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Abstract

In this paper, we present deep learning-based approaches for the task of emotion
recognition in voice recordings. A key component of the methods is the representation
of emotion categories in a sentiment-arousal space and the usage of this space repre-
sentation in the supervision signal. Our methods use wavelet and cepstral features as
efficient data representations of audio signals. Convolutional Neural Network (CNN)
and Long Short Term Memory Network (LSTM) architectures were used in recognition
tasks, depending on whether the audio representation was treated as a spatial signal or
as a temporal signal. Various recognition approaches were used, and the results were
analyzed.

Keywords: Voice emotion recognition, Sentiment-arousal space, Spectral features,
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1. Introduction

In this work, we address the problem of emotion recognition from voice recordings. Recogniz-
ing emotion from voice can have various real-world applications, such as in recommendation
systems, security systems, customer services, etc. Defining the recognition task formally, we
want to come up with a model F , such that given a voice recording X in some representation,
the model will give us a mapping F (X) = y, where y is some descriptor of the recognized
emotion from the audio signal. Now, the question is, what space does y belong to? Is it
discrete or continuous, and how are emotion values organized in this space? To answer these
questions, we utilize a sentiment-arousal space described in the paper, which allows us to
tackle the recognition task in different approaches, depending on how we use this space for
defining the set of y values.

Previous methods for the voice emotion recognition problem include SVM-based classifi-
cation algorithms [1], which also consider visual data of the facial expression of the speaker
as an additional signal, as well as Deep Neural Network Extreme Learning method with an
efficient performance on small datasets [2].

We use Mel Frequency Cepstral Coefficients (MFCC) and Continuous Wavelet Trans-
forms (CWT) for representing audio signals in spectral features. Convolutional Neural Net-
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works (CNN) and Long Short Term Memory Networks (LSTM) were used as deep learning
model architectures.

2. Datasets

In our work, we used 3 databases of labeled voice recordings: Surrey Audio-Visual Ex-
pressed Emotion (SAVEE) [4], Ryerson Audio-Visual Database of Emotional Speech and
Song (RAVDESS) [3], and Toronto Emotional Speech Set (TESS) [5]. The databases are
comprised of voice recordings of individuals who pronounce a statement with an exerted emo-
tion, which is the label of the given voice recording. The emotion labels in the RAVDESS
database are: “neutral”, “calm”, “happy”, “sad”, “angry”, “fearful”, “disgust”, “surprised”.
TESS and SAVEE datasets have the same emotion labels except the “calm” one. The dis-
tribution of samples and labels of the databases are summarized in Table 2 and in Table
1.

Table 1: Number of voice recordings per emotion label across all databases.

Neutral Calm Sad Fear Anger Surprises Happiness Disgust

616 192 652 652 652 652 652 652

Table 2: Summary of datasets used.

Database Num of Recordings Num of Actors Emotion Labels

RAVDESS 1440 24 8

SAVEE 480 4 7

TESS 2880 2 7

3. Method

3.1 Feature Extraction

The first step in data preparation is resampling the voice recording signal in a certain sam-
pling rate. As the signal in interest is human voice, which is known to lie in frequency ranges
4-10 Khz, we chose 22.05 Khz sampling rate. The resampled signal includes the human voice
signal along with some possible frequency variations, which can be caused by possible pro-
nunciation of high frequency sounds, such as fricatives. As a result, we obtain a temporal
signal representation of the voice recording, which at a given time point shows the amplitude
of air pressure oscillations from 0 frequency.

3.1.1 Fourier Representation

A temporal signal x(t) can be represented as a combination of periodic functions of varying
frequencies [7]
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x(t) =
∫ ∞

−∞
X(w)ejwtdw,

where w denotes the frequency of the periodic function. Having the coefficients X(w) is
equivalent to having the original signal x(t), and these coefficients are used as a represen-
tation of the signal in frequency domain. Such a representation is obtained by the Fourier
Transform operation [7]. Discrete Fourier Transform (DFT) is the discrete equivalent of
Fourier Transform, which we leverage for representing our discrete resampled signal x[n] of
length k in frequency space through coefficients / intensities X[k] for each frequency k [8]:

X[k] =
K∑

n=1

x[n]e−i2πkn/N ; 1 ≤ k ≤ K.

Usually, representing the entire discrete signal x(t) with Fourier coefficients can result in
loss of temporal resolution, since having a Fourier representation for the entire signal does
not include changes of the signal in small temporal windows. For obtaining higher resolution
in temporal domain, Short-Time Fourier Transform (STFT) [7] of a signal is used in some
of the approaches, which basically calculated Fourier coefficients of the signal in temporal
windows.

3.1.2 Continuous Wavelet Transform

The continuous wavelet transform is a method of analyzing the frequency components of a
signal at specific time intervals. The advantage that CWT has over STFT is that it solves
the problem of trade-off between frequency resolution and time resolution. When performing
an STFT on a signal, one has to choose the window length for dividing the signal into sub-
signals and performing DFT on each window, meaning that the larger the window size is
set, a higher frequency resolution (the frequency components are better explained for the
signal as a whole) and a lower time resolution (the changes of frequencies across time are
not explained well) is obtained. The opposite holds as well: STFT with a smaller window
size has higher time resolution but lower frequency resolution. CWT solves this problem of
trade-off by representing the signal at different frequency scales, larger scale corresponding
to lower frequencies, and lower scales to higher ones. At smaller scales, the signal is divided
into smaller time windows, and lower frequency information is extracted, resulting in higher
temporal resolution but lower frequency resolution. At larger scales, the signal is divided
into larger time intervals, and higher frequency information is processed, resulting in higher
frequency resolution but lower temporal resolution.

CWT makes use of wave-like functions called wavelets, and, at each step of the algo-
rithm, the original signal is convolved by the wavelet function for deriving the corresponding
frequency-domain value. The requirements for a function f(t) to be considered a wavelet
function as follows (complex wavelets are not considered in this paper, the following condi-
tions relate to the real-valued wavelet qualifications only) [12]:

E =
∫ ∞

−∞
|f(t)|2dt < ∞,where E is termed as the energy of f,

∫ ∞

0

|F (k)|2

k
dk < ∞,where F (k) is the Fourier transform of f.
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The most commonly used wavelet functions are Gaussian wave, Mexican hat, Haar and
Morlet [12], the latter of which we utilized in speech signal processing (visualized in Fig. 1.)

Fig. 1. Morlet wavelet function.

After choosing the wavelet function Φ(t), the CWT of the signal x(t), denoted as T (a, b),
is computed as follows:

T (a, b) =
1√
a

∫ ∞

−∞
x(t)Φ

(
t− b

a

)
dt,

where a is the scale at which the signal is processed, and b indicates the time interval at
which the signal is convoluted with the wavelet function. An example of a heatmap resulting
from CWT is visualized in Fig. 2.

3.1.3 Mel Frequency Cepstral Coefficients

Another representation of audio signals that our methods use are Mel-frequency ceptstral
coefficients (MFCC). MFCCs represent a temporal signal by cepstral energy coefficients at
specific time intervals. The motivation of using MFCCs is to represent a signal by features
that replicate the perception of audio signal by a human ear. Such representation is obtained
by processing the signal with cepstral filters across frequency scales, the length of which is
directly proportional to the scale of the frequency [9].

The resulting MFCC representation of a signal is given as a function Pi(k), the output
of which is the value of k-th cepstral coefficient at i-th temporal frame index. An example
of an extracted MFCC feature is demonstrated in Fig. 3.
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Fig. 2. Sample CWT heatmap of an audio signal.

3.2 Technical Details

For the extraction of audio signal features described in section 3.1, we use the “librosa“
library for python [6]. “Pytorch“ was used as a deep learning library for training our models
[15]. The architectural details of each model are described in their respective sections.

3.3 Recognition Approaches

Having the labeled audio signals and their feature representations from CWT and MFCC, the
next step is designing a method for emotion recognition from those signals. Following [11],
the approach that this work relies on is using a sentiment-arousal space of emotions, which
is depicted in Fig. 4. The idea is to come up with an intuitive 2-dimensional organization
space of emotions by defining 2 axes: the arousal axis, and the positivity axis. By assigning
these 2 values to every emotion label, we come up with an intuitive organization of emotion
values in this space, as demonstrated in Fig. 4.

Having the sentiment-arousal space allows us to come up with different emotion recogni-
tion approaches, such as defining each quadrant of the 2D space as a classification label (i.e.,
whether the emotion is active-positive, active-negative, passive-positive, or passive-negative),
or viewing the sentiment-arousal space as a continuous one, and solving the recognition task
as a regression problem. In the upcoming sections, we show each of such approaches used
along with the corresponding extracted features and the neural network architecture.

To the best of our knowledge, our proposed methods are the first try on tackling the
problem in the specified setups. An exception is the setup of classification in sentiment-
arousal space using CWT features and CNNs, where we compare to a method that has some
of its aspects of setup shared with ours.
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Fig. 3. Sample MFCC representation of a voice recording signal.

3.4 Architectures and Results

3.4.1 Mapping Emotion to Continuous Sentiment-Arousal Space

Table 3: Mapping of emotion values in sentiment-arousal continuous space

Emotion Sentiment-Arousal Coordinates

Neutral [0,0]

Calm [0.25,-1]

Sad [-0.75,-0.5]

Happy [1,0.75]

Angry [-0.75,1]

Fear [-1,0.25]

Disgust [-0.25,0.25]

Surprise [0.25,1]

U. 1

An interesting approach that we can take towards the voice emotion recognition task is
using the sentiment-arousal dimensions for defining a continuous space of emotion values,
and solving a regression problem of emotion prediction. Specifically, for each emotion label
coming from the datasets, we define sentiment and arousal values, as described in Tab. 3,
which results in the organization of emotion values in a continuous sentiment-arousal space.
Thus, the objective of the problem can be defined as:

L(ŷ) =
1

2
(ŷ − y)T (ŷ − y) + λ

∑
w∈W

w2,

where ŷ is the predicted point in the continuous space, y is the point in the 2D space
corresponding to the ground-truth emotion label. W is the set of the trainable parameters,
and thus the last term serves as a regularization to the optimization problem.
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Fig. 4. The dimensions of the sentiment-arousal space, and how different

emotions are organized in the space.

For solving the resulting regression task, we utilize MFCC features of audio recordings as
inputs. We use CNN architecture for the model, which is shown in Fig. 5. Average pooling
of size (2x2) is used for downsampling between the layers. The last layer is a fully connected
layer that maps the flattened output of convolutional layers to the 2-dimensional sentiment-
arousal space. Each layer has 32 output channels. The first layer has kernels of size (10x3),
which is followed by a layer with (5x5) and a layer with (3x3) kernel sizes. Between layers,
leaky relu activation function was used.

Fig. 5. CNN architecture used for the continuous emotion recognition task.

Fig. 6 shows the output of the model on voice recordings with the corresponding emotion
labels. In the majority of cases, the network correctly identifies both the sentiment and



42 Deep Learning Approaches for Voice Emotion Recognition Using Sentiment-Arousal Space

arousal of speech. It rarely fails to identify both components and it can at least identify
the arousal of the speech. One of the shortcomings we see is that the significant proportion
of the recordings with a ”happy” label were identified as negative by the network. On the
contrary, fear, disgust, anger and sadness were correctly positioned in the space. This, as also
pointed out in the previous sections, shows us that the network is struggling to determine
the positivity, but is good at differentiating between active and passive emotions.

Fig. 6. Performance of the CNN model on the continuous emotion recognition task.

3.4.2 Classification Using Sentiment-Arousal Space: LSTM with MFCCs

First, we solve a classification problem defined by the quadrants of the sentiment-arousal
space. We use the extracted MFCC features as our input, and, viewing MFCC’s as temporal
signals, we use LSTMs [10] as our neural network architecture. Only the first 40 cepstral
coefficients were considered. The datasets used were RAVDESS and TESS datasets (in some
scenarios, only RAVDESS was considered.) For all classification models, for a single audio
recording, given its ground-truth label values {y1, y2, ..., yn} and the estimated label values
{ŷ1, ..., ŷn}, the objective function is:

L = −
∑
i

yi log(ŷi) + λ
∑
w∈W

w2,

where W is the set of all trainable weights.

There were 4 scenarios of splitting the dataset into train and test subsets: 1. 10% testing
and 90% training (standard), 2. all the recordings of the first 2 actors as the test dataset
and the rest as the train 3. all the recordings of the first 3 actors as the test dataset and the
rest as the train, 4. all the recordings of the first 4 actor as the test dataset and the rest as
the train. The architecture of LSTM model depicted in Fig. 7 was used for all scenarios. A
dropout layer with probability p=0.3 was used.

The results of the experiment are summarized in Tab.4.
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Fig. 7. The architecture of the trained LSTM model.

Table 4: Classification Results of LSTM model on different scenarios

Zones Data separation Datasets Train acc. Test acc. AUC

4 zones standard RAVDESS 96.30% 67.36% −
4 zones 2 new actors RAVDESS 96.13% 74.16% −
Arousal zones standard RAVDESS 97.76% 87.14% 0.91

Arousal zones 2 new actors RAVDESS 99.54% 90.83% 0.94

Arousal zones 3 new actors RAVDESS+TESS 94.23% 86.11% 0.91

Arousal zones 4 new actors RAVDESS+TESS 98.40% 83.33% 0.87

Arousal zones 2 new actors RAVDESS+TESS 95.63% 93.30% 0.97

Sentiment zones standard RAVDESS 98.30% 80.00% 0.81

Sentiment zones 2 new actors RAVDESS+TESS 96.89% 84.14% 0.91

Sentiment zones 3 new actors RAVDESS+TESS 93.69% 79.44% 0.84

From the results, we can see that the model managed to learn meaningful representations
from the supervision signal. Since the same LSTM architecture gave performance for all
classification scenarios, it indicates that the architecture is a good fit considering the datasets
available. Also, the results indicate that the performance was good in classifying the arousal
level of the speech, but classifying positivity is a bigger challenge for the model. This can
be explained by the fact that MFCCs represent the energy amount in the signal in specific
frequency or cepstral ranges, and, intuitively, larger amounts of energies correspond to higher
arousal level. However, both negative and positive emotions can correspond to a high arousal
level (i.e., surprised and angry), but it is harder to say how energy features can distinguish
the positivity of a given speech.

3.4.3 Classification Using Sentiment-Arousal Space: CNN with CWT

The next experiment that we conducted is solving the problems of arousal level classification
and positivity classification with CWT as inputs, and using CNN as the neural net archi-
tecture. Only RAVDESS dataset was considered in this experiment, and it was divided into
a 10% test and 90% train datasets in both classification problems. Fig. 8. illustrates the
architecture of CNN used for the classification tasks. Dropout with p=0.4 was used between
each convolutional layer to prevent overfitting. Leaky ReLU was used as an activation func-
tion between layers and for preventing vanishing gradients. The results of the experiment
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are summarized in Fig. 9 and in Tab. 5.

Table 5: Classification results of CNN model trained on CWT data

Zones Train accuracy (%) Test accuracy (%) AUC

Arousal zones 98.70 83.76 0.84

Sentiment zones 87.76 75.71 0.77

Fig. 8. CNN model architecture used for the CWT-based classification tasks.

As noted in the previous experiment, the models encounter the difficulty of classifying
the positivity of the speeches.

[13] proposes methods for classifying arousal and sentiment in speech. They use the
DEAP database [14], and their setup considers only “happiness“, “sadness“ and “cheer-
fulness“ emotional labels. In their 2-label classification setting (high/low arousal; posi-
tive/negative sentiment), the arousal classification and sentiment classification accuracies
are 61.23% and 92.19%, respectively, which are comparable results to our method.

4. Conclusion

This work proposes methods for solving voice emotion recognition tasks based on deep
learning models. Audio signals were represented by features resulting from MFCC and CWT
transforms. A pivotal component in the approaches is defining a 2D sentiment-arousal space,
where the emotion values are organized in an intuitive way, allowing to define the recognition
problem within this space either as a classification or a regression. The main challenge
identified in all the proposed methods was the difficulty of recognizing the positivity aspect
of the recordings, a possible explanation to which is the absence of such information in the
features used, which mainly encode energies corresponding to frequency ranges. Overall,
the results indicate that the models manage to learn features meaningful for the emotion
recognition task. As one of the main challenges was the scarcity of labeled data, possible
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Fig. 9. ROC curves of the CNN classifier.

future directions include the use of data augmentations on voice recordings, as well as self-
supervised approaches for learning semantic representations of the audio signals and fine-
tuning those features for emotion recognition task, which doesn’t require any labeled data.
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²Ù÷á÷áõÙ

²Ûë Ñá¹í³ÍáõÙ Ý»ñÏ³Û³óíáõÙ »Ý ËáñÁ áõëáõóÙ³Ý íñ³ ÑÇÙÝí³Í Ùáï»óáõÙÝ»ñª
Ó³ÛÝ³·ñáõÃÛáõÝÝ»ñÇ ¿ÙáóÇ³ÛÇ ·Ý³Ñ³ïÙ³Ý ËÝ¹ñÇ Ñ³Ù³ñ: ²é³ç³¹ñí³Í Ùáï»óáõÙÝ»ñÇ
µ³Ý³ÉÇ µ³Õ³¹ñÇã ¿ Ñ³Ý¹Çë³ÝáõÙ ¿ÙáóÇ³Ý»ñÇ ¹³ë»ñÇ Ý»ñÏ³Û³óáõÙÁ ïñ³Ù³¹ñ³Ï³Ý
»ñÏã³÷ Ïááñ¹ÇÝ³ï³ÛÇÝ Ñ³Ù³Ï³ñ·áõÙ, áñï»Õ ³ùëÇëÝ»ñÇ ã³÷Ù³Ý ÙÇ³íáñ »Ý
Ñ³Ý¹Çë³ÝáõÙ ¿ÙáóÇ³ÛÇ ¹ñ³Ï³Ý/µ³ó³ë³Ï³Ý ÉÇÝ»ÉÁ ¨ ³ÏïÇí/å³ëÇí ÉÇÝ»ÉÁ, ÇÝãå»ë
Ý³¨ ³Û¹ Ý»ñÏ³Û³óÙ³Ý û·ï³·áñÍáõÙÁ áõëáõóÙ³Ý í»ñ³ÑëÏÙ³Ý Ù»ç: ²áõ¹Çá
³½¹³Ýß³ÝÝ»ñÁ Ùß³Ï»Éáõ Ñ³Ù³ñ û·ï³·áñÍí»É »Ý Ó³ÛÝ³·ñáõÃÛáõÝÝ»ñÇ Ñ³×³Ë³Ï³Ý
ïíÛ³ÉÝ»ñ: àñå»ë ËáñÁ áõëáõóÙ³Ý Ùá¹»ÉÝ»ñ, ³é³ç³¹ñí³Í Ù»Ãá¹Ý»ñáõÙ û·ï³·áñÍíáõÙ
»Ý ÉñÇí ÷³ÃáõÛÃ³ÛÇÝ Ý»ÛñáÝ³ÛÇÝ ó³Ýó»ñ (CNN) ¨ »ñÏ³ñ Ï³ñ×³Å³ÙÏ»ï ÑÇßáÕáõÃÛáõÝ
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(LSTM): Ü»ñÏ³Û³óíáõÙ »Ý ï³ñµ»ñ ¿ÙáóÇ³ÛÇ ·Ý³Ñ³ïÙ³Ý Ùáï»óáõÙÝ»ñ ¨ í»ñÉáõÍíáõÙ
»Ý ³ñ¹ÛáõÝùÝ»Á:

Ãëóáîêîå îáó÷åíèå äëÿ ðàñïîçíàâàíèÿ ýìîöèé â çàïèñÿõ
ãîëîñà ñ èñïîëüçîâàíèåì âàëåíòíî-âîçáóæäåííîãî

ïðîñòðàíñòâà

Íàðåê Ò. Òóìàíÿí

Èíñòèòóò Âåéöìàíà, Èçðàèëü
e-mail: narek.tumanyan@weizmann.ac.il

Àííîòàöèÿ

Â ýòîé ñòàòüå ïðåäñòàâëåíû îñíîâàííûå íà ãëóáîêîì îáó÷åíèè ïîäõîäû ê
çàäà÷å ðàñïîçíàâàíèÿ ýìîöèé â çàïèñÿõ ãîëîñà. Êëþ÷åâûì êîìïîíåíòîì ýòèõ
ìåòîäîâ ÿâëÿåòñÿ ïðåäñòàâëåíèå êàòåãîðèé ýìîöèé â âàëåíòíî-âîçáóæäåííîì
ïðîñòðàíñòâå, è èñïîëüçîâàíèå ýòîãî ïðîñòðàíñòâà â êà÷åñòâå îáó÷àþùåãî
ñèãíàëà. Íàø ìåòîä èñïîëüçóåò âåéâëåòíûå è êåïñòðàëüíûå ïðèçíàêè äëÿ
ýôôåêòèâíîãî ïðåäñòàâëåíèÿ àóäèîñèãíàëà. Äëÿ çàäà÷è ðàñïîçíàâàíèÿ áûëè
èñïîëüçîâàíû ñâåðòî÷íûå íåéðîííûå ñåòè (CNN) è ñåòè äîëãîé êðàòêîñðî÷íîé
ïàìÿòè (LSTM). Àðõèòåêòóðà âûáèðàëàñü â çàâèñèìîñòè îò òîãî, êàêèì
îáðàçîì áûë ïðåäñòàâëåí ñèãíàë - â ïðîñòðàíñòâåííîì èëè âðåìåííîì âèäå.
Áûëè èñïîëüçîâàíû ðàçëè÷íûå ïîäõîäû ê çàäà÷å ðàñïîçíàâàíèÿ, è áûëè
ïðîàíàëèçèðîâàíû ðåçóëüòàòû.

Êëþ÷åâûå ñëîâà: ðàñïîçíàâàíèå ýìîöèé â ãîëîñå, âàëåíòíî-âîçáóæäåííîå
ïðîñòðàíñòâî, êåïñòðàëüíûå ïðèçíàêè, êëàññèôèêàöèÿ íàñòðîåíèÿ ãîëîñà.

´³Ý³ÉÇ µ³é»ñ՝ Ó³ÛÝ³·ñáõÃÛ³Ý ¿ÙáóÇ³ÛÇ ·Ý³Ñ³ïáõÙ, ïñ³Ù³¹ñ³Ï³Ý Ïááñ-
¹ÇÝ³ï³ÛÇÝ Ñ³Ù³Ï³ñ·, Ñ³×³Ë³Ï³Ý Ñ³ïÏ³ÝÇßÝ»ñ, ËáëùÇ ïñ³Ù³¹ñáõÃÛ³Ý
¹³ë³Ï³ñ·áõÙ:
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