output neuron, has been chosen. Bias neurons have been used in NN structures, where the
sigmoid type has been chosen for transfer function, meanwhile, the learning rule is developed
based on back-propagation methodology. In listed examples, the difference between neural
networks structure are hidden neurons count only. There are 3 cases regarding the neural
networks architecture depending on neurons’ count. The first case concerns the presence of
a lot of neurons, when the NN will memorize all input values while training and will produce
the results of tests without thinking. In the second case, a very little number of neurons are
under consideration, and the NN will produce rather wrong results and, therefore, will be
not that smart. The third case, named ”The Golden Mean”, has a big range regarding the
neurons’ count, and it is not that hard to find out the structure corresponding to this case.
In this example, the results of tests, given below in Figures 4 and 5, illustrate that the total
mean square error is less for NN with 10 neurons comparing with the test results with 14
ones. The bigger the training set is, the more neurons are needed.

Fig. 3. Neural Network state after training
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Fig. 4. Test results with 10 neurons

Fig. 5. Test results with 14 neurons

Fig. 6. Attributes
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5. Conclusion

In this paper, Neural Networks’ usage for solving ASM problems has been discussed. The
goal of this work was to find out neural network structure corresponding to the problem such
as the one described in “Problem of Interest” section. Comparative analyzes between actual
results and the ones that gave NN has been discussed, and in case of acceptable oversight
ASM simulation could be changed via neural networks described in this research in order of
minimizing time consumptions. Also the comparative analysis of different neural networks’
architectures has been conducted. Perspectives on work are to use cluster systems for getting
results of C0,j for bigger j and compare with results of already known solutions/formulas
and with the ones from ASM simulation.
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Ü»ÛñáÝ³ÛÇÝ ó³Ýó»ñÇ û·ï³·áñÍáõÙÁ ³í³½³ÏáõÛïÇ ³µ»ÉÛ³Ý
Ùá¹»ÉÇ Ñ»ï³½áïáõÃÛ³Ý Ñ³Ù³ñ

Ð. Ü³Ñ³å»ïÛ³Ý

²Ù÷á÷áõÙ

²Ûë Ñá¹í³ÍÇ Ýå³ï³ÏÝ ¿ ÝÏ³ñ³·ñ»É ³ñÑ»ëï³Ï³Ý Ý»ÛñáÝ³ÛÇÝ ó³Ýó»ñÇ ÑÝ³ñ³íáñ
û·ï³·áñÍáõÙÁ ³í³½³ÏáõÛïÇ ³µ»ÉÛ³Ý Ùá¹»ÉÇ Ñ»ï³½áïáõÃÛ³Ý Ñ³Ù³ñ: Ü»ÛñáÝ³ÛÇÝ
ó³Ýó»ñÇ Ùß³ÏÙ³Ý Ñ³Ù³ñ ÁÝïñí»É ¿ Neuroph Studio-Ý, ÇëÏ ³í³½³ÏáõÛïÇ ³µ»ÉÛ³Ý
Ùá¹»ÉÁ ¹Çï³ñÏí»É ¿ »ñÏã³÷ ù³é³Ïáõë³ÛÇÝ ó³ÝóÇ íñ³:

Èñïîëüçîâàíèå íåéðîííûõ ñåòåé äëÿ èññëåäîâàíèÿ ìîäåëüè
ïåñ÷àíîé êó÷è

Ã. Íàãàïåòÿí

Àííîòàöèÿ

Öåëü ýòîé ñòàòüè - îïèñàòü âîçìîæíîå èñïîëüçîâàíèå èñêóññòâåííûõ
íåéðîííûõ ñåòåé äëÿ èññëåäîâàíèé ìîäåëüè ïåñ÷àíîé êó÷è. Äëÿ ðàçðàáîòêè
íåéðîííûõ ñåòåé áûëà âûáðàíà Neuroph Studio, à ìîäåëü ïåñ÷àíîé êó÷è áûëà
ðàññìîòðåíà íà äâóìåðíîé ñåòêå.
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