
Mathematical Problems of Computer Science 57, 30–38, 2022.

doi: 10.51408/1963-0084

UDC 004.8

Compact N-gram Language Models for Armenian

Davit S. Karamyan1 and Tigran S. Karamyan2

1Russian-Armenian University, Yerevan, Armenia
2Yerevan State University, Yerevan, Armenia

e-mail: davitkar98@gmail.com, t.qaramyan@ysu.am

Abstract

Applications such as speech recognition and machine translation use language mod-
els to select the most likely translation among many hypotheses. For on-device appli-
cations, inference time and model size are just as important as performance. In this
work, we explored the fastest family of language models: the N-gram models for the
Armenian language. In addition, we researched the impact of pruning and quantiza-
tion methods on model size reduction. Finally, we used Bye Pair Encoding to build
a subword language model. As a result, we obtained a compact (100 MB) subword
language model trained on massive Armenian corpora.

Keywords: Armenian language, N-gram Language Model, Subword Language
Model, Pruning, Quantization

1. Introduction

Language modeling is a fundamental task of NLP. Models that assign probabilities to se-
quences of tokens are called language models or LMs. Here, tokens can be words, characters,
or subwords. The N-gram is the simplest model that assigns probabilities to sentences and
sequences of tokens. Although the N-gram models are much simpler than modern neural
language models based on RNN[1, 2] and transformers[3, 4, 5], they are much faster than
others since they perform constant-time lookups and scalar multiplications (instead of ma-
trix multiplications in neural models). As always, trade-offs exist between time, space, and
accuracy[6]. Hence, much recent work has focused on building faster and smaller N-gram
language models[7, 8, 9].

N-gram language models are widely utilized in spelling correction[10], speech
recognition[11] and machine translation[12] systems. In such systems, for each utter-
ance/sentence translation, the system generates several alternative token sequences and
scores them using N-gram LM to peek the most likely translation sequence. In addition,
LM rescoring can be combined with beam search algorithms[13].

The Armenian language has a rich morphology: one word can have several tenses and
surface forms. Moreover, one can form long words in Armenian by stringing word pieces
together. The inclusion of every form in the vocabulary will make it intractable. Subword

30



D. Karamyan and T. Karamyan 31

dictionaries, in which words are divided into frequent parts, can help reduce vocabulary size.
Many efforts have been made to use word decomposition and subword LMs for dealing with
out-of-vocabulary words in inflective languages such as Arabic[14], Finnish[15], Russian[16],
and Turkish[17]. A review of the literature revealed that there have been no publicly available
LM resources for the Armenian language. This work is devoted to the creation of a compact
and fast N-gram LM for the Armenian language.

Summing up, we will give answers to the following practical questions: Q1. What order
of N-grams is enough to build a good LM for the Armenian language? Q2. How much data
is needed to build a model? Q3. How can pruning and quantization help reduce the size of
the model? Q4. Can we build more compact models by using subwords?

In addition, we are going to release training codes and models.1

2. Background

Language Modeling (LM) is the task of predicting which token or word comes next. You
might also think of an LM as a system that assigns probability to a piece of text. The
probability of a sequence of n tokens tn1{t1, ..., tn} is denoted as P (tn1 ). Using the chain rule
of probability we can decompose this probability:

P ({t1, ..., tn}) =
n∏

k=1

P (tk|tk−1
1 ).

Instead of computing the probability of a token given its entire history, it is usually
conditioned on a window of N previous tokens. The assumption that the probability of a
token depends only on the previous N − 1 token is called a Markov assumption:

P (tk|tk−1
1 ) ≈ P (tk|tk−1

k−N+1).

We can estimate the probabilities of an N-gram model by getting counts from a corpus
and normalizing the counts so that they lie between 0 and 1. For example, to compute a
particular N-gram probability of a token tk given the previous tokens tk−1

k−N+1, we’ll compute
the count of the N-gram tkk−N+1 and normalize it by the sum of all the N-grams that share
the same prefix tk−1

k−N+1:

P (tk|tk−1
k−N+1) =

Count(tkk−N+1)∑
t Count(tk−1

k−N+1, t)
=

Count(tkk−N+1)

Count(tk−1
k−N+1)

.

There are two major problems with N-gram language models: storage and sparsity. To
compute N-gram probability we need to store counts for all N-grams in the corpus. As
N increases or the corpus size increases, the model size increases as well. Pruning and
Quantization may provide a partial solution to reduce the model size. Any N-gram that
appeared a sufficient number of times might have a reasonable estimate for its probability.
Since any corpus is limited, some perfectly acceptable tokens may never appear in the corpus.
As a result of it, for any training corpus, there will be a substantial number of cases of
putative zero probability N-grams. To keep an LM from assigning zero probability to these
unseen events, we will have to shave off a bit of probability mass from some more frequent
events and give it to the events we have never seen. This is called smoothing. There are many
ways to do smoothing: add-one(add-k) smoothing, backoff, and Kneser-Ney smoothing[18].

1https://github.com/naymaraq/arm-n-gram



32 Compact N-gram Language Models for Armenian

3. Experiments

Setup. We estimate N-gram probabilities on Armenian Wikipedia corpus2 and CC-100 Web
Crawl Data3[19]. To test the language models, we compute perplexity on two test datasets:
Armenian Paraphrase Detection Corpus4 (ARPA[20]) and Universal Dependencies treebank5

(UD). All datasets are normalized by removing punctuation marks and non-Armenian sym-
bols. Table 1 provides some statistics of the data after all normalization steps have been
performed. Table 2 shows unique N-gram counts presented in the training corpus.

We are going to measure the perplexity of corpus C that contains m sentences and
N tokens. Let’s the sentences (s1, s2, ..., sm) be part of C. Under assumption that those
sentences are independent, the perplexity of the corpus is given by:

Perp(C) = N

√
1

p(s1, s2, ..., sm)
= N

√
1∏m

k=1 p(sk)
.

We use KenLM [21] to train language models. KenLM implements two data structures:
Probing and Trie, for efficient language model queries, reducing both time and memory
costs. KenLM estimates language model parameters from text using modified Kneser-Ney
smoothing.

Table 1: Datasets statistics.

Dataset Tokens (M) Bytes Split

CC-100 409 5.4Gb train

Wiki 18.6 249Mb train

ARPA 0.133 1.8Mb test

UD 0.034 425Kb test

Table 2: N-gram counts.

Order (N) Count of unique N -grams

1 3648574

2 60190581

3 160796455

4 217396323

5 233510708

Q1. Order of Grams vs Perplexity

To determine what order of N -grams is sufficient to build a good LM for Armenian, we
trained several LMs with different orders and calculated perplexity on the test datasets.
Fig. 1 shows the trend between perplexity and order of N-gram. It also shows how the size
of the model changes as N increases.

From Fig. 1 we can deduce that the effective orders are 5 and 6 grams. Although their
sizes are quite large: 3.9GB and 5.5GB.

Q2. Training Corpus size vs Perplexity

The next question we would like to ask is about corpus size. If the training corpus is small,
we will end up with a very sparse model, and all perfectly acceptable Armenian tokens will

2https://github.com/YerevaNN/word2vec-armenian-wiki
3https://data.statmt.org/cc-100/
4https://github.com/ivannikov-lab/arpa-paraphrase-corpus
5https://github.com/UniversalDependencies/UD Armenian-ArmTDP



D. Karamyan and T. Karamyan 33

Fig. 1. N -gram order vs perplexity. Fig. 2. Number of tokens in training corpus vs

perplexity.

be considered unknown. To find out how much data is required, we shuffled and divided the
entire training corpus into parts and trained a 5-gram LM for each part. Fig. 2 shows the
trend between perplexity and corpus size.

It can be seen that the perplexity reaches saturation when the number of tokens exceeds
380M. Of course, there is always a trade-off between the corpus size, perplexity and the
model size: the larger the corpus size, the less perplexity and the larger the model.

Q3. Quantization and Pruning

On-device applications should be as compact as possible. So, the next question we would
like to raise concerns the size of the model. Can we build a smaller LM without sacrificing
performance?

To reduce the size of the model, we prune all n-grams that appear in the training corpus
less than or equal to a given threshold. In addition, we use quantized probabilities by setting
fewer bits. For this experiment, we trained a 5-gram LM.

The effect of pruning and quantization is provided in Table 3. Quantization can help
reduce the size of a model by a couple of megabytes without perplexity degradation. In
contrast, pruning drastically reduces the size of the model at the cost of worsening perplexity.
For example, removing all n-grams less than or equal to 4 can reduce the size of the model
by more than 12 times with a relative perplexity degradation of 36% for the UD dataset and
100% for the ARPA dataset.

Q4. Subword Language Modeling

So far, we have considered text as a sequence of words separated by a space. Space tokeniza-
tion is an example of word tokenization, which is defined as breaking sentences into words.
The word tokenization method can lead to problems for massive text corpora and usually
generates a very big vocabulary (e.g., our training corpus contains 3, 648, 574 unique tokens,
see Table 1). Instead of using word tokenization, we will use subword tokenization, which is
based on the principle that frequently used words should not be split into smaller subwords,
but rare words should be decomposed into meaningful subwords. There are several subword



34 Compact N-gram Language Models for Armenian

Table 3: The effect of pruning and quantization on the trade-off between size and perplexity.

Pruning threshold N-bits Size UD ARPA

0 5 3.44Gb 3043.47 631.58
0 6 3.59Gb 3068.62 638.84
0 7 3.74Gb 3075.99 641.57
0 8 3.9Gb 3089.41 642.93

2 5 481.28Mb 3781.29 1131.82
2 6 501.76Mb 3768.36 1128.14
2 7 512.0Mb 3767.81 1125.54
2 8 532.48Mb 3764.69 1125.0

4 5 296.96Mb 4252.71 1344.56
4 6 307.2Mb 4219.03 1335.89
4 7 317.44Mb 4218.13 1332.73
4 8 317.44Mb 4217.73 1332.84

6 5 245.76Mb 4473.19 1486.95
6 6 245.76Mb 4432.03 1474.89
6 7 256.0Mb 4435.29 1471.75
6 8 256.0Mb 4431.23 1471.89

8 5 215.04Mb 4694.73 1588.09
8 6 225.28Mb 4655.29 1576.21
8 7 225.28Mb 4652.95 1571.46
8 8 225.28Mb 4652.89 1571.94

Fig. 3. N -gram order vs perplexity (subword).



D. Karamyan and T. Karamyan 35

tokenization algorithms: Byte-Pair Encoding[22] , WordPiece[23], and SentencePiece[24].
Subword tokenization allows the model to have a reasonable vocabulary size. In addition,
subword tokenization enables the model to process words it has never seen before by decom-
posing them into known subwords. This is especially useful in agglutinative languages such
as Armenian, where you can form long words by stringing subwords together.

We trained a BPE tokenizer with a vocabulary size of 128 using the SentencePiece
package6. Next, we build several N -gram models on a tokenized corpus. Fig. 3 shows
the trend between perplexity and order of N-gram for subword model. It also shows how the
size of the model changes as N increases.

Table 4: Pruning effect for the subword model with 10-gram.

Pruning Size UD ARPA

0 36.66Gb 6.055 3.941

2 1.11Gb 6.199 4.19

4 634.88Mb 6.323 4.306

6 440.32Mb 6.373 4.381

8 348.16Mb 6.435 4.44

10 286.72Mb 6.53 4.491

16 184.32Mb 6.781 4.619

20 153.6Mb 6.892 4.69

24 122.88Mb 7.02 4.751

30 102.4Mb 7.146 4.837

First, in Fig. 3 the perplexity (0-10) is significantly lower than the perplexity of the word-
based tokenized model (0-7000, see Fig. 1). This is because we no longer have unknown
tokens. In contrast to word-based models, subword models are much larger (e.g., 10-gram
subword model is 3 times bigger).

Since the sequences no longer contain words, but contain subwords, in order to capture
sufficient context, we need to consider higher order grams. From Fig. 3 it can be seen that
the higher the order, the larger the model (for example, a subword model with 10-gram has
a size of 36.7 GB). To reduce the size of the model, we use pruning again. Table 4 provides
information about the pruning effect for the subword model with 10-gram. It can be seen
that we can reduce the model size by a factor of 368 from 36.7 GB to 102 MB with a relative
perplexity degradation of 18% for the UD dataset and 23% for the ARPA dataset.

4. Conclusions

In this article, we have explored N-gram language models for the Armenian language. Our
experiments have shown that for word-based language models, the effective orders are 5 and
6. In contrast, the effective order for subword language models can be higher than 10.

We have also explored the impact of pruning and quantization on the trade-off between
model size and perplexity. Quantization can help reduce the size of the model without

6https://github.com/google/sentencepiece



36 Compact N-gram Language Models for Armenian

degrading perplexity significantly. Pruning, on the other hand, drastically reduces the size
of the model at the expense of aggravating perplexity. For the subword language model, the
perplexity degradation is much lower than for the word-based language model.

We have released compact N-gram language models built on very large corpora.

References

[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory. Neural computation”,
vol. 9, no. 8, pp. 1735-1780, 1997.

[2] J. Sarzyska-Wawer, A. Wawer, A. Pawlak, J. Szymanowska, I. Stefaniak, M. Jarkiewicz
and . Okruszek, “Detecting formal thought disorder by deep contextualized word rep-
resentations”, Psychiatry Research, vol. 304, pp. 114–135, 2021.

[3] J. Devlin, M. Chang, K. Lee and K. Toutanova, ”Bert: Pre-training of deep bidi-
rectional transformers for language understanding”, arXiv preprint arXiv:1810.04805,
2018.

[4] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li
and P.J. Liu, “Exploring the limits of transfer learning with a unified text-to-text
transformer”, arXiv preprint arXiv:1910.10683, 2019.

[5] T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell and others, “Language models are few-shot learners”,
arXiv preprint arXiv:2005.14165, 2020.

[6] C. Buck, K. Heafield and B.V. Ooyen, “N-gram counts and language models from the
common crawl”, In: LREC, vol. 2, no. 4, 2014.

[7] A. Pauls and D. Klein, “Faster and smaller n-gram language models”. In: Proceedings
of the 49th annual meeting of the Association for Computational Linguistics: Human
Language Technologies, pp. 258-267, 2011.

[8] D. Guthrie and M. Hepple, “Storing the web in memory: Space efficient language mod-
els with constant time retrieval”, In: Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pp. 262-272, 2010.

[9] U. Germann, E. Joanis and S. Larkin, “Tightly packed tries: How to fit large models
into memory, and make them load fast, too”, In: Proceedings of the Workshop on
Software Engineering, Testing, and Quality Assurance for Natural Language Processing
(SETQA- NLP 2009), pp. 31-39, 2009.

[10] S.D. Hernandez and H. Calvo, “Conll 2014 shared task: Grammatical error correction
with a syntactic n-gram language model from a big corpora”, In: Proceedings of the
Eighteenth Conference on Computational Natural Language Learning: Shared Task,
pp. 53-59, 2014.

[11] A.Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger,
S. Satheesh, S. Sengupta, A. Coates and others, “Deep speech: Scaling up end-to-end
speech recognition”, arXiv preprint arXiv:1412.5567, 2014.

[12] H. Schwenk, D. Dchelotte and J. Gauvain, “Continuous space language models for
statistical machine translation”, In: Proceedings of the COLING/ACL 2006 Main
Conference Poster Sessions, pp. 723-730, 2006.



D. Karamyan and T. Karamyan 37

[13] A.Y. Hannun, A.L. Maas, D. Jurafsky and A. Y. Ng, “First-pass large vocabulary
continuous speech recognition using bi-directional recurrent dnns”, arXiv preprint
arXiv:1408.2873, 2014.

[14] A.E.D. Mousa, H.J. Kuo, L. Mangu and H. Soltau, “Morpheme-based feature-rich
language models using deep neural networks for lvcsr of egyptian arabic”, In: 2013
IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8435-
8439, 2013.

[15] V. Siivola, T. Hirsimki, M. Creutz and M. Kurimo, “Unlimited vocabulary speech
recognition based on morphs discovered in an unsupervised manner”, In: Proc. Eu-
rospeech, vol. 3, pp. 2293-2296, 2003.

[16] I. Oparin, “Language models for automatic speech recognition of inflectional lan-
guages”, University of West Bohemia, 2008.

[17] D. Yuret and E. Bicici, “Modeling morphologically rich languages using split words
and unstructured dependencies”, In: Proceedings of the ACL-IJCNLP 2009 conference
short papers, pp.345–348, 2009.

[18] D. Jurafsky, “Speech and language processing”, Pearson Education India, 2000.

[19] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmn, E.
Grave, M. Ott, L. Zettlemoyer, V. Stoyanov, “ Unsupervised cross-lingual representa-
tion learning at scale”, arXiv preprint arXiv:1911.02116, 2019.

[20] A. Malajyan, K. Avetisyan and T. Ghukasyan, “Arpa: Armenian paraphrase detection
corpus and models”, In: 2020 Ivannikov Memorial Workshop (IVMEM), pp. 35-39,
2020.

[21] K. Heafield, “Kenlm: Faster and smaller language model queries”, In: Proceedings of
the sixth workshop on statistical machine translation, pp. 187-197, 2011.

[22] R. Sennrich, B. Haddow and A. Birch, “Neural machine translation of rare words with
subword units”, arXiv preprint arXiv:1508.07909, 2015.

[23] M. Schuster and K. Nakajima, “Japanese and korean voice search”, In: 2012 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp.
5149-5152, 2012.

[24] T. Kudo and J. Richardson, “Sentencepiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing”, arXiv preprint
arXiv:1808.06226, 2018.

Submitted 31.03.2022, accepted 27.05.2022.



3 8 Compact N-gram Language Models for Armenian

ÎáÙå³Ïï N-·ñ³Ù É»½íÇ Ùá¹»ÉÝ»ñ Ñ³Û»ñ»ÝÇ Ñ³Ù³ñ

¸³íÇÃ ê. ø³ñ³ÙÛ³Ý1 ¨ îÇ·ñ³Ý ê. ø³ñ³ÙÛ³Ý2

1 èáõë-Ñ³ÛÏ³Ï³Ý Ñ³Ù³Éë³ñ³Ý, ºñ¨³Ý, Ð³Û³ëï³Ý
2 ºñ¨³ÝÇ å»ï³Ï³Ý Ñ³Ù³Éë³ñ³Ý, ºñ¨³Ý, Ð³Û³ëï³Ý

e-mail: davitkar98@gmail.com, t.qaramyan@ysu.am

²Ù÷á÷áõÙ

Êîìïàêòíûå ÿçûêîâûå ìîäåëè N-ãðàìì äëÿ
àðìÿíñêîãî ÿçûêà

Äàâèä Ñ. Êàðàìÿí1 è Òèãðàí Ñ. Êàðàìÿí2

1 Ðîññèéñêî-Àðìÿíñêèé óíèâåðñèòåò, Åðåâàí, Àðìåíèÿ
2Åðåâàíñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, Åðåâàí, Àðìåíèÿ

e-mail: davitkar98@gmail.com, t.qaramyan@ysu.am

Àííîòàöèÿ

Òàêèå ïðèëîæåíèÿ, êàê ðàñïîçíàâàíèå ðå÷è è ìàøèííûé ïåðåâîä,
èñïîëüçóþò ÿçûêîâûå ìîäåëè äëÿ âûáîðà íàèáîëåå âåðîÿòíîãî ïåðåâîäà ñðåäè
ìíîæåñòâà ãèïîòåç. Äëÿ ïðèëîæåíèé íà óñòðîéñòâå âðåìÿ âûâîäà è ðàçìåð
ìîäåëè òàê æå âàæíû, êàê è ïðîèçâîäèòåëüíîñòü. Â ýòîé ðàáîòå ìû èññëåäîâàëè
ñàìîå áûñòðîå ñåìåéñòâî ÿçûêîâûõ ìîäåëåé: ìîäåëè N-ãðàìì äëÿ àðìÿíñêîãî
ÿçûêà. Êðîìå òîãî, ìû èññëåäîâàëè âëèÿíèå ìåòîäîâ îáðåçêè è êâàíòîâàíèÿ íà
óìåíüøåíèå ðàçìåðà ìîäåëè. Íàêîíåö, ìû èñïîëüçîâàëè Bye Pair Encoding äëÿ
ïîñòðîåíèÿ ìîäåëè ÿçûêà ïîäñëîâ. Â ðåçóëüòàòå ìû ïîëó÷èëè êîìïàêòíóþ (100
ÌÁ) ìîäåëü ÿçûêà ïîäñëîâ, îáó÷åííóþ íà ìàññèâíûõ àðìÿíñêèõ êîðïóñàõ.

Êëþ÷åâûå ñëîâà: Àðìÿíñêèé ÿçûê, ìîäåëü ÿçûêà N-ãðàìì, ìîäåëü ÿçûêà
ïîäñëîâ, îáðåçêà, êâàíòîâàíèå.

´³Ý³ÉÇ µ³é»ñ` Ñ³Ûáó É»½áõ, N-gram É»½íÇ Ùá¹»É, »ÝÃ³µ³é»ñÇ É»½íÇ Ùá¹»É, ¿ïáõÙ,
ùí³Ýï³óáõÙ:

²ÛÝåÇëÇ Ñ³í»Éí³ÍÝ»ñ, ÇÝãåÇëÇù »Ý ËáëùÇ ×³Ý³ãáõÙÁ ¨ Ù»ù»Ý³Û³Ï³Ý Ã³ñ·Ù³Ýáõ-
ÃÛáõÝÁ, û·ï³·áñÍáõÙ »Ý É»½íÇ Ùá¹»ÉÝ»ñ µ³½Ù³ÃÇí í³ñÏ³ÍÝ»ñÇ Ù»ç ³Ù»Ý³Ñ³í³Ý³Ï³Ý
Ã³ñ·Ù³ÝáõÃÛáõÝÝ ÁÝïñ»Éáõ Ñ³Ù³ñ: ê³ñù»ñÇ íñ³ ï»Õ³¹ñí³Í Ñ³í»Éí³ÍÝ»ñÇ
Ñ³Ù³ñ »½ñ³Ï³óáõÃÛ³Ý Å³Ù³Ý³ÏÁ ¨ Ùá¹»ÉÇ ã³÷Á ÝáõÛÝù³Ý Ï³ñ¨áñ »Ý, áñù³Ý
³ñï³¹ñáÕ³Ï³ÝáõÃÛáõÝÁ: ²Ûë ³ßË³ï³ÝùáõÙ Ù»Ýù áõëáõÙÝ³ëÇñ»É »Ýù É»½í³Ï³Ý
Ùá¹»ÉÝ»ñÇ ³Ù»Ý³³ñ³· ÁÝï³ÝÇùÁ` N-gram Ùá¹»ÉÝ»ñÁ Ñ³Û»ñ»ÝÇ Ñ³Ù³ñ: ´³óÇ ³Û¹,
Ù»Ýù áõëáõÙÝ³ëÇñ»É »Ýù ÏïñÙ³Ý ¨ ùí³Ýï³óÙ³Ý Ù»Ãá¹Ý»ñÇ ³½¹»óáõÃÛáõÝÁ Ùá¹»ÉÇ ã³÷Ç
Ïñ×³ïÙ³Ý íñ³: Æ í»ñçá, Ù»Ýù û·ï³·áñÍ»É »Ýù Bye Pair Encoding` »ÝÃ³µ³é»ñÇ É»½íÇ
Ùá¹»É ëï»ÕÍ»Éáõ Ñ³Ù³ñ: ²ñ¹ÛáõÝùáõÙ ëï³ó»É »Ýù ÏáÙå³Ïï (100 Ø´) »ÝÃ³µ³é»ñÇ É»½íÇ
Ùá¹»É` å³ïñ³ëïí³Í Ñ³ÛÏ³Ï³Ý ½³Ý·í³Í³ÛÇÝ ÏáñåáõëÝ»ñÇ íñ³:


	03_Karamyan_30_38
	03a



