
Mathematical Problems of Computer Science 53, 29–38, 2020.

UDC 519.6

Estimating Time of Driver Arrival with Gradient

Boosting Algorithms and Deep Neural Networks

Henrik T. Sergoyan

American University of Armenia

e-mail: henriksergoyan@gmail.com

Abstract

Customer experience and resource management determine the degree to which
transportation service providers can compete in today’s heavily saturated markets.
The paper investigates and suggests a new methodology to optimize calculations for
Estimated Time of Arrival (from now on ETA, meaning the time it will take for the
driver to reach the designated location) based on the data provided by GG collected
from rides made in 2018. GG is a transportation service providing company, and it
currently uses The Open Source Routing Machine (OSRM) which exhibits significant
errors in the prediction phase. This paper shows that implementing algorithms such
as XGBoost, CatBoost, and Neural Networks for the said task will improve the ac-
curacy of estimation. Paper discusses the benefits and drawbacks of each model and
then considers the performance of the stacking algorithm that combines several models
into one. Thus, using those techniques, final results showed that Mean Squared Error
(MSE) was decreased by 54% compared to the current GG model.

Keywords: GG, Estimated Time of Driver Arrival, OSRM, XGBoost, CatBoost,
Neural Networks.

1 Introduction

ETA calculation is a relatively significant product differentiator for firms competing in the
automated ride service hailing industry. ETA computation is particularly difficult for cities
with underdeveloped traffic and road management services such as Yerevan, thus requiring
novel methodologies and datasets to design models that can be deployed for use by relatively
fickle customers. GG is one of the major transportation service providers in Yerevan and this
paper uses data provided by GG to predict ETA. While GG currently estimates the time of
arrival, it does so with a significant error. This paper discusses optimization techniques to
calculate estimated arrival time with more accurate and flexible algorithms.

29

30 Estimating Time of Driver Arrival with Gradient Boosting Algorithms and Deep Neural Networks

1.1 Problem Setting and Description

GG has an application that enables drivers to receive orders to transport customers and
goods. Having chosen a pick-up location through the app, the customer gets an ETA for
the driver. The task is to improve ETA estimation so that it is more accurate than the
baseline OSRM model, which GG currently employs. To do so, the paper uses several
joint Machine Learning algorithms such as XGBoost, CatBoost, and Neural Networks. The
dataset provided by GG consists of more than 2.4M orders occured (received) in 2018. The
number of unique drivers exceeds 6000. In addition to spatio-temporal dataset, the hourly
data about weather conditions were used to better capture possible traffic jams.

1.2 Structure of the Paper

The paper consists of five central sections. The first section provides the problem statement
and description, the overall summary of the paper structure representing the current method
GG uses for estimating the arrival time of the driver while describing its drawbacks. After
giving full understanding about the reason for further investigations, the next 3 sections,
give detailed information and clarification of alternative models and outline advantages and
disadvantages of each of them showing the results run on the 1-year information containing
data. Based on the preceding sections the fifth part of the paper shows comparisons of
all 3 suggested models and interprets the most optimal solution of the problem based on 3
methods.

1.3 Description of OSRM

The Open Source Routing Machine is a routing engine that works to find the shortest
paths in the road networks, and it supports Linux, FreeBSD, Windows and Mac OS X
platforms. The primary function of the environment is to compute and output the shortest
path between the origin and the destination points, on the basis of which the system can
compute the estimated time within a couple of milliseconds for the transport to reach a
particular destination. By implementing contraction hierarchies, pure route computation
takes the minimal time of those calculations. The most significant part of the calculation
is finding the route and transmitting the geometry over the network. The decision-making
capacity of the system is based on routing algorithms with road network data from the OSM
(OpenStreetMap) project (see [1]).

The OSRM optimization algorithm prioritizes the speed with which calculations are
made. Data obtained from OSM consist of 3 main components; namely nodes, ways and
relations between them. Nodes determine the geometric structure of the path. Ways are 2D
polylines consisting of line segments. Several lines can share the same node if they intersect
with each other. A relation relates nodes or ways to turn restrictions, routes, and other
features [2].

In these graphs, nodes represent directions of an OSM segment and graph edges connect
graph nodes by describing the transition from one specific point to another. Here is how it
works:

H. Sergoyan 31

Fig. 1. OSRM visual implementation.

Even though this method seems to expedite the process of calculating ETA, the major
drawback is that it does not capture the impact of weather conditions, traffic conditions and
other real-life situations that depend on human factors. Thus, this paper concentrates on im-
proving ETA calculation using information concerning weather and concrete data generated
by drivers on actual routes.

2 Machine Learning Approach to the Problem

2.1 Related Work

Managing traffic among the urban population is becoming an increasingly significant issue
for major municipalities. Thus, one of the fundamental problems to be solved is the efficient
management of road traffic by minimizing congestion and assisting travelers with real-time
information. Some urban areas currently use datasets that include information concerning
GPS coordinates of origins and destinations, travel time, travel distance, pickup date, trip
start-end times and the total fare to organize the road management. By analyzing data, route
optimizing environments provide information for travelers related to the optimal routes, road
conditions, and locations of incidents [3], [4].

Ishan Jindal, Tony (Zhiwei) Qin, Xuewen Che, Matthew Nokleby, Jieping Ye studied this
topic and used the Unified Neural Network Approach to estimate Travel Time and Distance
for a Taxi Trip. The data they used were structurally similar to those provided by GG, so
this paper takes its results as an additional benchmark and aims to improve upon it [5].

Their research considers the waiting time at intersections for travel time estimations. The
method used is a particular case of the path-based approach, where they add predictions of
waiting time at intersections of sub-paths including the neighbor-based method by averaging
the travel time for all the samples in the training data that have the same origin, destination,
and time of day. Thus, the paper focuses on predicting travel time and distance from a source
to a target as a function of the time of day based on NYC travel trip historical data. Having
a large amount of training data, the authors build a unified neural network learning model,
which jointly learns the travel time and distance between the origin and destination [5].

To understand what the travel time is, one needs to think of the time taken by the driver
to move from the initial location to the final location including velocity changes or stops

32 Estimating Time of Driver Arrival with Gradient Boosting Algorithms and Deep Neural Networks

made by him/her depending on some conditions. Travel distance is the path taken by the
driver to reach from the primary point to the final location. Thus, the travel time depends
on the origin and destination at a particular time of the day [4].

2.2 XGBoost: Extreme Gradient Boosting

XGBoost is a decision-tree-based ensemble Machine Learning algorithm that uses a gradient
boosting framework. In prediction problems involving unstructured data (images, text, etc.),
artificial neural networks tend to outperform all other algorithms or structures. However,
when it comes to small-to-medium structured/tabular data, decision-tree-based algorithms
are considered best-in-class (see [4]).

XGBoost algorithm was developed as a research project at the University of Washington.
Tianqi Chen and Carlos Guestrin presented their paper at SIGKDD Conference in 2016 and
caught the Machine Learning world by fire. Since its introduction, this algorithm has not
only been credited with winning numerous Kaggle competitions but also for being the driving
force under the hood for several cutting-edge industry applications. XGBoost is an ensemble
learning method, and the main principle behind it is that a group of weak learners come
together to form a keen learner. Bagging and boosting are two widely used ensemble learners
[4], [6].

2.2.1 Bagging

While decision trees are one of the most easily interpretable models, they exhibit highly
variable behavior. Therefore, several decision trees are being generated in parallel and form
the base learners of bagging technique. Data sampled with replacement is fed to these
learners for training. The final prediction is the averaged output from all the learners. The
main principle behind the ensemble model is that a group of weak learners come together to
form a strong learner [6].

2.2.2 Boosting

In boosting, the trees are built sequentially so that each subsequent tree aims to reduce the
errors of the previous tree. Each tree learns from its predecessors and updates the residual
errors. Hence, the tree that grows next in the sequence will learn from an updated version
of the residuals [6].

Using XGBoost, in this case, has several advantages. First of all, XGBoost has a feature
of out-of-core computing that helps to handle massive datasets that do not fit into memory.
Moreover, because of a block structure in its system design, XGBoost can make use of
multiple cores on the CPU and GPU. Data are sorted and stored in in-memory units called
blocks. That enables the data layout to be reused by subsequent iterations, instead of
computing it again. Finally, XGBoost has an option to penalize complex models through
both L1 and L2 regularizations. Regularization helps in preventing overfitting [6].

2.3 CatBoost: Categorical Boosting

CatBoost (Categorical Boosting) is a state-of-the-art open-source gradient boosting on de-
cision trees library developed by Yandex. The algorithm is spawned from XGBoost, but it
has its advantages compared to all other gradient boosting algorithms. Although XGBoost

H. Sergoyan 33

became a game-changing algorithm in machine learning, it indeed, has its drawbacks. For
example, XGBoost has a problem of dealing with categorical features, and therefore, one-hot
encoding is used, which adds a new binary feature for each category. However, in the case of
high cardinality features, such as User ID, Partner ID, which were present in the data, such a
technique leads to an infeasibly large number of new features. CatBoost deals with this issue
and is now considered the most innovative algorithm for processing categorical features. At
the end of the paper, it is shown how well CatBoost deals with categorical features in the
data by looking at the final accuracies of the models [7].

2.4 NN: Neural Networks

Neural Networks were used as the last method to predict the time of arrival of a driver.
The main advantage of neural nets is that they can detect patterns that no other algorithms
can discover. The logic behind it differs significantly from the aforementioned boosting
algorithms [8].

• The network architecture includes an input layer, a hidden layer(s) and an output
layer. It is also called MLP (Multi-Layer Perceptron) because of the multiple layers.

• The hidden layer can be seen as a distillation layer that concentrates some of the
essential patterns from the inputs and passes them onto the next layer to view. It
renders the network faster and more efficient by identifying only the critical information
from the inputs and leaving out redundant information.

• The activation function serves for two notable purposes [8]:

◦ captures non-linear relationships between the inputs;

◦ helps to convert the input into a more useful output.

2.5 Feature Engineering and Final Results

To train the above-mentioned models, annual data generated by GG taxi orders were used.
The data consists of more than 2M unique orders received in 2018. The features of the data
were the driver ID, the coordinates where he takes the order, the coordinates of the order
denoted by the user, the time-stamp when the order was created, the actual duration of
the trip, and the estimated duration of the trip by OSRM. However, several extra features
were added to the data, such as dummy variables of weekdays or weather information. It is
important to mention that weather data contains hourly historic information about weather
conditions, such as temperature, humidity, pressure, wind speed and facts about raining or
snowing. The data contained outliers and missing values, and each of them happened because
of failure of a mobile program. However, all this misleading information was identified and
removed.

34 Estimating Time of Driver Arrival with Gradient Boosting Algorithms and Deep Neural Networks

2.5.1 Training Process and Evaluation

The evaluation of the proposed model and all the considered baselines are on the mean
absolute error (MAE). The task of each model was to minimize MAE.

MAE =

n∑
i=1

|yi − zi|

n

Cross validation was used to prevent overfitting while training the XGBoost and CatBoost
models. Moreover, as these algorithms require specifications of a lot of parameters, Grid
Search was used to identify the best parameters for each model. Below are bar graphs
depicting the importance of features used to train XGBoost and CatBoost algorithms. Both
models indicate that the most important feature is the distance. However, the remaining
features are represented as having varying levels of importance for both respective models.
For example, CatBoost illustrates that the second most important feature is Partner ID,
while the second most important feature for XGBoost was the hour of the day in which the
trip occurred. It is worthwhile to mention that both models indicate that OSRM estimates
(”from start to take”) are important features. This makes considerable sense, since OSRM
estimates include information concerning the waiting time at traffic lights, the number of
turns, the angle of turns, and the mean velocity between turns.

Fig. 2. Importance of Features for XGBoost algorithm.

H. Sergoyan 35

Fig. 3. Importance of Features for CATBoost algorithm.

Neural networks built with Keras library require some intuitive approach to identify the
number of neurons, hidden layers, and types of activation functions for each layer. Based
on experimentation, the optimal number of neurons and the most appropriate activation
function to minimize MAE were determined.

As the last stroke of the brush, the predictions of those trained models and actual time
were combined in one dataset and a linear regression model was trained on the said dataset.
In machine learning, this process is usually called stacking, where it is expected that the
ensemble of several models provides a better result than each of those models independently.
However, this example clearly illustrates that this is not always the case. Although our
stacked model outperforms XGBoost and Neural Networks, it still has a slightly higher
MAE than CatBoost regressor. This fact can be interpreted in the following way: our three
models mostly pick up and model the same information quite similarly and therefore, we did
not get much out of an ensemble. Below the performance of each model for train and test
sets is presented.

Table 1: MAE results for each method.

Methods Train Test

OSRM 205.796 205.787

XGBOOST 98.77 98.96

CATBOOST 92.34 94.97

NN 98.09 98.34

Stack 93.03 95.01

3 Conclusion

In this paper, we proposed a new approach that formulates the ETA calculation as a pure
regression problem. As such, we train CatBoost, XGBoost, and Neural Networks and suc-
cessfully improve upon benchmarks set by the OSRM architecture used by GG and the
Unified Neural Network approach. The CatBoost model outperformed XGBoost and Neural
Network. Thus, while OSRM exhibits errors of 205.796 seconds and 205.787 seconds for

36 Estimating Time of Driver Arrival with Gradient Boosting Algorithms and Deep Neural Networks

test and train data respectively, CatBoost model exhibits errors of 92.34 and 94.97 seconds
on train and test data respectively. We believe that by increasing the number and quality
of features and using more powerful models we can register significant improvements in
predictive performance.

References

[1] M. Dodge and R. Kitchin, “Crowdsourced cartography: Mapping experience and knowl-
edge”, Environment and Planning A: Economy and Space, vol. 45, no. 1, pp. 19–36,
2013.

[2] S. Huber and Ch. Rust, “Calculate travel time and distance with openStreetMap data
using the OpenSource Routing Machine (OSRM)”, The State Journal, vol. 16, no. 2,
pp. 416–423, 2016.

[3] Y. Li and K. Fu and Zh. Wang and C. Shahabi and J. Ye and Y. Liu, “Multi-task rep-
resentation learning for travel time estimation”, Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1695–1704,
2018.

[4] Zh. Wang and K. Fu and J. Ye, “Learning to estimate the travel time”, Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 858–866, 2018.

[5] I. Jindal and T. Qin and X. Chen and M. Nokleby and J. Ye, “A unified neural network
approach for estimating travel time and distance for a Taxi Trip”, arXiv:1710.04350v1,
[stat.ML], 2017.

[6] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System”, Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 785–794, 2016.

[7] L. Prokhorenkova and G. Gusev and A. Vorobev and A. V. Dorogush and A. Gulin,
“CatBoost: unbiased boosting with categorical features”, Proceedings of the 32nd Inter-
national Conference on Neural Information Processing Systems, pp. 6639–6649, 2018.

[8] D. Wang and J. Zhang and W. Cao and J. Li and Y. Zheng, “When will you arrive?
Estimating travel time based on deep neural networks”, AAAI, pp 2500–2507, 2018.

Submitted 10.12.2019, accepted 18.04.2020.

H. Sergoyan 3 7

ì³ñáñ¹Ç Å³Ù³ÝÙ³Ý Å³Ù³Ý³ÏÇ Ùáï³ñÏáõÙÁ áõÅ»Õ³óí³Í ·ñ³¹Ç»ÝïÇ
³É·áñÇÃÙÝ»ñÇ ¨ ËáñÁ Ý»ÛñáÝ³ÛÇÝ ó³Ýó»ñÇ ÙÇçáóáí

Ð»ÝñÇÏ î. ê»ñ·áÛ³Ý

ºñ¨³ÝÇ å»ï³Ï³Ý Ñ³Ù³Éë³ñ³Ý

e-mail: henriksergoyan@gmail.com

²Ù÷á÷áõÙ

Îöåíêà âðåìåíè ïðèáûòèÿ âîäèòåëÿ ñ ïîìîùüþ àëãîðèòìîâ
ãðàäèåíòíîãî óñèëåíèÿ è ãëóáîêèõ íåéðîííûõ ñåòåé

Ãåíðèõ Ò. Ñåðãîÿí

Àìåðèêàíñêèé óíèâåðñèòåò Àðìåíèè
e-mail:henriksergoyan@gmail.com

Àííîòàöèÿ

Îáñëóæèâàíèå êëèåíòîâ è óïðàâëåíèå ðåñóðñàìè îïðåäåëÿþò ñòåïåíü, â
êîòîðîé ïîñòàâùèêè òðàíñïîðòíûõ óñëóã ìîãóò êîíêóðèðîâàòü íà ñåãîäíÿøíèõ
ñèëüíî íàñûùåííûõ ðûíêàõ. Â ýòîé ðàáîòå èññëåäóåòñÿ è ïðåäëàãàåòñÿ íîâàÿ
ìåòîäîëîãèÿ îïòèìèçàöèè äëÿ ðàñ÷åòîâ ïðåäïîëàãàåìîãî âðåìåíè ïðèáûòèÿ
âîäèòåëÿ íà îñíîâå ïðîøëîãîäíèõ äàííûõ, ïðåäîñòàâëåííûõ GG, ñîáðàííûõ
èç ïîåçäîê âîäèòåëåé êîìïàíèè. GG ÿâëÿåòñÿ êîìïàíèåé, ïðåäîñòàâëÿþùåé
òðàíñïîðòíûå óñëóãè, è â íàñòîÿùåå âðåìÿ îíà èñïîëüçóåò The Open Source
Routing Machine (OSRM), êîòîðûé íà ýòàïå ïðîãíîçèðîâàíèÿ äåìîíñòðèðóåò

Ð³×³Ëáñ¹Ý»ñÇ ëå³ë³ñÏáõÙÁ ¨ é»ëáõñëÝ»ñÇ Ï³é³í³ñáõÙÁ áñáßáõÙ »Ý ïñ³Ýë-
åáñï³ÛÇÝ Í³é³ÛáõÃÛáõÝÝ»ñ Ù³ïáõóáÕ ÁÝÏ»ñáõÃÛáõÝÝ»ñÇ Ùñó³Ïó»Éáõ Ï³ñáÕáõÃÛ³Ý
³ëïÇ×³ÝÁ ³Ûëûñí³ Ù»Í ¨ Ñ³·»ó³Í ßáõÏ³Ý»ñáõÙ: ²Ûë ³ßË³ï³ÝùÝ áõëáõÙÝ³ëÇñáõÙ ¨
³é³ç³ñÏáõÙ ¿ Ýáñ Ù»Ãá¹³µ³ÝáõÃÛáõÝ í³ñáñ¹Ç Å³Ù³ÝÙ³Ý ï¨áÕáõÃÛáõÝÁ Ñ³ßí³ñÏ»Éáõ
Ñ³Ù³ñ` ÑÇÙÝí»Éáí GG-Ç 2018 Ãí³Ï³ÝÇ áõÕ¨áñáõÃÛáõÝÝ»ñÇó Ñ³í³ùí³Í ïíÛ³ÉÝ»ñÇ
íñ³: GG-Ý ïñ³Ýëåáñï³ÛÇÝ Í³é³ÛáõÃÛáõÝÝ»ñ Ù³ïáõóáÕ ÁÝÏ»ñáõÃÛáõÝ ¿ ¨ Ý»ñÏ³ÛáõÙë
û·ï³·áñÍáõÙ ¿ The Open Source Routing Machine (OSRM) Ñ³Ù³Ï³ñ·Á, áñÁ
Ï³ÝË³ï»ëÙ³Ý Å³Ù³Ý³Ï ³ßË³ïáõÙ ¿ ¿³Ï³Ý ëË³ÉÝ»ñáí: ²Ûë ³ßË³ï³ÝùáõÙ óáõÛó
¿ ïñí³Í, áñ Ýßí³Í ³é³ç³¹ñ³ÝùÇ Ñ³Ù³ñ ³ÛÝåÇëÇ ³É·áñÇÃÙÝ»ñÇ Çñ³Ï³Ý³óáõÙÁ,
ÇÝãåÇëÇù »Ý XGBoost, CatBoost ¨ ËáñÁ Ý»ÛñáÝ³ÛÇÝ ó³Ýó»ñÁ, Ïµ³ñ»É³íÇ Å³Ù³Ý³ÏÇ
×ß·ñïáõÃÛáõÝÁ: ²ßË³ï³ÝùáõÙ ùÝÝ³ñÏíáõÙ »Ý Ûáõñ³ù³ÝãÛáõñ Ùá¹»ÉÇ ³é³í»ÉáõÃÛáõÝÝ»ñÁ
¨ Ã»ñáõÃÛáõÝÝ»ñÁ ¨ ³ÛÝáõÑ»ï»õ ¹Çï³ñÏíáõÙ ¿ Ïáõï³Ï³ÛÇÝ ³É·áñÇÃÙÇ ï³ñµ»ñ³ÏÁ, áñÁ
ÙÇ³íáñáõÙ ¿ ÙÇ ù³ÝÇ Ùá¹»ÉÝ»ñÁ Ù»ÏÇ Ù»ç: ²ÛëåÇëáí, ³Û¹ ï»ËÝÇÏ³ÛÇ ÏÇñ³éÙ³Ùµ
ëï³óí³Í í»ñçÝ³Ï³Ý ³ñ¹ÛáõÝùÝ»ñÁ óáõÛó »Ý ïí»É, áñ ÙÇçÇÝ ù³é³Ïáõë³ÛÇÝ ß»ÕáõÙÁ
GG-áõÙ ÏÇñ³éíáÕ Ý³Ëáñ¹ Ùá¹»ÉÇ ÝÏ³ïÙ³Ùµ Ýí³½»É ¿ 54%-áí:

´³Ý³ÉÇ µ³é»ñ` GG, í³ñáñ¹Ç Å³Ù³ÝÙ³Ý ï¨áÕáõÃÛáõÝ, OSRM, XGBoost, CATBoost,
 Ý»ÛñáÝ³ÛÇÝ ó³Ýó»ñ:

3 8 Estimating Time of Driver Arrival with Gradient Boosting Algorithms and Deep Neural Networks

äîâîëüíî ñóùåñòâåííûå îøèáêè. Ýòà ðàáîòà ïîêàçûâàåò, ÷òî ðåàëèçàöèÿ
àëãîðèòìîâ, òàêèõ êàê XGBoost,CatBoost è Neural Networks äëÿ óêàçàííîé
çàäà÷è, ïîâûñèò òî÷íîñòü ðàñ÷åòà. Â ñòàòüå îáñóæäàþòñÿ ïðåèìóùåñòâà
è íåäîñòàòêè êàæäîé ìîäåëè, à çàòåì ðàññìàòðèâàåòñÿ ïðîèçâîäèòåëüíîñòü
àëãîðèòìà ñóììèðîâàíèÿ, êîòîðûé îáúåäèíÿåò íåñêîëüêî ìîäåëåé â îäíó.
Òàêèì îáðàçîì, îêîí÷àòåëüíûå ðåçóëüòàòû, ïîëó÷åííûå ñ èñïîëüçîâàíèåì ýòèõ
ìåòîäîâ, ïîêàçàëè, ÷òî ñðåäíÿÿ êâàäðàòè÷åñêàÿ îøèáêà óìåíüøèëàñü íà 54% ïî
ñðàâíåíèþ ñ òåêóùåé ìîäåëüþ GG.

Êëþ÷åâûå ñëîâà: GG, ðàñ÷åòíîå âðåìÿ ïðèáûòèÿ âîäèòåëÿ, OSRM, XGBoost,
CatBoost, Neural Networks

	04_SERGOYAN_53 (1)
	04

