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Abstract 

 
We consider the problem of constructing complete caps in affine geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 3) 

of dimension 𝑛𝑛 over the field 𝐹𝐹3 of order three. We will take the elements of 𝐹𝐹3 to be 0, 1 
and 2. A cap is a set of points, no three of which are collinear.  Using the concept of 
𝑃𝑃𝑛𝑛 −set, we give two new methods for constructing complete caps in affine 
geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 3). These methods lead to some new upper and lower bounds on the 
possible minimal and maximal cardinality of complete caps in affine geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 3).      
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1. Introduction 
 

A cap in an affine geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) or in a projective geometry 𝑃𝑃𝐴𝐴(𝑛𝑛, 𝑞𝑞) over a finite field 𝐹𝐹𝑞𝑞 
is a set of points no three of which are collinear. A cap is called complete when it cannot be 
extended to a large cap. The central problem in the theory of caps is to find the maximal and 
minimal sizes of caps in the affine geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) or in the projective geometry 𝑃𝑃𝐴𝐴(𝑛𝑛, 𝑞𝑞). In 
this paper, 𝑠𝑠𝑛𝑛,𝑞𝑞 and 𝑠𝑠𝑛𝑛,𝑞𝑞

′  denote the size of the largest caps in 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) and 𝑃𝑃𝐴𝐴(𝑛𝑛, 𝑞𝑞), 
respectively. Presently, only the following exact values are known: 𝑠𝑠𝑛𝑛,2 = 𝑠𝑠𝑛𝑛,2

′ = 2𝑛𝑛, 𝑠𝑠2,𝑞𝑞 =
𝑠𝑠2,𝑞𝑞
′ = 𝑞𝑞 + 1 if 𝑞𝑞 is odd, 𝑠𝑠2,𝑞𝑞 = 𝑠𝑠2,𝑞𝑞

′ = 𝑞𝑞 + 2 if  𝑞𝑞 is even, and 𝑠𝑠3,𝑞𝑞
′ = 𝑞𝑞2 + 1, 𝑠𝑠3,𝑞𝑞 = 𝑞𝑞2 [1, 2]. 

Aside from these general results, the precise values are known only in the following cases: 𝑠𝑠4,3 =
𝑠𝑠4,3
′ = 20 [3], 𝑠𝑠5,3

′ = 56 [4], 𝑠𝑠5,3 = 45 [5], 𝑠𝑠4,4
′ = 41 [6], 𝑠𝑠6,3 = 112 [7]. In the other cases, only 

lower and upper bounds on the sizes of caps in 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) and 𝑃𝑃𝐴𝐴(𝑛𝑛, 𝑞𝑞) are known. Finding the 
exact value for 𝑠𝑠𝑛𝑛,𝑞𝑞 and 𝑠𝑠𝑛𝑛,𝑞𝑞

′  in the general case seems to be a very hard problem [8–10]. The 
only complete cap in 𝐴𝐴𝐴𝐴(𝑛𝑛, 2) is the whole 𝐴𝐴𝐴𝐴(𝑛𝑛, 2). The trivial lower bound for the size of the 

smallest complete cap in 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) is √2𝑞𝑞
𝑛𝑛−1
2 .  For even 𝑞𝑞 there exist complete caps in geometry 

𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) with less than 𝑞𝑞
𝑛𝑛
2 points. But for odd 𝑞𝑞 complete caps in 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) with less than 𝑞𝑞

𝑛𝑛
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points are known to exist [11, 12] only for 𝑛𝑛 = 0(𝑚𝑚𝑚𝑚𝑚𝑚 4), 𝑛𝑛 = 2(𝑚𝑚𝑚𝑚𝑚𝑚 4). For more 
information about complete caps, for small values 𝑛𝑛 and 𝑞𝑞, we refer the reader to [10–13]. Note 
that the problem of determining the minimum size of a complete cap in a given geometry is of 
particular interest in Coding theory. Using the concept of 𝑎𝑎 𝑃𝑃𝑛𝑛-set, which was introduced by the author 
in 2015 [14], we give two new methods for constructing complete caps in the affine geometry 
𝐴𝐴𝐴𝐴(𝑛𝑛, 3). These methods yield some new upper and lower bounds on the possible minimal and maximal 
sizes of complete caps in the affine geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 3).       

 
 

2. Main Results 
 

We will write the points of 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) in the following way: 𝒙𝒙 = (𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛), and let us denote by  
𝟎𝟎 = (0,⋯ , 0) the origin point of the geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 3). It is easy to check that if 𝑺𝑺 is a cap in 
𝐴𝐴𝐴𝐴(𝑛𝑛, 3), then 𝜶𝜶 + 𝜷𝜷 + 𝜸𝜸 ≠ 𝟎𝟎 (𝑚𝑚𝑚𝑚𝑚𝑚 3) for every triple of distinct points 𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝑺𝑺. Let's 
denote by 𝐵𝐵𝑛𝑛 = {𝜶𝜶 = (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛)|𝛼𝛼𝑖𝑖 = 1, 2} and by 𝑃𝑃𝑛𝑛 the set of points of 𝐴𝐴𝐴𝐴(𝑛𝑛, 3) satisfying 
the following two conditions:  
 

i) for any two distinct points 𝜶𝜶,𝜷𝜷 ∈ 𝑃𝑃𝑛𝑛, there exists 𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛) such that 𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 0,  
ii) for any triple of distinct points 𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝑃𝑃𝑛𝑛, 𝜶𝜶+ 𝜷𝜷 + 𝜸𝜸 ≠ 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). 

 
We say 𝑃𝑃𝑛𝑛 to be complete when it cannot be extended to a larger one. We will define the 
concatenation of the points of the sets in the following way. Let 𝐴𝐴 ⊂ 𝐴𝐴𝐴𝐴(𝑛𝑛, 3) and 𝐵𝐵 ⊂
𝐴𝐴𝐴𝐴(𝑚𝑚, 3). We form a new set 𝐴𝐴𝐵𝐵 ⊂ 𝐴𝐴𝐴𝐴(𝑛𝑛 + 𝑚𝑚, 3) consisting of all points 𝜶𝜶 = (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛,
𝛼𝛼𝑛𝑛+1,⋯ ,𝛼𝛼𝑛𝑛+𝑚𝑚), where 𝜶𝜶(1) = (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛) ∈ 𝐴𝐴 and 𝜶𝜶(2) = (𝛼𝛼𝑛𝑛+1,⋯ , 𝛼𝛼𝑛𝑛+𝑚𝑚) ∈ 𝐵𝐵. In a similar 
way, one can define the concatenation of the points for any number of sets. 
 
Claim 1. Note that if 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝐹𝐹3, then 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 0 (𝑚𝑚𝑚𝑚𝑚𝑚 3) if and only if 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧 or they 
are pairwise distinct numbers. 
The following two theorems, which we need, are proven in [16, 17]. 
 
Theorem 1: The following recurrence relation 𝑃𝑃𝑛𝑛 = 𝑃𝑃𝑛𝑛1𝑃𝑃𝑛𝑛2𝐵𝐵𝑛𝑛3 ∪ 𝑃𝑃𝑛𝑛1𝐵𝐵𝑛𝑛2𝑃𝑃𝑛𝑛3 ∪ 𝐵𝐵𝑛𝑛1𝑃𝑃𝑛𝑛2𝑃𝑃𝑛𝑛3, with 
initial sets 𝑃𝑃1 = {(0)}, 𝑃𝑃2 = {(0, 1), (0, 2)} and 𝑛𝑛 = ∑ 𝑛𝑛𝑗𝑗3

𝑗𝑗=1 , yields a complete 𝑃𝑃𝑛𝑛 set. 
 
Having the sets  𝑃𝑃𝑛𝑛1, 𝑃𝑃𝑛𝑛2, 𝑃𝑃𝑛𝑛3, 𝑃𝑃𝑛𝑛4, 𝑃𝑃𝑛𝑛5 , 𝑃𝑃𝑛𝑛6 and 𝐵𝐵𝑛𝑛1, 𝐵𝐵𝑛𝑛2, 𝐵𝐵𝑛𝑛3, 𝐵𝐵𝑛𝑛4, 𝐵𝐵𝑛𝑛5, 𝐵𝐵𝑛𝑛6,  let us form the 
following ten sets, by concatenation of the points of the sets.  

𝐴𝐴1 = 𝑃𝑃𝑛𝑛1𝑃𝑃𝑛𝑛2𝐵𝐵𝑛𝑛3𝐵𝐵𝑛𝑛4𝐵𝐵𝑛𝑛5𝑃𝑃𝑛𝑛6 ,        𝐴𝐴2 = 𝐵𝐵𝑛𝑛1𝑃𝑃𝑛𝑛2𝑃𝑃𝑛𝑛3𝑃𝑃𝑛𝑛4𝐵𝐵𝑛𝑛5𝐵𝐵𝑛𝑛6, 
𝐴𝐴3 = 𝑃𝑃𝑛𝑛1𝐵𝐵𝑛𝑛2𝑃𝑃𝑛𝑛3𝐵𝐵𝑛𝑛4𝑃𝑃𝑛𝑛5𝐵𝐵𝑛𝑛6 ,          𝐴𝐴4 = 𝐵𝐵𝑛𝑛1𝐵𝐵𝑛𝑛2𝑃𝑃𝑛𝑛3𝑃𝑃𝑛𝑛4𝐵𝐵𝑛𝑛5𝑃𝑃𝑛𝑛6 ,                    
𝐴𝐴5 = 𝐵𝐵𝑛𝑛1𝐵𝐵𝑛𝑛2𝑃𝑃𝑛𝑛3𝐵𝐵𝑛𝑛4𝑃𝑃𝑛𝑛5𝑃𝑃𝑛𝑛6 ,          𝐴𝐴6 = 𝐵𝐵𝑛𝑛1𝑃𝑃𝑛𝑛2𝐵𝐵𝑛𝑛3𝑃𝑃𝑛𝑛4𝑃𝑃𝑛𝑛5𝐵𝐵𝑛𝑛6, 
𝐴𝐴7 = 𝐵𝐵𝑛𝑛1𝑃𝑃𝑛𝑛2𝐵𝐵𝑛𝑛3𝐵𝐵𝑛𝑛4𝑃𝑃𝑛𝑛5𝑃𝑃𝑛𝑛6 ,          𝐴𝐴8 = 𝑃𝑃𝑛𝑛1𝐵𝐵𝑛𝑛2𝐵𝐵𝑛𝑛3𝑃𝑃𝑛𝑛4𝑃𝑃𝑛𝑛5𝐵𝐵𝑛𝑛6 , 

  𝐴𝐴9 = 𝑃𝑃𝑛𝑛1𝐵𝐵𝑛𝑛2𝐵𝐵𝑛𝑛3𝑃𝑃𝑛𝑛4𝐵𝐵𝑛𝑛5𝑃𝑃𝑛𝑛6 ,         𝐴𝐴10 = 𝑃𝑃𝑛𝑛1𝑃𝑃𝑛𝑛2𝑃𝑃𝑛𝑛3𝐵𝐵𝑛𝑛4𝐵𝐵𝑛𝑛5𝐵𝐵𝑛𝑛6. 
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 Theorem 2: The following recurrence relation 𝑃𝑃𝑛𝑛 = ⋃ 𝐴𝐴𝑖𝑖10
𝑖𝑖=1 , with initial sets 𝑃𝑃1 = {(0)}, 𝑃𝑃2 =

{(0, 1), (0, 2)} and 𝑛𝑛 = ∑ 𝑛𝑛𝑖𝑖6
𝑖𝑖=1  yields a complete  𝑃𝑃𝑛𝑛 set. 

  
Claim 2. Note that from the construction of 𝑃𝑃𝑛𝑛 in both theorems it follows that for every i (1 ≤
𝑖𝑖 ≤ 𝑛𝑛), if the point 𝒑𝒑 = (𝑝𝑝1, … ,𝑝𝑝𝑖𝑖, … ,𝑝𝑝𝑛𝑛 ) ∈ 𝑃𝑃𝑛𝑛 and 𝑝𝑝𝑖𝑖 ≠ 0, then, also, the point 𝒑𝒑′ =
 (𝑝𝑝1, … ,𝑝𝑝𝑖𝑖−1, … ,𝑝𝑝𝑛𝑛) ∈ 𝑃𝑃𝑛𝑛, where 𝑝𝑝𝑖𝑖−1 is the additive inverse of 𝑝𝑝𝑖𝑖 in the field 𝐹𝐹3. 
 
The following two main theorems without proofs were first presented at CSIT 2015 in a weak 
form [14], that they yield caps. But at CSIT 2017 they were presented with a strong conclusion 
that they yield complete caps [15]. In this paper, we give their complete proofs.  
 
Theorem 3: If 𝑃𝑃𝑛𝑛 and 𝑃𝑃𝑚𝑚 are constructed either by Theorem 1 or by Theorem 2, then for the 
given natural numbers n and m, the set 𝑆𝑆 = 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚 ∪ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚 is a complete cap in the geometry 
𝐴𝐴𝐴𝐴(𝑛𝑛 + 𝑚𝑚, 3). 
   
Proof. First of all we will prove that the set 𝑆𝑆 = 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚 ∪ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚 is a cap. Suppose, to the contrary, 
that 𝑆𝑆 is not a cap. Then there is a triple of distinct points 𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝑆𝑆, such that 𝜶𝜶 + 𝜷𝜷 + 𝜸𝜸 =
𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Let's represent the points 𝜶𝜶,𝜷𝜷,𝜸𝜸 as 𝜶𝜶 = 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐), 𝜷𝜷 = 𝜷𝜷(𝟏𝟏)𝜷𝜷(𝟐𝟐) and 𝜸𝜸 = 𝜸𝜸(𝟏𝟏)𝜸𝜸(𝟐𝟐), 
respectively, where 𝜶𝜶(𝟏𝟏) = (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛), 𝜶𝜶(𝟐𝟐) = (𝛼𝛼𝑛𝑛+1,⋯ ,𝛼𝛼𝑛𝑛+𝑚𝑚), 𝜷𝜷(𝟏𝟏) = (𝛽𝛽1,⋯ ,𝛽𝛽𝑛𝑛), 𝜷𝜷(𝟐𝟐) =
(𝛽𝛽𝑛𝑛+1,⋯ ,𝛽𝛽𝑛𝑛+𝑚𝑚), 𝜸𝜸(𝟏𝟏) = (𝛾𝛾1,⋯ , 𝛾𝛾𝑛𝑛) and 𝜸𝜸(𝟐𝟐) = (𝛾𝛾𝑛𝑛+1,⋯ , 𝛾𝛾𝑛𝑛+𝑚𝑚). Thus, we obtain 𝜶𝜶(𝟏𝟏) +
𝜷𝜷(𝟏𝟏) + 𝜸𝜸(𝟏𝟏) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3) and 𝜶𝜶(𝟐𝟐) + 𝜷𝜷(𝟐𝟐) + 𝜸𝜸(𝟐𝟐) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). If all three points 𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚, 
then it follows that 𝜶𝜶(𝟏𝟏),𝜷𝜷(𝟏𝟏),𝜸𝜸(𝟏𝟏) ∈ 𝑃𝑃𝑛𝑛 and  𝜶𝜶(𝟐𝟐),𝜷𝜷(𝟐𝟐),𝜸𝜸(𝟐𝟐) ∈ 𝐵𝐵𝑚𝑚. The definition of the set 𝑃𝑃𝑛𝑛 
implies that 𝜶𝜶(𝟏𝟏) =  𝜷𝜷(𝟏𝟏) =  𝜸𝜸(𝟏𝟏) and Claim 1 implies that 𝜶𝜶(𝟐𝟐) = 𝜷𝜷(𝟐𝟐) = 𝜸𝜸(𝟐𝟐). Therefore, 𝜶𝜶 =
𝜷𝜷 = 𝜸𝜸, which contradicts that 𝜶𝜶, 𝜷𝜷 and 𝜸𝜸 are pairwise distinct points. In the same manner, one 
can prove the case, when all three points 𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚, is impossible. Now let us assume that 
two of these points belong to one set (say 𝜶𝜶,𝜷𝜷 ∈ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚) and the third point 𝜸𝜸 belongs to the other 
set (say 𝛾𝛾 ∈ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚). By definition of  𝑃𝑃𝑛𝑛 there is 𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, so that 𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 0. But, by 
definition of 𝐵𝐵𝑛𝑛, 𝛾𝛾𝑖𝑖 = 1 𝑚𝑚𝑜𝑜 2. Hence, 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖 ≠ 0(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts that  𝜶𝜶 + 𝜷𝜷 +
𝜸𝜸 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). In a similar way, one can prove the case when two points belong to 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚 and 
the third one belongs to 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚 is impossible. Therefore, 𝑆𝑆 is a cap.     
We will prove the completeness of S again by contradiction. Suppose that there is a point 𝜶𝜶 =
�𝛼𝛼1, … ,𝛼𝛼𝑛𝑛,𝛼𝛼𝑛𝑛+1 , … ,𝛼𝛼𝑛𝑛+𝑚𝑚�, such that 𝜶𝜶 ∉ S and S ∪ {𝜶𝜶} is a cap. Let’s represent the point 𝜶𝜶 as 
𝜶𝜶 = 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐), where 𝜶𝜶(𝟏𝟏) = (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛), 𝜶𝜶(𝟐𝟐) = (𝛼𝛼𝑛𝑛+1,⋯ ,𝛼𝛼𝑛𝑛+𝑚𝑚). The following two cases are 
possible.  
 
 Case 1. At least one of the sets 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)} or 𝑃𝑃𝑚𝑚 ∪ {𝜶𝜶(𝟐𝟐)} satisfies the condition i). Assume that 
the set 𝑃𝑃𝑛𝑛 ∪ �𝜶𝜶(𝟏𝟏)� satisfies the condition i). If 𝜶𝜶(𝟏𝟏) ∈ 𝑃𝑃𝑛𝑛, then we can choose two points 𝒙𝒙, 𝒚𝒚 ∈
𝐵𝐵𝑚𝑚 in the following way. If 𝛼𝛼𝑖𝑖 = 0, then we will assume that  𝑥𝑥𝑖𝑖 = 1 and 𝑦𝑦𝑖𝑖 = 2, otherwise 𝑥𝑥𝑖𝑖 =
𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑖𝑖, 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚. Therefore, 𝜶𝜶(𝟐𝟐) ∉ 𝐵𝐵𝑚𝑚, since 𝜶𝜶 ∉ S and 𝜶𝜶(𝟏𝟏) ∈ 𝑃𝑃𝑛𝑛. Hence, 𝜶𝜶(𝟐𝟐),  𝒙𝒙 
and 𝒚𝒚 are pairwise distinct points. It is not difficult to see that 𝜶𝜶(𝟏𝟏)𝒙𝒙, 𝜶𝜶(𝟏𝟏)𝒚𝒚 ∈ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚. Claim 1 
implies that 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐) + 𝜶𝜶(𝟏𝟏)𝒙𝒙 + 𝜶𝜶(𝟏𝟏)𝒚𝒚 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts the assumption that S ∪
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{𝜶𝜶} is a cap. If 𝜶𝜶(𝟏𝟏) ∉ 𝑃𝑃𝑛𝑛, then the completeness of the 𝑃𝑃𝑛𝑛 implies that there are two distinct 
points 𝜷𝜷, 𝜸𝜸 ∈ 𝑃𝑃𝑛𝑛, such that 𝜶𝜶(𝟏𝟏) + 𝜷𝜷 + 𝜸𝜸 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Now, as described above, we will choose 
two points 𝒙𝒙,𝒚𝒚 ∈ 𝐵𝐵𝑚𝑚 in the following way. If 𝛼𝛼𝑖𝑖 = 0, then we will take 𝑥𝑥𝑖𝑖 = 1 and 𝑦𝑦𝑖𝑖 = 2, 
otherwise 𝑥𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑖𝑖, 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚.  The choice of the points 𝒙𝒙,𝒚𝒚 implies that 𝒙𝒙,𝒚𝒚 ∈
𝐵𝐵𝑚𝑚 and 𝜶𝜶(𝟐𝟐) + 𝒙𝒙 + 𝒚𝒚 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Therefore, 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐) + 𝜷𝜷𝒙𝒙 + 𝜸𝜸𝒚𝒚 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚3), which 
contradicts the assumption that S ∪ {𝜶𝜶} is a cap. Similarly, one can prove the case, when the set 
𝑃𝑃𝑚𝑚 ∪ �𝜶𝜶(𝟐𝟐)� satisfies the condition i), is impossible.     
   
Case 2. Both sets 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)} and 𝑃𝑃𝑚𝑚 ∪ {𝜶𝜶(𝟐𝟐)} do not satisfy the condition i). Therefore, the 
condition i) for the set 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)} follows that there is a point 𝜷𝜷 ∈ 𝑃𝑃𝑛𝑛, such that if 𝛼𝛼𝑖𝑖 = 0, then 
𝛽𝛽𝑖𝑖 ≠ 0 and if 𝛽𝛽𝑖𝑖 = 0, then 𝛼𝛼𝑖𝑖 ≠ 0, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. We will choose the point 𝒙𝒙 ∈ 𝐵𝐵𝑛𝑛 in the following 
way. If  𝛼𝛼𝑖𝑖 = 0, then  𝑥𝑥𝑖𝑖 = 𝛽𝛽𝑖𝑖−1 and if 𝛽𝛽𝑖𝑖 = 0, then 𝑥𝑥𝑖𝑖 = 𝛼𝛼𝑖𝑖−1, otherwise, using Claim 2, we can 
assume that 𝑥𝑥𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 𝛼𝛼𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. By the same reason, the condition i) for the set 𝑃𝑃𝑚𝑚 ∪ {𝜶𝜶(𝟐𝟐)} 
implies that  there is a point 𝜸𝜸 ∈ 𝑃𝑃𝑚𝑚, so that if 𝛼𝛼𝑖𝑖 = 0, then 𝛾𝛾𝑖𝑖 ≠ 0 and if 𝛾𝛾𝑖𝑖 = 0, then 𝛼𝛼𝑖𝑖 ≠
0, 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚. In the same manner, we will choose the point 𝒚𝒚 ∈ 𝐵𝐵𝑚𝑚. If  𝛼𝛼𝑖𝑖 = 0, then  
𝑦𝑦𝑖𝑖 = 𝛾𝛾𝑖𝑖−1 and if 𝛾𝛾𝑖𝑖 = 0, then  𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑖𝑖−1, otherwise, by Claim 2, we can assume that 𝑦𝑦𝑖𝑖 = 𝛾𝛾𝑖𝑖 = 𝛼𝛼𝑖𝑖, 
𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚). It is obvious that 𝜷𝜷𝒚𝒚 ∈ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚 and 𝒙𝒙𝜸𝜸 ∈ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚. The choice of the points 𝒙𝒙,𝒚𝒚 
implies that 𝜶𝜶(𝟏𝟏) + 𝜷𝜷 + 𝒙𝒙 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3) and 𝜶𝜶(𝟐𝟐) + 𝜸𝜸 + 𝒚𝒚 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Therefore, 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐) +
𝜷𝜷𝒚𝒚 + 𝒙𝒙𝜸𝜸 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which again contradicts the assumption that S ∪ {𝜶𝜶} is a cap.  

 
Corollary 1:  For the given natural numbers n and m, 𝑠𝑠𝑛𝑛+𝑚𝑚,3 ≥ |𝑃𝑃𝑛𝑛||𝐵𝐵𝑚𝑚| + |𝐵𝐵𝑛𝑛||𝑃𝑃𝑚𝑚|.  
 
Corollary 2:  For every natural number n, 𝑠𝑠𝑛𝑛+1,3 ≥ 2|𝑃𝑃𝑛𝑛| + |𝐵𝐵𝑛𝑛|. 
 
Theorem 4: If 𝑃𝑃𝑛𝑛 and 𝑃𝑃𝑚𝑚 are constructed by Theorem 1 or by Theorem 2, then for the given 
natural numbers 𝑛𝑛 and 𝑚𝑚, 𝑆𝑆 = 𝑃𝑃𝑛𝑛𝑃𝑃𝑚𝑚{0} ∪ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚{1} ∪ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚{1} ∪ 𝐵𝐵𝑛𝑛+𝑚𝑚{2} is a complete cap in 
the geometry 𝐴𝐴𝐴𝐴(𝑛𝑛 + 𝑚𝑚 + 1, 3). 
 
Proof. First we will prove that the set 𝑆𝑆 = 𝑃𝑃𝑛𝑛𝑃𝑃𝑚𝑚{0} ∪ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚{1} + 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚{1} + 𝐵𝐵𝑛𝑛+𝑚𝑚{2} is a cap 
by contradiction. Assume that there are three distinct points 𝜶𝜶 =
�𝛼𝛼1, … ,𝛼𝛼𝑛𝑛,𝛼𝛼𝑛𝑛+1, … ,𝛼𝛼𝑛𝑛+𝑚𝑚,𝛼𝛼𝑛𝑛+𝑚𝑚+1�, 𝜷𝜷 = �𝛽𝛽1, … ,𝛽𝛽𝑛𝑛,𝛽𝛽𝑛𝑛+1 , … ,𝛽𝛽𝑛𝑛+𝑚𝑚,𝛽𝛽𝑛𝑛+𝑚𝑚+1�, 𝜸𝜸 =
�𝛾𝛾1, … , 𝛾𝛾𝑛𝑛, 𝛾𝛾𝑛𝑛+1 , … , 𝛾𝛾𝑛𝑛+𝑚𝑚, 𝛾𝛾𝑛𝑛+𝑚𝑚+1� ∈ 𝑆𝑆, such that 𝜶𝜶 + 𝜷𝜷 + 𝜸𝜸 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Therefore, 𝜶𝜶(𝟏𝟏) +
𝜷𝜷(𝟏𝟏) + 𝜸𝜸(𝟏𝟏) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), 𝜶𝜶(𝟐𝟐) + 𝜷𝜷(𝟐𝟐) + 𝜸𝜸(𝟐𝟐) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3) and 𝛼𝛼𝑛𝑛+𝑚𝑚+1 + 𝛽𝛽𝑛𝑛+𝑚𝑚+1 + 𝛾𝛾𝑛𝑛+𝑚𝑚+1 =
𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), where 𝜶𝜶(𝟏𝟏) = (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛), 𝜶𝜶(𝟐𝟐) = (𝛼𝛼𝑛𝑛+1,⋯ ,𝛼𝛼𝑛𝑛+𝑚𝑚), 𝜷𝜷(𝟏𝟏) = (𝛽𝛽1,⋯ ,𝛽𝛽𝑛𝑛), 𝜷𝜷(𝟐𝟐) =
(𝛽𝛽𝑛𝑛+1,⋯ ,𝛽𝛽𝑛𝑛+𝑚𝑚), 𝜸𝜸(𝟏𝟏) = (𝛾𝛾1,⋯ , 𝛾𝛾𝑛𝑛) and 𝜸𝜸(𝟐𝟐) = (𝛾𝛾𝑛𝑛+1,⋯ , 𝛾𝛾𝑛𝑛+𝑚𝑚). Claim 1 implies that 
𝛼𝛼𝑛𝑛+𝑚𝑚+1 = 𝛽𝛽𝑛𝑛+𝑚𝑚+1 = 𝛾𝛾𝑛𝑛+𝑚𝑚+1 or 𝛼𝛼𝑛𝑛+𝑚𝑚+1, 𝛽𝛽𝑛𝑛+𝑚𝑚+1, and 𝛾𝛾𝑛𝑛+𝑚𝑚+1 are pairwise distinct numbers. 
Hence, the following four cases are possible.   
 
Case 1. 𝛼𝛼𝑛𝑛+𝑚𝑚+1 = 𝛽𝛽𝑛𝑛+𝑚𝑚+1 = 𝛾𝛾𝑛𝑛+𝑚𝑚+1= 0. Therefore,𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝑃𝑃𝑛𝑛𝑃𝑃𝑚𝑚{0}, 𝜶𝜶(𝟏𝟏),𝜷𝜷(𝟏𝟏),𝜸𝜸(𝟏𝟏) ∈ 𝑃𝑃𝑛𝑛 and 
𝜶𝜶(𝟐𝟐),𝜷𝜷(𝟐𝟐),𝜸𝜸(𝟐𝟐) ∈ 𝑃𝑃𝑚𝑚. From the definition of 𝑃𝑃𝑛𝑛 and 𝑃𝑃𝑚𝑚 and the two relations 𝜶𝜶(𝟏𝟏) + 𝜷𝜷(𝟏𝟏) +
𝜸𝜸(𝟏𝟏) = 0(𝑚𝑚𝑚𝑚𝑚𝑚 3), 𝜶𝜶(𝟐𝟐) + 𝜷𝜷(𝟐𝟐) + 𝜸𝜸(𝟐𝟐) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3) 𝑖𝑖𝑖𝑖 follows that 𝜶𝜶(𝟏𝟏) = 𝜷𝜷(𝟏𝟏) = 𝜸𝜸(𝟏𝟏) and 



Complete Caps in Affine Geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 3) 
 

60 

𝜶𝜶(𝟐𝟐) = 𝜷𝜷(𝟐𝟐) = 𝜸𝜸(𝟐𝟐). Hence, 𝜶𝜶 = 𝜷𝜷 = 𝜸𝜸, which contradicts the assumption that 𝜶𝜶,𝜷𝜷,𝜸𝜸 are 
pairwise distinct points.  
 
Case 2.  𝛼𝛼𝑛𝑛+𝑚𝑚+1 = 𝛽𝛽𝑛𝑛+𝑚𝑚+1 = 𝛾𝛾𝑛𝑛+𝑚𝑚+1=1. Assume that 𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚{1}. Then 
𝜶𝜶(𝟏𝟏),𝜷𝜷(𝟏𝟏),𝜸𝜸(𝟏𝟏) ∈ 𝑃𝑃𝑛𝑛 and 𝜶𝜶(𝟐𝟐),𝜷𝜷(𝟐𝟐),𝜸𝜸(𝟐𝟐) ∈ 𝐵𝐵𝑚𝑚. The definition of 𝑃𝑃𝑛𝑛 implies that 𝜶𝜶(𝟏𝟏) = 𝜷𝜷(𝟏𝟏) =
𝜸𝜸(𝟏𝟏), since 𝜶𝜶(𝟏𝟏) + 𝜷𝜷(𝟏𝟏) + 𝜸𝜸(𝟏𝟏) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Because 𝜶𝜶(𝟐𝟐) + 𝜷𝜷(𝟐𝟐) + 𝜸𝜸(𝟐𝟐) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), Claim 1 
implies that 𝜶𝜶(𝟐𝟐) = 𝜷𝜷(𝟐𝟐) = 𝜸𝜸(𝟐𝟐). Therefore,𝜶𝜶 =  𝜷𝜷 =  𝜸𝜸, which, again contradicts the 
assumption that 𝜶𝜶,𝜷𝜷,𝜸𝜸 are pairwise distinct points. Similarly, one can prove that the case is 
impossible, when 𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚{1}. Therefore, two points, say 𝜶𝜶,𝜷𝜷 ∈ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚{1} and  𝜸𝜸 ∈
𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚{1}. The definition of 𝑃𝑃𝑛𝑛 implies that there is 𝑖𝑖, such that 𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 0, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, . But by 
the definition of 𝐵𝐵𝑛𝑛, 𝛾𝛾𝑖𝑖 = 1 𝑚𝑚𝑜𝑜 2. Hence, 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖 ≠ 0(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts that  𝜶𝜶 +
𝜷𝜷 + 𝜸𝜸 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). In a similar manner, one can prove that the case is impossible, when two 
points from 𝜶𝜶,𝜷𝜷 and 𝜸𝜸 belong to 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚 and the third one belongs to 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚. Therefore, 𝑆𝑆 is a cap.    
  
Case 3. 𝛼𝛼𝑛𝑛+𝑚𝑚+1 = 𝛽𝛽𝑛𝑛+𝑚𝑚+1 = 𝛾𝛾𝑛𝑛+𝑚𝑚+1 = 2. Therefore 𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝐵𝐵𝑛𝑛+𝑚𝑚{2}. Hence, 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐),
𝜷𝜷(𝟏𝟏)𝜷𝜷(𝟐𝟐),𝜸𝜸(𝟏𝟏)𝜸𝜸(𝟐𝟐) ∈ 𝐵𝐵𝑛𝑛+𝑚𝑚 and 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐) +   𝜷𝜷(𝟏𝟏)𝜷𝜷(𝟐𝟐) + 𝜸𝜸(𝟏𝟏)𝜸𝜸(𝟐𝟐) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Claim 1 implies 
that 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐) =   𝜷𝜷(𝟏𝟏)𝜷𝜷(𝟐𝟐) = 𝜸𝜸(𝟏𝟏)𝜸𝜸(𝟐𝟐). This yields 𝜶𝜶 =  𝜷𝜷 =  𝜸𝜸, which, again contradicts the 
assumption that 𝜶𝜶,𝜷𝜷,𝜸𝜸 are pairwise distinct points. 
 
Case  𝛼𝛼𝑛𝑛+𝑚𝑚+1, 𝛽𝛽𝑛𝑛+𝑚𝑚+1 and 𝛾𝛾𝑛𝑛+𝑚𝑚+1 are pairwise distinct numbers. Without loss of generality, 
let us assume that 𝛼𝛼𝑛𝑛+𝑚𝑚+1 = 0, 𝛽𝛽𝑛𝑛+𝑚𝑚+1 = 1 and 𝛾𝛾𝑛𝑛+𝑚𝑚+1 = 2. Therefore, 𝜶𝜶 ∈ 𝑃𝑃𝑛𝑛𝑃𝑃𝑚𝑚{0}, 𝜷𝜷 ∈
𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚{1} or 𝜷𝜷 ∈ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚{1} and 𝜸𝜸 ∈ 𝐵𝐵𝑛𝑛+𝑚𝑚{2}. If 𝜷𝜷 ∈ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚{1}, then 𝜶𝜶(𝟏𝟏),𝜷𝜷(𝟏𝟏) ∈ 𝑃𝑃𝑛𝑛. Hence, the 
definition of 𝑃𝑃𝑛𝑛 implies that there is 𝑖𝑖, such that 𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 0, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. But, by the definition of 
𝐵𝐵𝑛𝑛, 𝛾𝛾𝑖𝑖 = 1 or 2. Therefore, 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖 ≠ 0(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts that  𝜶𝜶(𝟏𝟏) + 𝜷𝜷(𝟏𝟏) +
𝜸𝜸(𝟏𝟏) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). The last relation, in turn, implies that 𝜶𝜶 + 𝜷𝜷 + 𝜸𝜸 ≠ 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). In a similar 
manner, one can prove the case when 𝜷𝜷 ∈ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚{1} is impossible. Hence, 𝑆𝑆 is a cap.    
Now we will prove the completeness of 𝑆𝑆 also by contradiction. Let us assume that there is a 
point 𝜶𝜶 = (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛,𝛼𝛼𝑛𝑛+1, … ,𝛼𝛼𝑛𝑛+𝑚𝑚,𝛼𝛼𝑛𝑛+𝑚𝑚+1), such that 𝜶𝜶 ∉ 𝑆𝑆 and 𝑆𝑆 ∪ {𝜶𝜶} is a cap. The 
following three cases are possible. 
 
Case  𝛼𝛼𝑛𝑛+𝑚𝑚+1 = 2. Since 𝜶𝜶 ∉ 𝑆𝑆, we have (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛,𝛼𝛼𝑛𝑛+1, … ,𝛼𝛼𝑛𝑛+𝑚𝑚) ∉ 𝐵𝐵𝑛𝑛+𝑚𝑚. We can choose 
two points 𝒙𝒙, 𝒚𝒚 ∈ 𝐵𝐵𝑛𝑛+𝑚𝑚{2}, such that, if 𝛼𝛼𝑖𝑖 = 0 then 𝑥𝑥𝑖𝑖 = 2 and 𝑦𝑦𝑖𝑖 = 1, otherwise  𝑥𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖 =
𝛼𝛼𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚. It is obvious that 𝒙𝒙{2}, 𝒚𝒚{2} ∈ 𝐵𝐵𝑛𝑛+𝑚𝑚{2} and 𝜶𝜶, 𝒙𝒙{2}, 𝒚𝒚{2} are pairwise 
distinct points. Claim 1 implies that  𝒙𝒙{2} + 𝒚𝒚{2} + 𝜶𝜶 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts the 
assumption that 𝑆𝑆 ∪ {𝜶𝜶} is a cap. 
 
Case   𝛼𝛼𝑛𝑛+𝑚𝑚+1 = 1. Let’s represent the point 𝜶𝜶 as 𝜶𝜶 = 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐){1}, where 𝜶𝜶(𝟏𝟏) = (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛) 
and 𝜶𝜶(𝟐𝟐) = (𝛼𝛼𝑛𝑛+1,⋯ ,𝛼𝛼𝑛𝑛+𝑚𝑚). Assume that at least one of the sets 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)} or  𝑃𝑃𝑚𝑚 ∪ {𝜶𝜶(𝟐𝟐)}  
satisfies the condition i), say 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)}. First, suppose that  𝜶𝜶(𝟏𝟏) ∉ 𝑃𝑃𝑛𝑛. Then the completeness 
of the set 𝑃𝑃𝑛𝑛 follows that there are two points 𝜷𝜷, 𝜸𝜸 ∈ 𝑃𝑃𝑛𝑛, such that 𝜷𝜷 + 𝜸𝜸 + 𝜶𝜶(𝟏𝟏) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). 
We will choose two points 𝒙𝒙, 𝒚𝒚 ∈ 𝐵𝐵𝑚𝑚 in the following way. If 𝛼𝛼𝑖𝑖 = 0, then  𝑥𝑥𝑖𝑖 = 1 and 𝑦𝑦𝑖𝑖 = 2, 
otherwise 𝑥𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑖𝑖, 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚. From the choice of the points 𝒙𝒙,𝒚𝒚 it follows that 
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𝒙𝒙,𝒚𝒚 ∈ 𝐵𝐵𝑚𝑚 and 𝜶𝜶(𝟐𝟐) + 𝒙𝒙 + 𝒚𝒚 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Therefore, 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐){1} + 𝜷𝜷𝒙𝒙{1} + 𝜸𝜸𝒚𝒚{1} =
𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts the assumption that S ∪ {𝜶𝜶} is a cap. Otherwise, if 𝜶𝜶(𝟏𝟏) ∈ 𝑃𝑃𝑛𝑛, then 
𝜶𝜶(𝟐𝟐) ∉ 𝐵𝐵𝑚𝑚, because  𝜶𝜶 ∉ 𝑆𝑆. Then it is easy to see that 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐){1} + 𝜶𝜶(𝟏𝟏)𝒙𝒙{1} + 𝜶𝜶(𝟏𝟏)𝒚𝒚{1} =
𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which, again contradicts the assumption that S ∪ {𝜶𝜶} is a cap.  Similarly, one can 
prove the case, when the set 𝑃𝑃𝑚𝑚 ∪ �𝜶𝜶(𝟐𝟐)� satisfies the condition i) is impossible. Therefore, both 
sets 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)} and 𝑃𝑃𝑚𝑚 ∪ {𝜶𝜶(𝟐𝟐)} do not satisfy the condition i). Hence, there is a point 𝜷𝜷 ∈ 𝑃𝑃𝑛𝑛, 
(respectively, 𝜸𝜸 ∈ 𝑃𝑃𝑚𝑚), such that if 𝛼𝛼𝑖𝑖 = 0, then 𝛽𝛽𝑖𝑖 ≠ 0 and if 𝛽𝛽𝑖𝑖 = 0, then 𝛼𝛼𝑖𝑖 ≠ 0, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 
(respectively, if 𝛼𝛼𝑖𝑖 = 0, then 𝛾𝛾𝑖𝑖 ≠ 0 and if 𝛾𝛾𝑖𝑖 = 0, then 𝛼𝛼𝑖𝑖 ≠ 0, 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚 ). First, let’s 
choose the point 𝒙𝒙 ∈ 𝐵𝐵𝑛𝑛 in the following way. If  𝛼𝛼𝑖𝑖 = 0, then  𝑥𝑥𝑖𝑖 = 𝛽𝛽𝑖𝑖−1 and if 𝛽𝛽𝑖𝑖 = 0, then  
𝑥𝑥𝑖𝑖 = 𝛼𝛼𝑖𝑖−1, otherwise, by Claim 2, we can assume that 𝑥𝑥𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 𝛼𝛼𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. In the same 
manner, we will choose the point 𝒚𝒚 ∈ 𝐵𝐵𝑚𝑚. If  𝛼𝛼𝑖𝑖 = 0, then  𝑦𝑦𝑖𝑖 = 𝛾𝛾𝑖𝑖−1 and if 𝛾𝛾𝑖𝑖 = 0, then  𝑦𝑦𝑖𝑖 =
𝛼𝛼𝑖𝑖−1, otherwise, using Claim 2, we can assume that 𝑦𝑦𝑖𝑖 = 𝛾𝛾𝑖𝑖 = 𝛼𝛼𝑖𝑖, 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚). The 
choice of the points 𝒙𝒙 and 𝒚𝒚 implies that 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐){1} + 𝜷𝜷𝒚𝒚{1} + 𝒙𝒙𝜸𝜸{1} = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which 
again contradicts the assumption that S ∪ {𝜶𝜶} is a cap.    
 
Case 𝛼𝛼𝑛𝑛+𝑚𝑚+1 = 0. Assume that at least one of the sets 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)} or 𝑃𝑃𝑚𝑚 ∪ {𝜶𝜶(𝟐𝟐)} does not 
satisfy the condition i), say the set 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)}. Therefore, the condition i) implies that there is a 
point  𝜷𝜷 ∈ 𝑃𝑃𝑛𝑛, such that, if 𝛼𝛼𝑖𝑖 = 0, then 𝛽𝛽𝑖𝑖 ≠ 0 and if 𝛽𝛽𝑖𝑖 = 0, then 𝛼𝛼𝑖𝑖 ≠ 0, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. We will 
choose the points 𝒛𝒛(𝟏𝟏) ∈ 𝐵𝐵𝑛𝑛 and 𝒛𝒛(𝟐𝟐), 𝒚𝒚 ∈ 𝐵𝐵𝑚𝑚 in the following way. First let’s choose 𝒛𝒛(𝟏𝟏). If 
 𝛼𝛼𝑖𝑖 = 0, then  𝑧𝑧𝑖𝑖 = 𝛽𝛽𝑖𝑖−1 and if 𝛽𝛽𝑖𝑖 = 0, then  𝑧𝑧𝑖𝑖 = 𝛼𝛼𝑖𝑖−1, otherwise, using Claim 2, we will assume 
that 𝑧𝑧𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 𝛼𝛼𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. Now we will choose the points 𝒛𝒛(𝟐𝟐), 𝒚𝒚 ∈ 𝐵𝐵𝑚𝑚 in the following way. 
If 𝛼𝛼𝑖𝑖 = 0, then we will assume that 𝑧𝑧𝑖𝑖 = 1 and 𝑦𝑦𝑖𝑖 = 2, otherwise 𝑧𝑧𝑖𝑖 = 𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑖𝑖, 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 +
𝑚𝑚. It is easy to see that 𝜷𝜷𝒚𝒚{1} ∈ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚{1}, 𝒛𝒛(𝟏𝟏)𝒛𝒛(𝟐𝟐){2} ∈ 𝐵𝐵𝑛𝑛+𝑚𝑚{2}. The choice of the points 
𝒛𝒛(𝟏𝟏), 𝒛𝒛(𝟐𝟐) and 𝒚𝒚 imply that  𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐){0} + 𝜷𝜷𝒚𝒚{1} + 𝒛𝒛(𝟏𝟏)𝒛𝒛(𝟐𝟐){2} = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts 
the assumption that S ∪ {𝜶𝜶} is a cap. Similarly, one can prove the case is impossible, when the 
set  𝑃𝑃𝑚𝑚 ∪ {𝜶𝜶(𝟐𝟐)} does not satisfy the condition i). Therefore, both sets 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)} and 𝑃𝑃𝑚𝑚 ∪
{𝜶𝜶(𝟐𝟐)} are satisfying the condition i). Since 𝜶𝜶 ∉ 𝑆𝑆, therefore either 𝜶𝜶(𝟏𝟏) ∉ 𝑃𝑃𝑛𝑛 or 𝜶𝜶(𝟐𝟐) ∉ 𝑃𝑃𝑚𝑚. If 
𝜶𝜶(𝟏𝟏) ∉ 𝑃𝑃𝑛𝑛 and 𝜶𝜶(𝟐𝟐) ∈ 𝑃𝑃𝑚𝑚, then the completeness of  𝑃𝑃𝑛𝑛  follows that there are two points 𝒙𝒙,𝒚𝒚 ∈
𝑃𝑃𝑛𝑛, so that 𝒙𝒙 + 𝒚𝒚 + 𝜶𝜶(𝟏𝟏) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Since 𝒙𝒙,𝒚𝒚 ∈ 𝑃𝑃𝑛𝑛 and 𝜶𝜶(𝟐𝟐) ∈ 𝑃𝑃𝑚𝑚, we have 𝒙𝒙𝜶𝜶(𝟐𝟐), 𝒚𝒚𝜶𝜶(𝟐𝟐) ∈
𝑃𝑃𝑛𝑛𝑃𝑃𝑚𝑚 and  𝒙𝒙𝜶𝜶(𝟐𝟐){0} + 𝒚𝒚𝜶𝜶(𝟐𝟐){0} + 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐){0} = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts the assumption 
that S ∪ {𝜶𝜶} is a cap. The case, when 𝜶𝜶(𝟐𝟐) ∉ 𝑃𝑃𝑚𝑚 and 𝜶𝜶(𝟏𝟏) ∈ 𝑃𝑃𝑛𝑛 is analogous to the above 
described one and therefore is impossible. Hence, 𝜶𝜶(𝟏𝟏) ∉ 𝑃𝑃𝑛𝑛 and 𝜶𝜶(𝟐𝟐) ∉ 𝑃𝑃𝑚𝑚. Therefore, from the 
completeness of 𝑃𝑃𝑛𝑛 and 𝑃𝑃𝑚𝑚 it follows that there are points 𝜷𝜷,𝜸𝜸 ∈ 𝑃𝑃𝑛𝑛 and 𝜹𝜹,𝜽𝜽 ∈ 𝑃𝑃𝑚𝑚, so that 𝜷𝜷 + 
𝜸𝜸 + 𝜶𝜶(𝟏𝟏) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3) and 𝜹𝜹 + 𝜽𝜽 + 𝜶𝜶(𝟐𝟐) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). The last two relations imply that 
𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐){0} + 𝜷𝜷𝜹𝜹{0} + 𝜸𝜸𝜽𝜽{0} = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts the assumption that S ∪ {𝜶𝜶} is a 
cap.   
                                                                                                                                                         
Corollary 3:  For the given natural numbers 𝑛𝑛 and 𝑚𝑚, 𝑠𝑠𝑛𝑛+𝑚𝑚+1,3 ≥ |𝑃𝑃𝑛𝑛||𝑃𝑃𝑚𝑚| +
|𝑃𝑃𝑛𝑛||𝐵𝐵𝑚𝑚|+|𝐵𝐵𝑛𝑛||𝑃𝑃𝑚𝑚|+|𝐵𝐵𝑛𝑛+𝑚𝑚|. 
    
Corollary 4: 𝑠𝑠5,3 ≥ 42. 
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Proof.  By definition 𝑃𝑃1={(0)}. From Theorem 1 it follows that 𝑃𝑃3 = 𝑃𝑃1+1+1 = 𝑃𝑃1𝑃𝑃1𝐵𝐵1 ∪
𝑃𝑃1𝐵𝐵1𝑃𝑃1 ∪ 𝐵𝐵1𝑃𝑃1𝑃𝑃1 ={(0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 2, 0), (1, 0, 0), (2, 0, 0)}. It is easy to see that 
|𝐵𝐵𝑛𝑛| = 2𝑛𝑛. Therefore, 𝑠𝑠5,3 ≥ |𝑃𝑃3||𝑃𝑃1| + |𝑃𝑃3||𝐵𝐵1| + |𝐵𝐵3||𝑃𝑃1| + |𝐵𝐵4| =6 × 1 + 6 × 2 + 8 × 1 +
16 = 42. 

 
 

3. Conclusion 
 

Notice that the cardinality of 𝑃𝑃𝑛𝑛 obtained by Theorem 1 (Theorem 2) [16, 17], essentially 
depends on the representation of 𝑛𝑛 as the sum of three (six) natural numbers. Presenting the 
natural numbers as the sum of six natural numbers and applying Theorem 2, for some 𝑛𝑛 ≥ 6 in 
some cases, one can obtain larger complete 𝑃𝑃𝑛𝑛 sets than those, which are constructed by Theorem 
1. It is easy to check that |𝑃𝑃1| = 1, |𝑃𝑃2| = 2, and |𝑃𝑃1+1+1| = 6. |𝑃𝑃2+1+1| = 12, |𝑃𝑃3+1+1| = 32, 
|𝑃𝑃1+1+1+1+1+1| = 80, |𝑃𝑃7| = |𝑃𝑃3+3+1| = 168, |𝑃𝑃8| = |𝑃𝑃1+1+1+1+1+3| = 400, |𝑃𝑃9| = |𝑃𝑃3+3+3| =
864... It is not difficult to see that the maximal size |𝑃𝑃𝑛𝑛| > 2𝑛𝑛, if 𝑛𝑛 > 5. Therefore, to construct 
large complete caps it is convenient to use Corollary 2, but for small complete caps one can use 
Theorem 4.  
 
 
References 

[1] R. C. Bose, “Mathematical theory of the symmetrical factorial design”, Sankhya, vol. 8, 
pp. 107-166, 1947. 
 

[2] B. Qvist, “Some remarks concerning curves of the second degree in a finite plane”, Ann 
Acad. Sci. Fenn, Ser. A, vol. 134, p. 27. 1952. 
 

[3] G. Pellegrino, “Sul Massimo ordine delle calotte in 𝑆𝑆4,3”, Matematiche (Catania), vol. 25, 
pp. 1-9, 1970. 
 

[4] R. Hill, “On the largest size of cap in 𝑆𝑆5,3”, Atti Accad Naz.Lincei Rendicondi, vol. 54, 
pp. 378-384, 1973.  
 

[5] Y. Edel, S. Ferret, I. Landjev and L. Storme, “The classification of the largest caps in 
𝐴𝐴𝐴𝐴(5, 3)”, Journal of Combinatorial Theory, ser. A, vol. 99, pp.  95-110, 2002. 
 

[6] Y. Edel and J. Bierbrauer, “41 is the largest size of a cap in 𝑃𝑃𝐴𝐴(𝑛𝑛, 3)”, Designs, Codes 
and Cryptography, vol. 16, pp. 151-160, 1999. 
 

[7] A. Potechin, “Maximal caps in 𝐴𝐴𝐴𝐴(6, 3)”, Designs, Codes and Cryptography, vol. 46, pp. 
243-259, 2008. 
 

[8] J.W. Hirschfeld and L. Storme, ‘‘The packing problem in statistics, coding theory and 
finite projective spaces’’, Journal of Statistical Planning and Inference 72, pp. 355-380, 
1998. 
 

[9] J.W. Hirschfeld and L. Storme, “The packing problem in statistics, coding theory and 
finite projective spaces’’, Proceeding of the Fourth Isle of Thorns Conference, pp. 201-
246, July 16-21, 2000. 
 

[10] J. Bierbrauer and Y. Edel, “Large caps in projective Galois spaces”, In: Current topics in 
Galois geometry, Editors J. De Beule and L.Storm, pp. 87-104, 2012. 



K.  Karapetyan 63 

[11] A. A. Davidov, G. Faina, S. Marcugini and F. Pambianco, “Computer search in projective 
planes for the sizes of complete arcs”, J. Geometry, vol. 82, pp. 50-62, 2005. 
 

[12] A. A. Davidov and P. R. J. Ostergard, “Recursive constructions of complete caps”, J. 
Statist. Planning Infer, vol. 95, pp. 167-173, 2001. 
 

[13] M. Geuletti, “Small complete caps in Galois affine spaces”, J. Algebr. Comb. Vol. 25, 
pp.149-168, 2007. 
 

[14] K. Karapetyan, “Large Caps in Affine Space”, Proceedings of International Conference 
Computer Science and Information Technologies, Yerevan, Armenia, pp. 82-83, 2015. 
 

[15] K. Karapetyan, “On the complete caps in Galois affine space 𝐴𝐴𝐴𝐴(𝑛𝑛, 3)”, Proceedings of 
International Conference Computer Science and Information Technologies, Yerevan, 
Armenia, p. 205, 2017.  
 

[16] I.A. Karapetyan and K.I. Karapetyan. “The Complete Caps in Projective Geometry 
PG(𝑛𝑛, 3)”, «Լրաբեր» գիտական հոդվածների ժողովածու (ՀԱՊՀ), հատոր 1, էջեր 
35-44, 2021. 
 

[17] I. Karapetyan and K. Karapetyan, “Complete Caps in Projective Geometry PG(𝑛𝑛, 3)”, 
Proceedings of International Conference Computer Science and Information 
Technologies, Yerevan, Armenia, pp. 57-60, 2021.  

 
 

 
Submitted 28.03.22, accepted 27.05.2022. 
 
 
 
 

Լրիվ գլխարկներ 𝐴𝐴𝐴𝐴(𝑛𝑛, 3) աֆինական  երկրաչափությունում 
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Ամփոփում 

 
Դիտարկվում է 𝑛𝑛 չափանի 𝐴𝐴𝐴𝐴(𝑛𝑛, 3) աֆինական երկրաչափությունում լրիվ 

գլխարկների կառուցման խնդիրը 𝐹𝐹3 = {0, 1, 2} դաշտի վրա: Գլխարկը այն կետերի 
բազմությունն է, որոնցից ոչ մի երեքը համագիծ չեն: Օգտագործելով 𝑃𝑃𝑛𝑛 բազմության 
հասկացությունը, մշակվել են լրիվ գլխարկների կառուցման երկու նոր մեթոդներ: 

Բանալի բառեր` աֆինական երկրաչափություն, պրոյեկտիվ երկրաչափություն, 
կետեր, գլխարկներ, լրիվ գլխարկներ:  
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Аннотация 

 
Рассматривается задача построения полных шапок в аффинной геометрии 

𝐴𝐴𝐴𝐴(𝑛𝑛, 3) размерности n над полем 𝐹𝐹3 = {0, 1, 2}. Шапка — это набор точек, никакие три 
из которых не коллинеарны. С помощью понятия множества 𝑃𝑃𝑛𝑛, разработаны две новые 
конструкции построения полных шапок.  

Ключевые слова: аффинная геометрия, проективная геометрия, точки, шапки, 
полные шапки.  
 

 


