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Abstract

High-performance computing is a good choice for handling Big Earth Observation
data, allowing the processing of the data in a distributed and performance-efficient way
using in-memory computing frameworks. The data compression technique reduces the
amount of storage and network transfer time and improves processing performance.
The article aims to investigate the effectiveness of widely used distributed data pro-
cessing frameworks in conjunction with lossless data compression techniques, to find
the optimal compression method and processing framework for specific earth obser-
vation workflows. Normalized Difference Vegetation Index has been evaluated for the
territory of Armenia, obtaining data from the Sentinel satellite and considering the
supported compression methods to compare the performance of in-memory Dask and
Spark frameworks. Experiments show that the Zstandard compression method and
the Dask framework are the best choices for such workflows.
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1. Background and Motivation

Earth Observation (EO) satellite data are necessary for environmental monitoring and gath-
ering vital information about various Earth layers [1]. Specifically, EO data are widely used
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to monitor the atmosphere including air pollution [2] and temperature [3], the oceans con-
sidering sea pollution and ocean acidity [4], and ground, such as deforestation [5] and forest
fire [6], as well as to detect climatic changes [7].

To facilitate work with EO data, Australian researchers [8] have provided an open-source
Open Data Cube (ODC) [9], which is deployed and widely used by several communities
from different countries, including Armenia [10]. Nevertheless, the ODC communities still
encounter the Big EO data processing challenge requiring high-performance computational
(HPC) resources. For instance, the Sentinel-2 satellite [11] provides approximately 200-300
GB, 3 TB, and 36 TB of daily, monthly, and annual data for the territory of Armenia.
Handling this amount of data is a complex task. Therefore, HPC is the right choice to
improve data processing performance using distributed computing techniques. Thus, the Big
EO data processing obstacle is coping with using open-source Apache Spark [12] and Dask
[13] frameworks, which can process data in parallel by dividing them into chunks, processing
them in a distributed way using computational clusters, and aggregating the result. Both
frameworks have master-slave architecture, where slave nodes are worker nodes executing
functions in parallel, and the master node is the driver or scheduler to manage them. Spark
ecosystem supports many projects in data streaming, SQL analytics, and machine learning.
Spark is a multi-language engine that processes and analyzes data, while Dask is a Python
library. Therefore, Spark has its ecosystem APIs and memory models, while Dask uses
them from the Python ecosystem. However, these frameworks have some differences and
limitations in finding an optimal solution for EO data processing workflows.

Besides using HPC, the format of EO satellite images also has a crucial influence on
performance. The data compression techniques can reduce storage usage and the number
of I/O operations, improving processing performance. Recent studies [14, 15] show that
compression methods combined with HPC can significantly enhance the performance of Big
data workflows. One of the optimal satellite image formats is Cloud Optimized GeoTIFF
(COG) [16], which provides essential advantages compared to traditional formats, such as
NetCDF [17]. COG format provides an HTTP range request to extract a part of the data.
Hence, when extracting EO data using COG, there is no need to download the entire image
and then extract the area of interest as in the NetCDF format. Besides the mentioned
benefit, both COG and NetCDF formats support data compression methods.

Several studies [18, 19, 20] evaluate and compare the performance of the frameworks for
particular cases, such as data-intensive neuroimaging pipelines [18], different applications
of molecular dynamics [20], and scientific image analytics [19]. Nevertheless, they did not
consider performance-tuning techniques, such as data compression.

The main objective of the article is to investigate the efficacy of widely used distributed
data processing frameworks, such as Dask and Spark, in combination with lossless data
compression methods, to enhance the performance of EO data processing. The methodology
involved evaluating the approach on the Armenian hybrid research computing platform, and
the results obtained from the evaluation could be used by EO communities to make informed
decisions about improving their data processing performance.

2. Methodology

A test-bed platform for EO data processing has been deployed to execute EO data pro-
cessing functions and compare the performances in Spark and Dask. The platform is a
container-based solution within the Kubernetes system, enabling evaluating and comparing



A. Lalayan 37

the environments’ performance. It relies on the computational resources of the Armenian
hybrid research computing platform [21]. Fig. 1 shows the architecture of the experimental
platform.

Fig. 1. Test-bed platform based on Spark and Dask.

As the figure shows, each node scheduler/driver or worker/executor corresponds to a
pod in Kubernetes with some fixed computational resources. It is possible to configure the
computational resource characteristics of nodes with Kubernetes API. The Jupyter Notebook
[22] corresponds to the FrontEnd of the Spark and Dask cluster BackEnd. It connects to
Dask and Spark of master nodes, configures environments by providing the number of worker
nodes and computational resources for each node, requests to process EO data using Dask
and Spark clusters, and visualizes the output. Dask and Spark clusters fetch data from
repositories of either local Armenian DataCube [23] or global EO data providers. Armenian
DataCube [10] provides data from Landsat 5, 7, 8 [24], and Sentinel-2 satellites, and one of
the global EO data providers is Sentinel-2 Cloud-Optimized GeoTIFFs [25].

The functionality evaluation of the Dask and Spark frameworks is quite interesting.
Dask is a flexible Python library, which makes it easy to migrate and execute the old-
written Python code in a distributed manner. Moreover, Python is widely used in EO data
workflows, and various useful libraries provide vital tools to make the work with EO data
easier. However, working with EO data in Spark is a little tricky because the execution
of the old-written codes in the Spark environment is impossible, as it supports APIs of its
ecosystem, therefore, the code adjustment is inevitable. The GeoPySpark library [26] makes
working with EO data somewhat easier in Spark. So the data processing function can be
easily parallelized only in Dask, considering the limitations and complexity of using Spark.

As EO data processing applications, the Normalized Difference Vegetation Index (NDVI)
[27] was evaluated during the experiments, which provides information for monitoring the
health of the vegetation. The formula of the index is presented in (1).

NDV I =
NIR−RED

NIR +RED
, (1)

where RED is the red band, and NIR is the near-infrared band. All bands and the calcula-
tion result are matrices or images and the NDVI index is calculated from Sentinel-2 satellite
images.
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Several experiments were conducted with different parameters to evaluate the perfor-
mances of Dask and Spark using the developed experimental platform. Table 1 presents all
parameters and their values.

Table 1: Experimental parameters and their values.

Parameter name Possible values

Environment Dask and Spark

Input Data sizes 16, 32, 64 GBs

Number of workers 4, 8, 16, 32

Applications NDVI

Compression methods None, Deflate, LZW, Packbits, and Zstandard

3. Experimental Results

Data compression techniques reduce the actual size of data, resulting in savings in stor-
age space, providing faster network transmission times, and improving the performance of
processing. EO data repositories, which provide satellite images in COG format, such as
Sentinel-2 COGs, by default, use Deflate compression method to reduce the downloading
time of satellite images and save some storage space. Besides the Deflate method, several
compression methods, either lossy or lossless, could be applied with COGs. The accuracy
of the satellite image is essential, as the spatial resolution of the Sentinel-2 image is 10m
[10], which corresponds to the surface area measured on the ground represented by each
pixel. Therefore, the compression methods used for optimization should be lossless to en-
sure accurate results. The COG format supports several lossless compression methods, such
as Deflate [28], LZW [29], Packbits [30], and Zstandard [31].

EO band tiles come in three different sizes (light, medium, and heavy) by which the
compression factor is estimated to understand the average compression ratio of the method.
The light band tiles (coastal, water vapor, etc.) usually have up to 5-10 MB size, medium
50-70 MB (Short-wave infrared (SWIR), vegetation red edge, etc.), and heavy 200-250 MB
(RED, NIR, etc.). They consider all types of possible lossless compression methods. The
compression ratio is calculated for each method by dividing the compressed data size by the
original uncompressed data size. The compression ratios for various compression methods
are presented in Fig. 2.

The figure shows that the best compression factor is provided by the Zstandard method,
whereas the worst one is provided by the Packbits method. Zstandard codec compresses
the band image more than the Deflate does, which is by default used by the Sentinel-2
COGs repository. Therefore, using Zstandard instead of Deflate will lead to more storage
savings, and less network transfer time and I/O operations. The storage reduction, in this
case, is 34 % compared with the uncompressed data and 16 % compared with Deflate. The
compression ratio of the Packbits method for the heavy tiles is close to 1, which means that
the method is useless for data size reduction since the actual size and compressed data size
will be the same. Besides the storage saving, further data processing is also essential, as
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Fig. 2. Compression ratio of Deflate, LZW, Packbits, and Zstandard methods for light, medium,
and heavy tiles.

high compression needs more CPU time to decompress into memory before processing. The
majority of the time spent in computing NDVI is devoted to transferring satellite images
over the network and loading them into memory, rather than performing calculations using
the CPU. The comparison of the performances of Dask and Spark, considering different sizes
of input data, compression methods, and 32 worker nodes is shown in Fig. 3.

The execution time of the COG tile compressed with the Packbits method and without
compression is almost the same, as Packbits provides weak compression; thus, it uses lit-
tle CPU time for decompression. The worst performance for both environments from the
possible compression methods is Deflate, whereas the best one is Zstandard. Hence, the
best compression method for satellite images in COG format is Zstandard, as it provides
the highest compression ratio and optimal memory loading time. The performance im-
provement when using Zstandard compared to uncompressed mode is achieved by reducing
network transfer time. Zstandard provides on average 2.15 and 1.82 times faster execu-
tion time compared with the uncompressed mode, approximately 4.72 and 3.99 times faster
than the default selected Deflate method provided by global satellite image repositories cor-
respondingly for Dask and Spark environments. Performance evaluation using Dask and
Spark is quite interesting. For the default used Deflate compression method provided by EO
repositories, Spark and Dask show similar execution times; however, Spark is a bit faster.
The LZW compression method for the Dask environment is better than Deflate but worse
than without compressing or compressing with Zstandard. Also, Spark does not support
the compression method. With uncompressed data, Dask is faster than Spark for 16 GB
input, whereas, in cases of 32 GB and 64 GB, Spark is faster. Performance in Dask using
the Zstandard compression method is an optimal choice.
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Fig. 3. Comparison of Dask and Spark considering 16, 32, 64 GBs of input data and compression
methods.

4. Discussion

The study showed that various data compression methods could reduce storage require-
ments and network transfer time at different scales. Moreover, compressed data processing
using multiple techniques in distributed environments such as Spark and Dask exhibited
other execution times, with some compression methods outperforming uncompressed data
processing time. The study aims to determine the optimal data compression method that
balances performance and storage savings in the chosen distributed processing environments.
The evaluation shows that the Dask and Zstandard combination is the best choice for the
environment and compression method for EO satellite images. It provides the highest com-
pression factor and performance compared to other supported compression methods.

The Armenian DataCube was initially set up with a 2-terabyte storage capacity, which is
limited. To manage this, only the essential bands for specific EO applications that researchers
are interested in during a particular period are downloaded and stored. If the storage capacity
is exceeded, the options are to scale vertically or add external storage. The Zstandard
compression technique was used in experiments to conserve 34 % of storage. This allows
more data to be stored in the allocated DataCube space.

The Zstandard compression method combined with the Dask environment offers benefits
such as improved data storage efficiency and EO data processing time. However, additional
steps are required to achieve these benefits, such as converting analysis-ready data from the
DataCube to Cloud Optimized GeoTIFF format and compressing them using the Zstandard
method. Although this may increase the total execution time of downloading and prepro-
cessing, it provides such benefits as enhanced processing time and storage savings. Moreover,
this efficient method of storing compressed data can be applied to other types of EO data
repositories and DataCubes.
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In conclusion, data compression methods can effectively reduce the amount of EO data
stored and improve processing performance. Zstandard exhibits the best performance and
storage efficiency for EO data among the available compression methods. Additionally, the
implementation of the Dask environment speeds up distributed processing.

5. Conclusion

The study evaluates the performance of EO data processing in Dask and Spark, considering
compression methods. Experimental results show that Dask and Spark provide similar data
processing performances. The mixture of the Dask and Zstandard compression methods
is optimal, as the compression method provides the best compression factor of all possible
lossless compression methods. It reduces the amount of used storage by 16 % and speeds up
execution times by 4.72x and 3.99x in Dask and Spark, correspondingly compared with the
Deflate method, which is used by default from the EO data repositories. In further work, it
is planned to store the data in Armenian DataCube compressed with the Zstandard method
and use the Dask environment for data processing.
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Dask-Ç ¨ Spark-Ç Ï³ï³ñáÕ³Ï³ÝÇ í»ñÉáõÍáõÃÛáõÝ` Ñ³ßíÇ ³éÝ»Éáí 
ïíÛ³ÉÝ»ñÇ ë»ÕÙáõÙÁ ºñÏñÇ ¹Çï³ñÏÙ³Ý

ïíÛ³ÉÝ»ñÇ Ùß³ÏÙ³Ý Ñ³Ù³ñ

²ñÃáõñ ¶. È³É³Û³Ý

ÐÐ ¶²² ÆÝýáñÙ³ïÇÏ³ÛÇ ¨ ³íïáÙ³ï³óÙ³Ý åñáµÉ»ÙÝ»ñÇ ÇÝëïÇïáõï, ºñ¨³Ý, Ð³Û³ëï³Ý
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²Ù÷á÷áõÙ

´³ñÓñ Ï³ï³ñáÕ³Ï³Ý Ñ³ßí³ñÏÁ É³í ÁÝïñáõÃÛáõÝ ¿ »ñÏñÇ ¹Çï³ñÏÙ³Ý Ù»Í
ïíÛ³ÉÝ»ñÇ Ùß³ÏÙ³Ý Ñ³Ù³ñ, ÇÝãÁ ÃáõÛÉ ¿ ï³ÉÇë ïíÛ³ÉÝ»ñÇ Ùß³ÏáõÙÁ µ³ßËí³Í ¨ µ³ñÓñ
³ñ¹ÛáõÝ³í»ïáõÃÛ³Ùµ? û·ï³·áñÍ»Éáí ÑÇßáÕáõÃÛ³Ý Ù»ç Ñ³ßíáÕ³Ï³Ý Ñ³ñÃ³ÏÝ»ñ:
îíÛ³ÉÝ»ñÇ ë»ÕÙÙ³Ý ï»ËÝáÉá·Ç³Ý Ýí³½»óÝáõÙ ¿ å³Ñ³ÝçíáÕ å³Ñ»ëï³íáñÙ³Ý
Í³í³ÉÁ ¨ ó³ÝóÇ ÷áË³ÝóÙ³Ý Å³Ù³Ý³ÏÁ, ÇÝãå»ë Ý³¨ µ³ñ»É³íáõÙ ¿ ïíÛ³ÉÝ»ñÇ
Ùß³ÏÙ³Ý Å³Ù³Ý³ÏÁ: Ðá¹í³ÍÇ Ýå³ï³ÏÝ ¿ áõëáõÙÝ³ëÇñ»É É³ÛÝáñ»Ý û·ï³·áñÍíáÕ
ïíÛ³ÉÝ»ñÇ Ùß³ÏÙ³Ý ßñç³Ý³ÏÝ»ñÇ ³ñ¹ÛáõÝ³í»ïáõÃÛáõÝÁ‘ ïíÛ³ÉÝ»ñÇ ³ÝÏáñáõëï
ë»ÕÙÙ³Ý ï»ËÝÇÏ³ÛÇ Ñ»ï Ñ³Ù³ï»Õ, ºñÏñÇ ¹Çï³ñÏÙ³Ý Ñ³ïáõÏ ³ßË³ï³Ýù³ÛÇÝ
Ñáëù»ñÇ Ñ³Ù³ñ ë»ÕÙÙ³Ý ûåïÇÙ³É Ù»Ãá¹ ¨ Ùß³ÏÙ³Ý ßñç³Ý³Ï ·ïÝ»Éáõ Ñ³Ù³ñ:
´áõë³Ï³ÝáõÃÛ³Ý ÝáñÙ³É³óí³Í ï³ñµ»ñáõÃÛ³Ý ÇÝ¹»ùëÁ ·Ý³Ñ³ïí»É ¿ Ð³Û³ëï³ÝÇ
ï³ñ³ÍùÇ Ñ³Ù³ñ` û·ï³·áñÍ»Éáí Sentinel ³ñµ³ÝÛ³ÏÇ ïíÛ³ÉÝ»ñÁ ¨ Ñ³ßíÇ ³éÝ»Éáí
ë»ÕÙÙ³Ý ³ç³ÏóíáÕ Ù»Ãá¹Ý»ñÁ ÑÇßáÕáõÃÛ³Ý Ù»ç Dask ¨ Spark ßñç³Ý³ÏÝ»ñÇ
³ßË³ï³ÝùÇ Ñ³Ù»Ù³ïÙ³Ý Ñ³Ù³ñ: öáñÓ»ñÁ óáõÛó »Ý ï³ÉÇë, áñ Zstandard ë»ÕÙÙ³Ý
Ù»Ãá¹Á ¨ Dask ÙÇç³í³ÛñÁ É³í³·áõÛÝ ÁÝïñáõÃÛáõÝÝ »Ý ÝÙ³Ý ³ßË³ï³Ýù³ÛÇÝ Ñáëù»ñÇ
Ñ³Ù³ñ:

´³Ý³ÉÇ µ³é»ñ` ºñÏñÇ ¹Çï³ñÏáõÙ, HPC, Spark, Dask, µ³ßËí³Í Ñ³ßí³ñÏ,
ïíÛ³ÉÝ»ñÇë»ÕÙáõÙ:



4 4 Data Compression-Aware Performance Analysis of Dask and Spark for Earth Observation Data Processing

Àíàëèç ïðîèçâîäèòåëüíîñòè Dask è Spark äëÿ îáðàáîòêè
äàííûõ íàáëþäåíèÿ Çåìëè ñ ó÷åòîì ñæàòèÿ äàííûõ
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Àííîòàöèÿ

Âûñîêîïðîèçâîäèòåëüíûå âû÷èñëåíèÿ ÿâëÿþòñÿ õîðîøèì âûáîðîì äëÿ
îáðàáîòêè áîëüøèõ äàííûõ íàáëþäåíèÿ Çåìëè, ïîçâîëÿÿ îáðàáàòûâàòü äàííûå
ðàñïðåäåëåííûì è âûñîêîïðîèçâîäèòåëüíûì ñïîñîáîì ñ èñïîëüçîâàíèåì
âû÷èñëèòåëüíûõ ïëàòôîðì â ïàìÿòè. Òåõíîëîãèÿ ñæàòèÿ äàííûõ ñîêðàùàåò
îáúåì õðàíèëèùà è âðåìÿ ïåðåäà÷è ïî ñåòè è ïîâûøàåò ïðîèçâîäèòåëüíîñòü
îáðàáîòêè. Öåëüþ ñòàòüè ÿâëÿåòñÿ èññëåäîâàíèå ýôôåêòèâíîñòè øèðîêî
èñïîëüçóåìûõ ñèñòåì ðàñïðåäåëåííîé îáðàáîòêè äàííûõ â ñî÷åòàíèè ñ
ìåòîäàìè ñæàòèÿ äàííûõ áåç ïîòåðü, ÷òîáû íàéòè îïòèìàëüíûé ìåòîä
ñæàòèÿ è ñòðóêòóðó îáðàáîòêè äëÿ êîíêðåòíûõ ðàáî÷èõ ïðîöåññîâ íàáëþäåíèÿ
Çåìëè. Íîðìàëèçîâàííûé ðàçíîñòíûé èíäåêñ ðàñòèòåëüíîñòè áûë îöåíåí
äëÿ òåððèòîðèè Àðìåíèè ñ èñïîëüçîâàíèåì äàííûõ ñî ñïóòíèêà Sentinel è ñ
ó÷åòîì ïîääåðæèâàåìûõ ìåòîäîâ ñæàòèÿ äëÿ ñðàâíåíèÿ ïðîèçâîäèòåëüíîñòè
ôðåéìâîðêîâ Dask è Spark â ïàìÿòè. Ýêñïåðèìåíòû ïîêàçûâàþò, ÷òî ìåòîä
ñæàòèÿ Zstandard è ôðåéìâîðê Dask ÿâëÿþòñÿ íàèëó÷øèì âûáîðîì äëÿ òàêèõ
ðàáî÷èõ ïðîöåññîâ.

Êëþ÷åâûå ñëîâà: Íàáëþäåíèå Çåìëè, HPC, Spark, Dask, ðàñïðåäåëåííûå
âû÷èñëåíèÿ, ñæàòèå äàííûõ.
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