
Mathematical Problems of Computer Science 58, 42–51, 2022.

doi:10.51408/1963-0091

UDC 519.6, 004.9

A Brief Comparison Between White Box, Targeted

Adversarial Attacks in Deep Neural Networks

Grigor V. Bezirganyan and Henrik T. Sergoyan

Department of Mathematics, Technical University of Munich, Muinch, German

e-mail: grigor.bezirganyan@tum.de, henrik.sergoyan@tum.de

Abstract

Today, neural networks are used in various domains, in most of which it is critical
to have reliable and correct output. This is why adversarial attacks make deep neural
networks less reliable to be used in safety-critical areas. Hence, it is important to
study the potential attack methods to be able to develop much more robust networks.
In this paper, we review four white box, targeted adversarial attacks, and compare
them in terms of their misclassification rate, targeted misclassification rate, attack
duration, and imperceptibility. Our goal is to find the attack(s), which would be
efficient, generate adversarial samples with small perturbations, and be undetectable
to the human eye.
Keywords: Adversarial Attacks, Robustness, Machine Learning, Deep Learning.
Article info: Received 26 Aprile 2022; received in revised form 4 July 2022; accepted
29 July 2022.

1. Introduction

Nowadays, deep neural networks are becoming more and more popular to solve problems
in various domains, including safety-critical areas such as medicine, self-driving cars, etc.
Unfortunately, techniques to fool deep learning models have recently come out to provide
incorrect outputs [1]. Particularly, in the image classification domain, an attacker can create
an altered image, which will be misclassified by a model but will be classified correctly by a
human. This altered image is often referred to as an adversarial example, and this process
as an adversarial attack. To be protected against such attacks, researchers try to create
methods to make the models more robust against such perturbations. Studying adversarial
attacks and their potential helps us develop better countermeasures against them.

In this paper, we will discuss some of the adversarial algorithms and test them against an
image classification model. We then compare the results of the experiments in terms of their
misclassification rate, targeted misclassification rate, attack duration, and imperceptibility.

42

G. Bezirganyan and H. Sergoyan 43

In poisoning attacks, the attacker tries to insert fake samples (i.e., data samples with
wrong labels) into the training dataset, which will make the model learn on those fake
samples and output wrong results. This kind of attack is possible when the attacker has the
means to import those fake samples into the training set. In contrast, in evasion attacks,
the attacker does not need access to the dataset. In this case, the attacker creates adversarial
samples, which are similar and hard to distinguish by a human from the original samples
but are misclassified by the trained model.

Based on how much information the attacker has about the model, attacks can be classified
into white-box, black-box, and gray-box attacks. In thewhite box scenario, the attacker has
full knowledge about the model architecture and uses this knowledge to generate adversarial
examples. In contrast, in the black-box setup, the attacker does not know the architecture.
Instead, the attacker observes the output of the model from the given input. Some of the
attacks assume access to the soft labels (i.e., probability or likelihood score of belonging to
a class), while others try to generate examples based on only hard labels (i.e., class labels
without the score). In the gray-box setting, the attacker has an access to the original model
and trains a generative model on it. When the generative model is ready, the attacker uses
that model to generate adversarial samples. Hence, the original model is no more needed.
Recently, in [2] another category was introduced, called no-box attacks. In contrast to
black-box attacks, the attacker cannot query the model, instead, he has a small number of
samples from the same domain as the victim. The authors train an auto-encoder on those
samples and then generate the adversarial examples using the features learned from the
auto-encoder.

In the targeted attack, the attacker tries to misclassify the given sample into a specific
target label. In contrast, in non-targeted attacks, the attacker tries to classify the sample
into any other class.

In this paper, we try to overview some of the adversarial attack techniques and, running
experiments in the same setting, compare them based on:

• Misclassification: What percentage of the adversarial samples were misclassified

• Targeted Misclassification: What percentage of the adversarial samples were
successfully misclassified to the target class

• Imperceptibility: How much the adversarial example looks like the original image

• Duration of the attack: How long it takes to generate an adversarial example

1.1 Definitions and Notations

1.1.1 Poisoning Attacks vs Evasion Attacks

1.1.2 Attacker’s Knowledge of the Model

1.1.3 Targeted vs Non-Targeted Attacks

1.2 Our Goal and Contribution

44 A Brief Comparison Between White Box, Targeted Adversarial Attacks in Deep Neural Networks

In this paper, we will concentrate only on white-box and target attacks. In particular,
we will discuss and experiment with the Fast Gradient Sign Method [1], Projected Gradient
Descent [3], AutoPGD [4], and FW + Dual LMO [5]. We chose these attack methods as
FGSM is one of the first and simplest methods, which is still popular today. PGD is the
most popular, as even many new state-of-the-art methods are modified versions of the PGD
attack. AutoPGD, being one of those variations, achieves state-of-the-art results according
to the authors. And while these attacks use ℓp norms, we also chose FW + Dual LMO as
an example of an attack that uses another norm (Wasserstain norm in this case).

2. Attack Mechanisms

In this section, we will briefly overview the attacks, which will be used for experimentation
further in the paper.

In our attacks, we are given a set of input images x ∈ Rn×n, and our goal is to craft
an adversarial example x′ ∈ Rn×n that will be misclassified by the deep learning model F :
Rn×n → N. Since we are discussing targeted attacks, we want to misclassify the adversarial
sample into our desired target class t ∈ N instead of the original class y ∈ N. Furthermore,
the perturbation we add to the image should be as small as possible, not to be detected by
a human. So, we can formulate the problem in the following way: Given a Neural Network
F : Rn×n → N, input image x ∈ Rn×n with a label y ∈ N, a distance function || · || and a
perturbation budget ϵ ∈ R find an x′ ∈ R such that

F (x′) = t ̸= y
s.t. ||x′ − x|| ≤ ϵ.

(1)

In our case, the distance functions will be l1, l2, l∞ distances or the Wasserstein distance.

Since we can access the gradients of the network in the white-box setting, what most of the
gradient-based attacks do, is to fix the network weight and maximize the loss by updating
the image. For that, they add a small perturbation η ∈ Rn×n to the original image:

x′ = x+ η

The most efficient way to maximize the loss would be to add noise in the same direction as the
gradients. [1] introduced an attack method, where they do exactly that: add a perturbation
in a direction that will increase the loss function L between the adversarial example and the
original label

x′ = x+ ϵ · sign(∇xL(θ, x, y)). (2)

We can see that in this way the maximum allowed perturbation is added, while still being
in the ϵ ball.

For a targeted setting, the update step will become:

x′ = x− ϵ · sign(∇xL(θ, x, t))

in other words, a perturbation is added to minimize the loss between the adversarial sample
and the target class t.

2.1 Fast Gradient Sign Method (FGSM)

G. Bezirganyan and H. Sergoyan 45

The Projected Gradient Descent attack (PGD) or Basic Iterative Method (BIM) was
introduced in [3], where they transformed the FGSM [1] one-step attack into an iterative one
by performing the update step (2) multiple times with a small step size α ∈ Rn×n. This will
work better, as the FGSM adds the maximum allowed perturbation, but does not guarantee
to maximize the loss within the allowed ϵ−ball. In contrast, in an iterative approach, the
algorithm is more likely to find the maxima. To ensure that the adversarial sample remains
in the ϵ neighborhood, PGD projects the sample back to the ϵ ball after each update step.
In other words, it performs projected gradient descent (or ascent) on the input sample. The
update steps for targeted and untargeted attacks will be as follows:

x(i+1) = Πϵ(x
(i) + α · sign(∇x(i)L(θ, x(i), y))) (3)

x(i+1) = Πϵ(x
(i) − α · sign(∇x(i)L(θ, x(i), t))) (4)

So, the attacker tries to find a perturbation that either finds the maximum loss between x′

and y (3) (untargeted attack), or the minimum loss between x′ and t (4) (targeted attack).

It has recently been suggested [4] that the Cross-Entropy loss and the fixed step size of the
PGD attack [3] may be two reasons for its potential failure. They propose an alternative
loss function and a new gradient-based method, Auto-PGD, which does not require a fixed
step size.

They divide their method into two phases: an exploration phase and an exploitation
phase. During the exploration phase, they search for good initial points, while in the
exploitation phase, they try to maximize the accumulated knowledge. The step size value
depends on the trend of optimization. If the objective function decreases rapidly, then the
step size does not need to be changed, otherwise, if it decreases slowly, the step size is
reduced.

The Wasserstein adversarial attack was introduced in [6]. Here they proposed to use the
Wasserstein distance instead of the commonly used ℓp distances. For images, the Wasserstein
distance can be seen as the cost of redistributing pixel mass. For example, while rotations
change ℓp norms dramatically, they only slightly change the Wasserstein distance.

So, what their algorithm does, is to do a PGD attack [3], but instead of projecting on
an ℓp norm, they project on the Wasserstein ball. However, since the projection onto the
Wasserstein ball is computationally expensive, they make an approximation by performing
modified Sinkhorn iterations [7].

[5] improved the algorithm by introducing an exact but still efficient projection operator.
They also introduce an adversary generating method based on the Frank-Wolfe [8] method
equipped with a suitable linear minimization oracle and show that it works very fast for
Wasserstein constraints.

In this paper, we will use that Frank-Wolfe method (FW + Dual LMO) for the
experiments.

2.2 Projected Gradient Descent

2.3 Auto-Projected Gradient Descent

2.4 Wasserstein Attack

46 A Brief Comparison Between White Box, Targeted Adversarial Attacks in Deep Neural Networks

In this experiment, our goal is to run FGSM [1], PDG [3], AutoPGD [4], and FW + Dual
LMO [5] attacks on the same environment and compare them in terms of misclassification,
targeted misclassification, attack duration, and imperceptibility.

We are performing our experiments on a pre-trained ResNet-18 [9] classifier on the CIFAR-
10 dataset [10], with initial 92.4% accuracy on the test set. We generate the adversarial
examples on a server with an Nvidia GeForce GTX 1080-Ti GPU.

We use the Adversarial Robustness Toolkit (ART) [11] for FGSM [1] and PGD [3] and
AutoPGD [4] attacks, and the original implementation by the authors for FW + Dual LMO
[5]. We run each of the adversarial attacks with a set of epsilon values in ϵ ∈ (0, 0.5] and
for all target classes. We use ℓp norms for FGSM, PGD, and AutoPGD, and we use the
Wasserstein distance for the FW + Dual LMO. All the other hyper-parameters are left to
their default values. For the FW + Dual LMO, in the original implementation, there was no
option for targeted attacks. Hence, we modified their implementation and added the option
for target attacks. For that we converted the problem:

maximize L(F (x′), y)
subject to ||x′ − x|| ≤ ϵ

to

minimize L(F (x′), t)
subject to ||x′ − x|| ≤ ϵ

We log the duration of the attack, the misclassification rate, and the targeted
misclassification rate for later comparison. The source code for the experiment can be found
https : //github.com/bezirganyan/adversarialarenahere.

We first look at the average misclassification and targeted misclassification scores that each
of our models was able to achieve for some ϵ ∈ (0, 0.5]. In Table 1, we can see average
misclassification and targeted misclassification rates for the best epsilon of each attack. As
we can see from the ℓp attacks, the ℓ∞ norm yields the highest scores in our setup. Hence,
from now on we will use the ℓ∞ norm for further comparisons. Note that this does not mean
that the ℓ∞ norm is better since we could get similar scores and similar perturbations for
higher ϵ values under other norms, as the ℓ∞ attack will add a higher amount of perturbation
under the same epsilon.

Furthermore, we can see that from the ℓp attacks in terms of targeted misclassification
rate, the PGD, and AutoPGD attacks yield very high scores leaving the FGSM attack behind
with a huge margin. In general, PGD and AutoPGD attacks behave almost identically in

3. Experiments

3.1 Goal

3.2 Setup

4. Results

4.1 Targeted Misclassification and Misclassification Rate

G. Bezirganyan and H. Sergoyan 47

our experiments. We hypothesize that this is because we are testing on an undefended
model, on which they both reach their maximum potential limit. The developers of the
ART framework confirmed that on their tests on defended models in an untargeted setting,
AutoPGD behaved slightly better. We, hence, plan to test and compare the models on a
defended model in our future work. In Fig. 1, we can see the Misclassification and Targeted
misclassification rates of the attacks for different epsilons and under the ℓ∞ norm. We can see
that in terms of misclassification and targeted misclassification rates the PGD and AutoPGD
attack perform best within the ℓp attacks by having around 90% misclassification rate even
for very small epsilon.

Fig. 1. Average misclassification and targeted misclassification rates for different ϵ values

under ℓ∞ and Wasserstein (FW) norms.

Furthermore, we can see that for the FGSM attack, the targeted misclassification does
not increase monotonically. The reason for this can be that since the FGSM is not an
iterative algorithm and performs just one step, it overshoots when the epsilon is too big and
misses the target class.

The FW+Dual LMO attack performs best in terms of both misclassification and targeted
misclassification rates. Nevertheless, we cannot compare the amount of perturbation under
ℓ∞ and Wasserstein norms, since they imply different amounts of changes to the image.
Hence, we will need to combine these results with the visual ones to be able to make a fair
comparison.

In Table 2, we can see the time duration needed to generate an adversarial example. Being
a simple one-step attack, FGSM leads the competition followed by the PGD and AutoPGD

4.2 Duration

48 A Brief Comparison Between White Box, Targeted Adversarial Attacks in Deep Neural Networks

Table 1: Average misclassification and average targeted misclassification rates for different
norms

attack norm miscl targ. miscl.

AutoPGD ℓ1 0.0832 0.1100

PGD ℓ1 0.0810 0.1086

FGSM ℓ1 0.0879 0.1116

AutoPGD ℓ2 0.8968 0.9977

FGSM ℓ2 0.6157 0.3914

PGD ℓ2 0.8927 0.9925

AutoPGD ℓ∞ 0.9000 1.0000

FGSM ℓ∞ 0.9149 0.5515

PGD ℓ∞ 0.9022 1.0000

FW was 0.9000 1.0000

attacks. PGD, which performs much better than FGSM in terms of targeted misclassification
rate, is around 71 times slower. The slowest is the FW + Dual LMO attack, which performs
around 400 times slower than the FGSM attack.

In Table 2, we can see the time duration needed to generate an adversarial example. Being
a simple one-step attack, FGSM leads the competition followed by the PGD and AutoPGD
attacks. PGD, which performs much better than FGSM in terms of targeted misclassification
rate, is around 71 times slower. The slowest is the FW + Dual LMO attack, which performs
around 400 times slower than the FGSM attack.

Table 2: Duration of generating an adversarial example in seconds.

FGSM PGD AutoPGD FW+Dual LMO
0.7 50 87 338

One of the most important aspects of Adversarial attacks is that they should be undetected
by the human eye. Hence, in this section, we study how detectable are the adversarial
samples generated by the attacks. To visualize the results, we chose the smallest ϵ for each
of our attacks, under which our model showed at least 80% misclassification. You can see the
visualizations in the Figures 2 and 3. We can see that in the examples generated by the FGSM
attack, although the original image is still well visible, the perturbation is easily detectable
to us. For PGD, AutoPGD, and FW + Dual LMO attacks, however, the perturbations are

4.3 Duration

4.4 Imperceptibility

G. Bezirganyan and H. Sergoyan 49

hardly visible. In fact, from Fig. 3 it is noticeable that PGD and AutoPGD attacks apply
small perturbations uniformly over the image. While the FW + Dual LMO attack perturbs
only small portions of the image, the perturbations are much more visible.

Fig. 2. Adversarial samples on an image with original label 4 (deer).

Fig. 3. Perturbations added to the image with original label 4 (deer).

5. Conclusion and Future Work

We compared different attack methods with different metrics. The champion of the
comparison is the PGD attack. Although being a very simple attack, it performs very well
in terms of misclassification and targeted misclassification rates, is fast, and is almost non-
detectable by the human eye in our experiments. AutoPGD, while yielding similar results, is
much slower, and hence, comes in second place in our comparison. FW + Dual LMO attack
performed very well in terms of duration, misclassification, and targeted misclassification

50 A Brief Comparison Between White Box, Targeted Adversarial Attacks in Deep Neural Networks

rates, but the perturbations were much more noticeable. The FGSM attack was the fastest
with a high misclassification rate but came last in terms of imperceptibility.

Since we’ve covered only a small portion of attacks, we plan to extend the attack list by
adding more well-known or state-of-the-art methods and extend the experiment domain to
black-box attacks as well. Furthermore, we plan to test these attacks on a defended model
and compare their performances. Particularly, we are interested to see the difference between
AutoPGD and PGD attacks on a defended model.

References

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in 3rd International Conference on Learning Representations, ICLR 2015 -
Conference Track Proceedings, 2015.

[2] Q. Li, Y. Guo, and H. Chen, “Practical no-box adversarial attacks against dnns,” Pre-
proceedings - Advances in Neural Information Processing Systems, vol. 33, 2020.

[3] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,”
in 5th International Conference on Learning Representations, ICLR 2017 - Conference
Track Proceedings, 2017.

[4] F. Croce and M. Hein, “Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks,” arXiv preprint arXiv:2003.01690, 2020.

[5] K. Wu, A. Wang, and Y. Yu, “Stronger and faster wasserstein adversarial attacks,” in
International Conference on Machine Learning, pp. 10377–10387, PMLR, 2020.

[6] E. Wong, F. R. Schmidt, and J. Zico Kolter, “Wasserstein adversarial examples via
projected sinkhorn iterations,” in 36th International Conference on Machine Learning,
ICML 2019, 2019.

[7] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,”
Advances in neural information processing systems, vol. 26, pp. 2292–2300, 2013.

[8] M. Frank, P. Wolfe, et al., “An algorithm for quadratic programming,” Naval research
logistics quarterly, vol. 3, no. 1-2, pp. 95–110, 1956.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2016.

[10] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,”
2009.

[11] M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba, V. Zantedeschi,
N. Baracaldo, B. Chen, H. Ludwig, I. Molloy, and B. Edwards, “Adversarial robustness
toolbox v1.2.0,” CoRR, vol. 1807.01069, 2018.

G. Bezirganyan and H. Sergoyan 5 1

êåÇï³Ï ïáõ÷áí, ÃÇñ³Ë³íáñí³Í Ùñó³Ïó³ÛÇÝ Ñ³ñÓ³ÏáõÙÝ»ñÇ
Ñ³Ù³éáï Ñ³Ù»Ù³ïáõÃÛáõÝÁ ËáñÁ Ý»ÛñáÝ³ÛÇÝ ó³Ýó»ñáõÙ

¶ñÇ·áñ ´»½Çñ·³ÝÛ³Ý ¨ Ð»ÝñÇÏ ê»ñ·áÛ³Ý

ØÛáõÝË»ÝÇ î»ËÝÇÏ³Ï³Ý Ð³Ù³Éë³ñ³Ý

e-mail: grigor.bezirganyan@tum.de, henrik.sergoyan@tum.de

²Ù÷á÷áõÙ

Êðàòêîå ñðàâíåíèå ìåæäó ”Áåëûì ÿùèêîì”, öåëåâûìè
ñîñòÿçàòåëüíûìè àòàêàìè ïðîòèâíèêà â ãëóáîêèõ

íåéðîííûõ ñåòÿõ
Ãðèãîð Áåçèðãàíÿí è Ãåíðèê Ñåðãîÿí

Òåõíè÷åñêèé Óíèâåðñèòåò Ìþíõåíà
e-mail: grigor.bezirganyan@tum.de, henrik.sergoyan@tum.de

Àííîòàöèÿ

Ñåãîäíÿ íåéðîííûå ñåòè èñïîëüçóþòñÿ â ðàçëè÷íûõ îáëàñòÿõ, â áîëüøèíñòâå
èç êîòîðûõ âàæíî èìåòü íàäåæíûé è ïðàâèëüíûé âûâîä. Âîò ïîýòîìó
ñîñòÿçàòåëüíûå àòàêè äåëàþò ãëóáîêèå íåéðîííûå ñåòè ìåíåå íàäåæíûìè
äëÿ èñïîëüçîâàíèÿ â îáëàñòÿõ, ãäå áåçîïàñíîñòü èìååò ðåøàþùåå çíà÷åíèå.
Ñëåäîâàòåëüíî, âàæíî èçó÷èòü ïîòåíöèàëüíûå ìåòîäû àòàêè, ÷òîáû èìåòü
âîçìîæíîñòü ðàçðàáàòûâàòü ãîðàçäî áîëåå íàäåæíûå ñåòè. Â ýòîé ñòàòüå ìû
ðàññìàòðèâàåì ÷åòûðå ”áåëûõ ÿùèêà” - öåëåíàïðàâëåííûå ñîñòÿçàòåëüíûå àòàêè
è ñðàâíèâàåì èõ ñ òî÷êè çðåíèÿ ÷àñòîòû îøèáî÷íûõ êëàññèôèêàöèé, ÷àñòîòû
öåëåâûõ îøèáî÷íûõ êëàññèôèêàöèé, äëèòåëüíîñòè àòàêè è íåçàìåòíîñòè. Íàøà
öåëü - íàéòè àòàêè, êîòîðûå áûëè áû ýôôåêòèâíû è ãåíåðèðîâàëè áû
ñîñòÿçàòåëüíûå âûáîðêè ñ íåáîëüøèìè âîçìóùåíèÿìè è íå îáíàðóæèâàëèñü áû
÷åëîâå÷åñêèì ãëàçîì.

Êëþ÷åâûå ñëîâà: ñîñòÿçàòåëüíûå àòàêè, íàäåæíîñòü, ìàøèííîå îáó÷åíèå,
ãëóáîêîå îáó÷åíèå.

²Ûëûñ Ý»ÛñáÝ³ÛÇÝ ó³Ýó»ñÝ û·ï³·áñÍíáõÙ »Ý ï³ñµ»ñ ³ëå³ñ»½Ý»ñáõÙ, áñáÝóÇó
ß³ï»ñáõÙ Ï³ñ¨áñ ¿ áõÝ»Ý³É Ñáõë³ÉÇ ¨ ×ß·ñÇï ³ñ¹ÛáõÝù: ²Ñ³ Ã» ÇÝãáõ
Ùñó³Ïó³ÛÇÝ Ñ³ñÓ³ÏáõÙÝ»ñÁ Ý»ÛñáÝ³ÛÇÝ ó³Ýó»ñÁ ¹³ñÓÝáõÙ »Ý ³í»ÉÇ ùÇã Ñáõë³ÉÇ‘
µ³ñÓñ ³Ýíï³Ý·áõÃÛ³Ý Ù³Ï³ñ¹³Ï å³Ñ³ÝçáÕ ïÇñáõÛÃÝ»ñáõÙ: Ð»ï¨³µ³ñ, Ï³ñ¨áñ ¿
áõëáõÙÝ³ëÇñ»É Ñ³ñÓ³ÏÙ³Ý ÑÝ³ñ³íáñ Ù»Ãá¹Ý»ñÁ` ³í»ÉÇ Ï³ÛáõÝ ¨ ³Ýíï³Ý· ó³Ýó»ñ
Ùß³Ï»Éáõ Ñ³Ù³ñ: ²Ûë Ñá¹í³ÍáõÙ Ù»Ýù ùÝÝ³ñÏáõÙ »Ýù ãáñë ëåÇï³Ï?ïáõ÷áí,
ÃÇñ³Ë³íáñí³Í Ùñó³Ïó³ÛÇÝ Ñ³ñÓ³ÏáõÙÝ»ñ ¨ Ñ³Ù»Ù³ïáõÙ ¹ñ³Ýù Çñ»Ýó ëË³É
¹³ë³Ï³ñ·Ù³Ý ³ëïÇ×³ÝÇ, Ýå³ï³Ï³ÛÇÝ ëË³É ¹³ë³Ï³ñ·Ù³Ý ³ñ³·áõÃÛ³Ý ³ëïÇ×³ÝÇ,
Ñ³ñÓ³ÏÙ³Ý ï¨áÕáõÃÛ³Ý ¨ ³ÝÝÏ³ï»ÉÇáõÃÛ³Ý ³éáõÙáí: Ø»ñ Ýå³ï³ÏÝ ¿ ·ïÝ»É
Ñ³ñÓ³ÏáõÙ(Ý»ñ), áñáÝù ³ñ¹ÛáõÝ³í»ï ÏÉÇÝ»Ý ¨ Ïëï»ÕÍ»Ý Ùñó³Ïó³ÛÇÝ ûñÇÝ³ÏÝ»ñ‘ ÷áùñ
ß»ÕáõÙÝ»ñáí ¨ ³ÝÝÏ³ï»ÉÇ Ù³ñ¹áõ ³ãùÇ Ñ³Ù³ñ:

´³Ý³ÉÇ µ³é»ñ` Ùñó³Ïó³ÛÇÝ Ñ³ñÓ³ÏáõÙÝ»ñ, Ï³ÛáõÝáõÃÛáõÝ, Ù»ù»Ý³Û³Ï³Ý
áõëáõóáõÙ,ËáñÁ áõëáõóáõÙ:

	04_Sergoyan_33__52__Copy_
	04

