Long Cycles in t-Tough Graphs with $t>1$

Zhora G. Nikoghosyan
Institute for Informatics and Automation Problems of NAS RA
e-mail: zhora@ipia.sci.am

Abstract

It is proved that if G is a t-tough graph of order n and minimum degree δ with $t>1$, then either G has a cycle of length at least $\min \{n, 2 \delta+4\}$ or G is the Petersen graph.

Keywords: Hamilton cycle, Circumference, Minimum degree, Toughness.

1. Introduction

Only finite undirected graphs without loops or multiple edges are considered. We reserve n, δ, κ, c and τ to denote the number of vertices (order), the minimum degree, connectivity, circumference and the toughness of a graph, respectively. A good reference for any undefined terms is [1].

The earliest lower bound for the circumference was developed in 1952 due to Dirac [2].
Theorem A: [2]. In every 2-connected graph, $c \geq \min \{n, 2 \delta\}$.
In 1986, Bauer and Schmeichel [3] proved that the bound 2δ in Theorem A can be enlarged to $2 \delta+2$ by replacing the 2-connectivity condition with 1 -toughness.

Theorem B: [3]. In every 1-tough graph, $c \geq \min \{n, 2 \delta+2\}$.
In this paper we prove that in Theorem B the bound $2 \delta+2$ itself can be enlarged up to $2 \delta+4$ if $\tau>1$ and G is not the Petersen graph.

Theorem 1: Let G be a graph with $\tau>1$. Then either $c \geq \min \{n, 2 \delta+4\}$ or G is the Petersen graph.

To prove Theorem 1, we need the following result due to Voss [4].
Theorem C: [4]. Let G be a Hamiltonian graph, $\left\{v_{1}, v_{2}, \ldots, v_{t}\right\} \subseteq V(G)$ and $d\left(v_{i}\right) \geq t$ $(i=1,2, \ldots, t)$. Then each pair x, y of vertices of G is connected in G by a path of length at least t.

2. Notations and Preliminaries

The set of vertices of a graph G is denoted by $V(G)$, and the set of edges by $E(G)$. For S a subset of $V(G)$, we denote by $G \backslash S$ the maximum subgraph of G with vertex set $V(G) \backslash S$. We write $G[S]$ for the subgraph of G induced by S. For a subgraph H of G we use $G \backslash H$ short for $G \backslash V(H)$. The neighborhood of a vertex $x \in V(G)$ will be denoted by $N(x)$. Furthermore, for a subgraph H of G and $x \in V(G)$, we define $N_{H}(x)=N(x) \cap V(H)$ and $d_{H}(x)=\left|N_{H}(x)\right|$. Let $s(G)$ denote the number of components of a graph G. A graph G is t-tough if $|S| \geq t s(G \backslash S)$ for every subset S of the vertex set $V(G)$ with $s(G \backslash S)>1$. The toughness of G, denoted $\tau(G)$, is the maximum value of t for which G is t-tough (taking $\tau\left(K_{n}\right)=\infty$ for all $\left.n \geq 1\right)$.

A simple cycle (or just a cycle) C of length t is a sequence $v_{1} v_{2} \ldots v_{t} v_{1}$ of distinct vertices v_{1}, \ldots, v_{t} with $v_{i} v_{i+1} \in E(G)$ for each $i \in\{1, \ldots, t\}$, where $v_{t+1}=v_{1}$. When $t=2$, the cycle $C=v_{1} v_{2} v_{1}$ on two vertices v_{1}, v_{2} coincides with the edge $v_{1} v_{2}$, and when $t=1$, the cycle $C=v_{1}$ coincides with the vertex v_{1}. So, all vertices and edges in a graph can be considered as cycles of lengths 1 and 2 , respectively. A graph G is Hamiltonian if G contains a Hamilton cycle, i.e., a cycle of length n. A cycle C in G is dominating if $G \backslash C$ is edgeless.

Paths and cycles in a graph G are considered as subgraphs of G. If Q is a path or a cycle, then the length of Q, denoted by $|Q|$, is $|E(Q)|$. We write Q with a given orientation by \vec{Q}. For $x, y \in V(Q)$, we denote by $x \vec{Q} y$ the subpath of Q in the chosen direction from x to y. For $x \in V(C)$, we denote the h-th successor and the h-th predecessor of x on \vec{C} by x^{+h} and x^{-h}, respectively. We abbreviate x^{+1} and x^{-1} by x^{+}and x^{-}, respectively. For each $X \subset V(C)$, we define $X^{+h}=\left\{x^{+h} \mid x \in X\right\}$ and $X^{-h}=\left\{x^{-h} \mid x \in X\right\}$.

Special definitions: Let G be a graph, C a longest cycle in G and $P=x \vec{P} y$ a longest path in $G \backslash C$ of length $\bar{p} \geq 0$. Let $\xi_{1}, \xi_{2}, \ldots, \xi_{s}$ be the elements of $N_{C}(x) \cup N_{C}(y)$ occuring on C in a consecutive order. Set

$$
I_{i}=\xi_{i} \vec{C} \xi_{i+1}, I_{i}^{*}=\xi_{i}^{+} \vec{C} \xi_{i+1}^{-} \quad(i=1,2, \ldots, s)
$$

where $\xi_{s+1}=\xi_{1}$.
(1) The segments $I_{1}, I_{2}, \ldots, I_{s}$ are called elementary segments on C created by $N_{C}(x) \cup$ $N_{C}(y)$.
(2) We call a path $L=z \vec{L} w$ an intermediate path between two distinct elementary segments I_{a} and I_{b} if

$$
z \in V\left(I_{a}^{*}\right), w \in V\left(I_{b}^{*}\right), V(L) \cap V(C \cup P)=\{z, w\}
$$

(3) Define $\Upsilon\left(I_{i_{1}}, I_{i_{2}}, \ldots, I_{i_{t}}\right)$ to be the set of all intermediate paths between elementary segments $I_{i_{1}}, I_{i_{2}}, \ldots, I_{i_{t}}$.

Lemma 1: Let G be a graph, C a longest cycle in G and $P=x \vec{P} y$ a longest path in $G \backslash C$ of length $\bar{p} \geq 1$. If $\left|N_{C}(x)\right| \geq 2,\left|N_{C}(y)\right| \geq 2$ and $N_{C}(x) \neq N_{C}(y)$, then

$$
|C| \geq \begin{cases}3 \delta+\max \left\{\sigma_{1}, \sigma_{2}\right\}-1 \geq 3 \delta & \text { if } \quad \bar{p}=1 \\ \max \{2 \bar{p}+8,4 \delta-2 \bar{p}\} & \text { if } \quad \bar{p} \geq 2\end{cases}
$$

where $\sigma_{1}=\left|N_{C}(x) \backslash N_{C}(y)\right|$ and $\sigma_{2}=\left|N_{C}(y) \backslash N_{C}(x)\right|$.

Lemma 2: Let G be a graph, C a longest cycle in G and $P=x \vec{P} y$ a longest path in $G \backslash C$ of length $\bar{p} \geq 0$. If $N_{C}(x)=N_{C}(y)$ and $\left|N_{C}(x)\right| \geq 2$, then for each elementary segments I_{a} and I_{b} induced by $N_{C}(x) \cup N_{C}(y)$,
(a1) if L is an intermediate path between I_{a} and I_{b}, then

$$
\left|I_{a}\right|+\left|I_{b}\right| \geq 2 \bar{p}+2|L|+4,
$$

(a2) if $\Upsilon\left(I_{a}, I_{b}\right) \subseteq E(G)$ and $\left|\Upsilon\left(I_{a}, I_{b}\right)\right|=i$ for some $i \in\{1,2,3\}$, then

$$
\left|I_{a}\right|+\left|I_{b}\right| \geq 2 \bar{p}+i+5
$$

(a3) if $\Upsilon\left(I_{a}, I_{b}\right) \subseteq E(G)$ and $\Upsilon\left(I_{a}, I_{b}\right)$ contains two independent intermediate edges, then

$$
\left|I_{a}\right|+\left|I_{b}\right| \geq 2 \bar{p}+8
$$

Lemma 3: Let G be a graph and C a longest cycle in G. Then either $|C| \geq \kappa(\delta+1)$ or there is a longest path $P=x_{1} \vec{P} x_{2}$ in $G \backslash C$ with $\left|N_{C}\left(x_{i}\right)\right| \geq 2(i=1,2)$.

3. Proofs

Proof of Lemma 1. Put

$$
A_{1}=N_{C}(x) \backslash N_{C}(y), A_{2}=N_{C}(y) \backslash N_{C}(x), M=N_{C}(x) \cap N_{C}(y) .
$$

By the hypothesis, $N_{C}(x) \neq N_{C}(y)$, implying that

$$
\max \left\{\left|A_{1}\right|,\left|A_{2}\right|\right\} \geq 1
$$

Let $\xi_{1}, \xi_{2}, \ldots, \xi_{s}$ be the elements of $N_{C}(x) \cup N_{C}(y)$ occuring on C in a consecutive order. Put $I_{i}=\xi_{i} \vec{C} \xi_{i+1}(i=1,2, \ldots, s)$, where $\xi_{s+1}=\xi_{1}$. Clearly, $s=\left|A_{1}\right|+\left|A_{2}\right|+|M|$. Since C is extreme, $\left|I_{i}\right| \geq 2(i=1,2, \ldots, s)$. Next, if $\left\{\xi_{i}, \xi_{i+1}\right\} \cap M \neq \emptyset$ for some $i \in\{1,2, \ldots, s\}$, then $\left|I_{i}\right| \geq \bar{p}+2$. Further, if either $\xi_{i} \in A_{1}, \xi_{i+1} \in A_{2}$ or $\xi_{i} \in A_{2}, \xi_{i+1} \in A_{1}$, then again $\left|I_{i}\right| \geq \bar{p}+2$.

Case 1. $\bar{p}=1$.
Case 1.1. $\left|A_{i}\right| \geq 1(i=1,2)$.
It follows that among $I_{1}, I_{2}, \ldots, I_{s}$ there are $|M|+2$ segments of length at least $\bar{p}+2$. Observing also that each of the remaining $s-(|M|+2)$ segments has a length at least 2 , we have

$$
\begin{gathered}
|C| \geq(\bar{p}+2)(|M|+2)+2(s-|M|-2) \\
=3(|M|+2)+2\left(\left|A_{1}\right|+\left|A_{2}\right|-2\right) \\
\quad=2\left|A_{1}\right|+2\left|A_{2}\right|+3|M|+2 .
\end{gathered}
$$

Since $\left|A_{1}\right|=d(x)-|M|-1$ and $\left|A_{2}\right|=d(y)-|M|-1$,

$$
|C| \geq 2 d(x)+2 d(y)-|M|-2 \geq 3 \delta+d(x)-|M|-2 .
$$

Recalling that $d(x)=|M|+\left|A_{1}\right|+1$, we get

$$
|C| \geq 3 \delta+\left|A_{1}\right|-1=3 \delta+\sigma_{1}-1
$$

Analogously, $|C| \geq 3 \delta+\sigma_{2}-1$. So,

$$
|C| \geq 3 \delta+\max \left\{\sigma_{1}, \sigma_{2}\right\}-1 \geq 3 \delta
$$

Case 1.2. Either $\left|A_{1}\right| \geq 1,\left|A_{2}\right|=0$ or $\left|A_{1}\right|=0,\left|A_{2}\right| \geq 1$.
Assume w.l.o.g. that $\left|A_{1}\right| \geq 1$ and $\left|A_{2}\right|=0$, i.e., $\left|N_{C}(y)\right|=|M| \geq 2$ and $s=\left|A_{1}\right|+|M|$. Hence, among $I_{1}, I_{2}, \ldots, I_{s}$ there are $|M|+1$ segments of length at least $\bar{p}+2=3$. Taking into account that each of the remaining $s-(|M|+1)$ segments has a length at least 2 and $|M|+1=d(y)$, we get

$$
\begin{aligned}
&|C| \geq 3(|M|+1)+2(s-|M|-1)=3 d(y)+2\left(\left|A_{1}\right|-1\right) \\
& \geq 3 \delta+\left|A_{1}\right|-1=3 \delta+\max \left\{\sigma_{1}, \sigma_{2}\right\}-1 \geq 3 \delta .
\end{aligned}
$$

Case 2. $\bar{p} \geq 2$.
We first prove that $|C| \geq 2 \bar{p}+8$. Since $\left|N_{C}(x)\right| \geq 2$ and $\left|N_{C}(y)\right| \geq 2$, there are at least two segments among $I_{1}, I_{2}, \ldots, I_{s}$ of length at least $\bar{p}+2$. If $|M|=0$, then clearly $s \geq 4$ and

$$
|C| \geq 2(\bar{p}+2)+2(s-2) \geq 2 \bar{p}+8
$$

Otherwise, since $\max \left\{\left|A_{1}\right|,\left|A_{2}\right|\right\} \geq 1$, there are at least three elementary segments of length at least $\bar{p}+2$, that is

$$
|C| \geq 3(\bar{p}+2) \geq 2 \bar{p}+8
$$

So, in any case, $|C| \geq 2 \bar{p}+8$.
To prove that $|C| \geq 4 \delta-2 \bar{p}$, we distinguish two main cases.
Case 2.1. $\left|A_{i}\right| \geq 1(i=1,2)$.
It follows that among $I_{1}, I_{2}, \ldots, I_{s}$ there are $|M|+2$ segments of length at least $\bar{p}+2$. Further, since each of the remaining $s-(|M|+2)$ segments has a length at least 2 , we get

$$
\begin{gathered}
|C| \geq(\bar{p}+2)(|M|+2)+2(s-|M|-2) \\
=(\bar{p}-2)|M|+(2 \bar{p}+4|M|+4)+2\left(\left|A_{1}\right|+\left|A_{2}\right|-2\right) \\
\geq 2\left|A_{1}\right|+2\left|A_{2}\right|+4|M|+2 \bar{p} .
\end{gathered}
$$

Observing also that

$$
\left|A_{1}\right|+|M|+\bar{p} \geq d(x), \quad\left|A_{2}\right|+|M|+\bar{p} \geq d(y)
$$

we have

$$
\begin{gathered}
2\left|A_{1}\right|+2\left|A_{2}\right|+4|M|+2 \bar{p} \\
\geq 2 d(x)+2 d(y)-2 \bar{p} \geq 4 \delta-2 \bar{p},
\end{gathered}
$$

implying that $|C| \geq 4 \delta-2 \bar{p}$.

Case 2.2. Either $\left|A_{1}\right| \geq 1,\left|A_{2}\right|=0$ or $\left|A_{1}\right|=0,\left|A_{2}\right| \geq 1$.
Assume w.l.o.g. that $\left|A_{1}\right| \geq 1$ and $\left|A_{2}\right|=0$, i.e., $\left|N_{C}(y)\right|=|M| \geq 2$ and $s=\left|A_{1}\right|+|M|$. It follows that among $I_{1}, I_{2}, \ldots, I_{s}$ there are $|M|+1$ segments of length at least $\bar{p}+2$. Observing also that $|M|+\bar{p} \geq d(y) \geq \delta$, i.e. $2 \bar{p}+4|M| \geq 4 \delta-2 \bar{p}$, we get

$$
\begin{gathered}
|C| \geq(\bar{p}+2)(|M|+1) \geq(\bar{p}-2)(|M|-1)+2 \bar{p}+4|M| \\
\geq 2 \bar{p}+4|M| \geq 4 \delta-2 \bar{p} .
\end{gathered}
$$

Proof of Lemma 2. Let $\xi_{1}, \xi_{2}, \ldots, \xi_{s}$ be the elements of $N_{C}(x)$ occurring on C in a consecutive order. Put $I_{i}=\xi_{i} \vec{C} \xi_{i+1}(i=1,2, \ldots, s)$, where $\xi_{s+1}=\xi_{1}$. To prove ($a 1$), let $L=z \vec{L} w$ be an intermediate path between elementary segments I_{a} and I_{b} with $z \in V\left(I_{a}^{*}\right)$ and $w \in V\left(I_{b}^{*}\right)$. Put

$$
\begin{gathered}
\left|\xi_{a} \vec{C} z\right|=d_{1},\left|z \vec{C} \xi_{a+1}\right|=d_{2},\left|\xi_{b} \vec{C} w\right|=d_{3},\left|w \vec{C} \xi_{b+1}\right|=d_{4} \\
C^{\prime}=\xi_{a} x \vec{P} y \xi_{b} \overleftarrow{C} z \vec{L} w \vec{C} \xi_{a} .
\end{gathered}
$$

Clearly,

$$
\left|C^{\prime}\right|=|C|-d_{1}-d_{3}+|L|+|P|+2
$$

Since C is extreme, we have $|C| \geq\left|C^{\prime}\right|$, implying that $d_{1}+d_{3} \geq \bar{p}+|L|+2$. By a symmetric argument, $d_{2}+d_{4} \geq \bar{p}+|L|+2$. Hence

$$
\left|I_{a}\right|+\left|I_{b}\right|=\sum_{i=1}^{4} d_{i} \geq 2 \bar{p}+2|L|+4
$$

The proof of (a1) is complete. To proof (a2) and (a3), let $\Upsilon\left(I_{a}, I_{b}\right) \subseteq E(G)$ and $\left|\Upsilon\left(I_{a}, I_{b}\right)\right|=i$ for some $i \in\{1,2,3\}$.

Case 1. $i=1$.
It follows that $\Upsilon\left(I_{a}, I_{b}\right)$ consists of a unique intermediate edge $L=z w$. By (a1),

$$
\left|I_{a}\right|+\left|I_{b}\right| \geq 2 \bar{p}+2|L|+4=2 \bar{p}+6
$$

Case 2. $i=2$.
It follows that $\Upsilon\left(I_{a}, I_{b}\right)$ consists of two edges e_{1}, e_{2}. Put $e_{1}=z_{1} w_{1}$ and $e_{2}=z_{2} w_{2}$, where $\left\{z_{1}, z_{2}\right\} \subseteq V\left(I_{a}^{*}\right)$ and $\left\{w_{1}, w_{2}\right\} \subseteq V\left(I_{b}^{*}\right)$.

Case 2.1. $z_{1} \neq z_{2}$ and $w_{1} \neq w_{2}$.
Assume w.l.o.g. that z_{1} and z_{2} occur in this order on I_{a}.
Case 2.1.1. w_{2} and w_{1} occur in this order on I_{b}.
Put

$$
\begin{gathered}
\left|\xi_{a} \vec{C} z_{1}\right|=d_{1},\left|z_{1} \vec{C} z_{2}\right|=d_{2},\left|z_{2} \vec{C} \xi_{a+1}\right|=d_{3} \\
\left|\xi_{b} \vec{C} w_{2}\right|=d_{4},\left|w_{2} \vec{C} w_{1}\right|=d_{5},\left|w_{1} \vec{C} \xi_{b+1}\right|=d_{6} \\
C^{\prime}=\xi_{a} \vec{C} z_{1} w_{1} \overleftarrow{C} w_{2} z_{2} \vec{C} \xi_{b} x \vec{P} y \xi_{b+1} \vec{C} \xi_{a}
\end{gathered}
$$

Clearly,

$$
\left|C^{\prime}\right|=|C|-d_{2}-d_{4}-d_{6}+\left|\left\{e_{1}\right\}\right|+\left|\left\{e_{2}\right\}\right|+|P|+2
$$

$$
=|C|-d_{2}-d_{4}-d_{6}+\bar{p}+4
$$

Since C is extreme, $|C| \geq\left|C^{\prime}\right|$, implying that $d_{2}+d_{4}+d_{6} \geq \bar{p}+4$. By a symmetric argument, $d_{1}+d_{3}+d_{5} \geq \bar{p}+4$. Hence

$$
\left|I_{a}\right|+\left|I_{b}\right|=\sum_{i=1}^{6} d_{i} \geq 2 \bar{p}+8
$$

Case 2.1.2. w_{1} and w_{2} occur in this order on I_{b}.
Putting

$$
C^{\prime}=\xi_{a} \vec{C} z_{1} w_{1} \vec{C} w_{2} z_{2} \vec{C} \xi_{b} x \vec{P} y \xi_{b+1} \vec{C} \xi_{a}
$$

we can argue as in Case 2.1.1.
Case 2.2. Either $z_{1}=z_{2}, w_{1} \neq w_{2}$ or $z_{1} \neq z_{2}, w_{1}=w_{2}$.
Assume w.l.o.g. that $z_{1} \neq z_{2}, w_{1}=w_{2}$ and z_{1}, z_{2} occur in this order on I_{a}. Put

$$
\begin{gathered}
\left|\xi_{a} \vec{C} z_{1}\right|=d_{1},\left|z_{1} \vec{C} z_{2}\right|=d_{2},\left|z_{2} \vec{C} \xi_{a+1}\right|=d_{3}, \\
\left|\xi_{b} \vec{C} w_{1}\right|=d_{4},\left|w_{1} \vec{C} \xi_{b+1}\right|=d_{5} \\
C^{\prime}=\xi_{a} x \vec{P} y \xi_{b} \overleftarrow{C} z_{1} w_{1} \vec{C} \xi_{a} \\
C^{\prime \prime}=\xi_{a} \vec{C} z_{2} w_{1} \overleftarrow{C} \xi_{a+1} x \vec{P} y \xi_{b+1} \vec{C} \xi_{a}
\end{gathered}
$$

Clearly,

$$
\begin{aligned}
& \left|C^{\prime}\right|=|C|-d_{1}-d_{4}+\left|\left\{e_{1}\right\}\right|+|P|+2=|C|-d_{1}-d_{4}+\bar{p}+3, \\
& \left|C^{\prime \prime}\right|=|C|-d_{3}-d_{5}+\left|\left\{e_{2}\right\}\right|+|P|+2=|C|-d_{3}-d_{5}+\bar{p}+3 .
\end{aligned}
$$

Since C is extreme, $|C| \geq\left|C^{\prime}\right|$ and $|C| \geq\left|C^{\prime \prime}\right|$, implying that

$$
d_{1}+d_{4} \geq \bar{p}+3, d_{3}+d_{5} \geq \bar{p}+3
$$

Hence,

$$
\left|I_{a}\right|+\left|I_{b}\right|=\sum_{i=1}^{5} d_{i} \geq d_{1}+d_{3}+d_{4}+d_{5}+1 \geq 2 \bar{p}+7
$$

Case 3. $i=3$.
It follows that $\Upsilon\left(I_{a}, I_{b}\right)$ consists of three edges e_{1}, e_{2}, e_{3}. Let $e_{i}=z_{i} w_{i}(i=1,2,3)$, where $\left\{z_{1}, z_{2}, z_{3}\right\} \subseteq V\left(I_{a}^{*}\right)$ and $\left\{w_{1}, w_{2}, w_{3}\right\} \subseteq V\left(I_{b}^{*}\right)$. If there are two independent edges among e_{1}, e_{2}, e_{3}, then we can argue as in Case 2.1. Otherwise, we can assume w.l.o.g. that $w_{1}=w_{2}=w_{3}$ and z_{1}, z_{2}, z_{3} occur in this order on I_{a}. Put

$$
\begin{gathered}
\left|\xi_{a} \vec{C} z_{1}\right|=d_{1},\left|z_{1} \vec{C} z_{2}\right|=d_{2},\left|z_{2} \vec{C} z_{3}\right|=d_{3} \\
\left|z_{3} \vec{C} \xi_{a+1}\right|=d_{4},\left|\xi_{b} \vec{C} w_{1}\right|=d_{5},\left|w_{1} \vec{C} \xi_{b+1}\right|=d_{6} \\
C^{\prime}=\xi_{a} x \vec{P} y \xi_{b} \overleftarrow{C} z_{1} w_{1} \vec{C} \xi_{a} \\
C^{\prime \prime}=\xi_{a} \vec{C} z_{3} w_{1} \overleftarrow{C} \xi_{a+1} x \vec{P} y \xi_{b+1} \vec{C} \xi_{a}
\end{gathered}
$$

Clearly,

$$
\begin{aligned}
& \left|C^{\prime}\right|=|C|-d_{1}-d_{5}+\left|\left\{e_{1}\right\}\right|+\bar{p}+2 \\
& \left|C^{\prime \prime}\right|=|C|-d_{4}-d_{6}+\left|\left\{e_{3}\right\}\right|+\bar{p}+2
\end{aligned}
$$

Since C is extreme, we have $|C| \geq\left|C^{\prime}\right|$ and $|C| \geq\left|C^{\prime \prime}\right|$, implying that

$$
d_{1}+d_{5} \geq \bar{p}+3, d_{4}+d_{6} \geq \bar{p}+3
$$

Hence,

$$
\left|I_{a}\right|+\left|I_{b}\right|=\sum_{i=1}^{6} d_{i} \geq d_{1}+d_{4}+d_{5}+d_{6}+2 \geq 2 \bar{p}+8
$$

Proof of Lemma 3. Choose a longest path $P=x_{1} \vec{P} x_{2}$ in $G \backslash C$ so as to maximize $\left|N_{C}\left(x_{1}\right)\right|$. Let y_{1}, \ldots, y_{t} be the elements of $N_{P}^{+}\left(x_{2}\right)$ occurring on P in a consecutive order. Put

$$
P_{i}=x_{1} \vec{P} y_{i}^{-} x_{2} \overleftarrow{P} y_{i}(i=1, \ldots, t), \quad H=G\left[V\left(y_{1}^{-} \vec{P} x_{2}\right)\right]
$$

Since P_{i} is a longest path in $G \backslash C$ for each $i \in\{1, \ldots, t\}$, we can assume w.l.o.g. that P is chosen so that $|V(H)|$ is maximum. It follows in particular that $N_{P}\left(y_{i}\right) \subseteq V(H)(i=1, \ldots, t)$.

Case 1. $\left|N_{C}\left(x_{1}\right)\right|=0$.
Since $\left|N_{C}\left(x_{1}\right)\right|$ is maximum, we have $\left|N_{C}\left(y_{i}\right)\right|=0(i=1, \ldots, t)$, implying that $N\left(y_{i}\right) \subseteq$ $V(H)$ and $d_{H}\left(y_{i}\right)=d\left(y_{i}\right) \geq \delta(i=1, \ldots, t)$. Further, since $y_{t}=x_{2}$, we have $d_{P}\left(x_{2}\right) \geq \delta$, that is $t \geq \delta$. By Theorem C, for each distinct $u, v \in V(H)$, there is a path in H of length at least δ, connecting u and v. Since H and C are connected by at least κ vertex disjoint paths, we have $|C| \geq \kappa(\delta+2)$.

Case 2. $\left|N_{C}\left(x_{1}\right)\right|=1$.
Since $\left|N_{C}\left(x_{1}\right)\right|$ is maximum, we have $\left|N_{C}\left(y_{i}\right)\right| \leq 1(i=1, \ldots, t)$, implying that $\left|N_{H}\left(y_{i}\right)\right| \geq$ $\delta-1(i=1, \ldots, t)$, where $t \geq \delta-1$. By Theorem C, $|C| \geq \kappa(\delta+1)$.

Case 3. $\left|N_{C}\left(x_{1}\right)\right| \geq 2$.
If $\left|N_{C}\left(y_{i}\right)\right| \geq 2$ for some $i \in\{1, \ldots, t\}$, then we are done. Otherwise $\left|N_{C}\left(y_{i}\right)\right| \leq 1$ $(i=1, \ldots, t)$ and, as in Case $2,|C| \geq \kappa(\delta+1)$.

Proof of Theorem 1. If $\kappa \leq 2$, then $\tau \leq 1$, contradicting the hypothesis. Let $\kappa \geq 3$. Next, if $c \geq 2 \delta+4$, then we are done. So, we can assume that

$$
\begin{equation*}
c \leq 2 \delta+3 \tag{1}
\end{equation*}
$$

Let C be a longest cycle in G and $P=x_{1} \vec{P} x_{2}$ a longest path in $G \backslash C$ of length \bar{p}. If $|V(P)| \leq 0$, then C is a Hamilton cycle and we are done. Let $|V(P)| \geq 1$. Put $X=$ $N_{C}\left(x_{1}\right) \cup N_{C}\left(x_{2}\right)$ and let ξ_{1}, \ldots, ξ_{s} be the elements of X occurring on C in a consecutive order. Put

$$
I_{i}=\xi_{i} \vec{C} \xi_{i+1}, I_{i}^{*}=\xi_{i}^{+} \vec{C} \xi_{i+1}^{-} \quad(i=1, \ldots, s)
$$

where $\xi_{s+1}=\xi_{1}$.

Claim 1. Let $N_{C}\left(x_{1}\right)=N_{C}\left(x_{2}\right)$ and let ξ_{a}, ξ_{b} be two distinct elements of X. If either $\left|\xi_{a} \vec{C} y\right|+\left|\xi_{b} \vec{C} z\right| \leq \bar{p}+2$ or $\left|y \vec{C} \xi_{a+1}\right|+\left|z \vec{C} \xi_{b+1}\right| \leq \bar{p}+2$ for some $y \in V\left(I_{a}^{*}\right)$ and $z \in V\left(I_{b}^{*}\right)$, then $y z \notin E(G)$.

Proof. Assume the contrary, that is $y z \in E(G)$. If $\left|\xi_{a} \vec{C} y\right|+\left|\xi_{b} \vec{C} z\right| \leq \bar{p}+2$, then

$$
\left|\xi_{a} x_{1} \vec{P} x_{2} \xi_{b} \overleftarrow{C} y z \vec{C} \xi_{a}\right|=|C|-\left|\xi_{a} \vec{C} y\right|-\left|\xi_{b} \vec{C} z\right|+\bar{p}+3 \geq|C|+1
$$

a contradiction. By a symmetric argument, we reach a contradiction when $\left|y \vec{C} \xi_{a+1}\right|+$ $\left|z \vec{C} \xi_{b+1}\right| \leq \bar{p}+2$.

Claim 2. Let $N_{C}\left(x_{1}\right)=N_{C}\left(x_{2}\right)$ and let $\xi_{a}, \xi_{b}, \xi_{f}$ be distinct elements of X, occurring on \vec{C} in a consecutive order. If $\xi_{a}^{-} \xi_{b}^{+} \in E(G)$ and $\left|\xi_{f} \vec{C} y\right| \leq \bar{p}+1$ for some $y \in V\left(I_{f}^{*}\right)$, then $y \xi_{a}, y \xi_{b} \notin E(G)$.

Proof. Assume the contrary. If $y \xi_{a} \in E(G)$, then

$$
\left|\xi_{f} x_{1} \vec{P} x_{2} \xi_{b} \overleftarrow{C} \xi_{a} y \vec{C} \xi_{a}^{-} \xi_{b}^{+} \vec{C} \xi_{f}\right|=|C|-\left|\xi_{f} \vec{C} y\right|+\bar{p}+2 \geq|C|+1
$$

a contradiction. If $y \xi_{b} \in E(G)$, then

$$
\left|\xi_{f} x_{1} \vec{P} x_{2} \xi_{a} \vec{C} \xi_{b} y \vec{C} \xi_{a}^{-} \xi_{b}^{+} \vec{C} \xi_{f}\right| \geq|C|+1
$$

a contradiction. Δ
Case 1. $\bar{p}=0$.
It follows that $P=x_{1}$ and $s=d\left(x_{1}\right) \geq \delta \geq 3$. Assume first that $s \geq \delta+1$. If $\Upsilon\left(I_{1}, \ldots, I_{s}\right)=\emptyset$, then $G \backslash\left\{\xi_{1}, \ldots, \xi_{s}\right\}$ has at least $s+1$ components, contradicting the fact that $\tau>1$. Otherwise $\Upsilon\left(I_{a}, I_{b}\right) \neq \emptyset$ for some distinct $a, b \in\{1, \ldots, s\}$. By Lemma $2,\left|I_{a}\right|+\left|I_{b}\right| \geq 6$. Since C is extreme, we have $\left|I_{i}\right| \geq 2(i=1, \ldots, s)$ and therefore, $c \geq 6+2(s-2) \geq 2 \delta+4$, contradicting (1). So, $s=\delta$.

The next claim can easily be derived from (1) and Lemma 2.
Claim 3. (1) $\left|I_{i}\right|+\left|I_{j}\right| \leq 7$ for each distinct $i, j \in\{1, \ldots, s\}$.
(2) If $\left|I_{a}\right|+\left|I_{b}\right|=7$ for some distinct $a, b \in\{1, \ldots, s\}$, then $\left|I_{i}\right|=2$ for each $i \in\{1, \ldots, s\} \backslash\{a, b\}$.
(3) If $\left|I_{a}\right|=5$ for some $a \in\{1, \ldots, s\}$, then $\left|I_{i}\right|=2$ for each $i \in\{1, \ldots, s\} \backslash\{a\}$.
(4) There are at most three segments of length at least 3.
(5) If $\left|I_{a}\right| \geq 3,\left|I_{b}\right| \geq 3,\left|I_{f}\right| \geq 3$ for some distinct $a, b, f \in\{1, \ldots, s\}$, then $\left|I_{a}\right|=\left|I_{b}\right|=$ $\left|I_{f}\right|=3$.

If $\Upsilon\left(I_{1}, \ldots, I_{s}\right)=\emptyset$, then $G \backslash\left\{\xi_{1}, \ldots, \xi_{s}\right\}$ has at least $s+1$ components, contradicting the fact that $\tau>1$. Otherwise $\Upsilon\left(I_{i}, I_{j}\right) \neq \emptyset$ for some distinct $i, j \in\{1, \ldots, s\}$. Choose $a, b \in\{1, \ldots, s\}$ so that $\Upsilon\left(I_{a}, I_{b}\right) \neq \emptyset$ and $\left|I_{a}\right|+\left|I_{b}\right|$ is maximum. By definition, there is an intermediate path L between I_{a} and I_{b}. If $|L| \geq 2$, then by Lemma 2,

$$
\left|I_{a}\right|+\left|I_{b}\right| \geq 2 \bar{p}+2|L|+4 \geq 8
$$

contradicting Claim 3(1). Otherwise $|L|=1$ and therefore,

$$
\Upsilon\left(I_{1}, \ldots, I_{s}\right) \subseteq E(G)
$$

By Lemma 2, $\left|I_{a}\right|+\left|I_{b}\right| \geq 2 \bar{p}+6=6$. Combining this with Claim 3(1), we have

$$
6 \leq\left|I_{a}\right|+\left|I_{b}\right| \leq 7 .
$$

Let $L=y z$, where $y \in V\left(I_{a}^{*}\right)$ and $z \in V\left(I_{b}^{*}\right)$.
Case 1.1. $\left|I_{a}\right|+\left|I_{b}\right|=6$.
Since $\left|I_{i}\right| \geq 2(i=1, \ldots, s)$, we can assume w.l.o.g. that either $\left|I_{a}\right|=2,\left|I_{b}\right|=4$ or $\left|I_{a}\right|=\left|I_{b}\right|=3$.

Case 1.1.1. $\left|I_{a}\right|=2$ and $\left|I_{b}\right|=4$.
Put $I_{a}=\xi_{a} w_{1} \xi_{a+1}$ and $I_{b}=\xi_{b} w_{2} w_{3} w_{4} \xi_{b+1}$. Since $\left|I_{a}\right|+\left|I_{b}\right|$ is extreme, we have $\left|I_{i}\right|=2$ for each $i \in\{1, \ldots, s\} \backslash\{b\}$. Clearly, $y=w_{1}$. By Claim $1, z=w_{3}$ and $\Upsilon\left(I_{a}, I_{b}\right)=\left\{w_{1} w_{3}\right\}$. If $\Upsilon\left(I_{1}, \ldots, I_{s}\right)=\left\{w_{1} w_{3}\right\}$, then $G \backslash\left\{\xi_{1}, \ldots, \xi_{s}, w_{3}\right\}$ has at least $s+1$ components, contradicting the fact that $\tau>1$. Otherwise $\Upsilon\left(I_{f}, I_{g}\right) \neq \emptyset$ for some distinct $f, g \in\{1, \ldots, s\}$ with $\{f, g\} \neq$ $\{a, b\}$. If $\{f, g\} \cap\{a, b\}=\emptyset$, then by Lemma $2,\left|I_{f}\right|+\left|I_{g}\right| \geq 6$ and therefore,

$$
c=\sum_{i \in\{a, b, f, g\}}\left|I_{i}\right|+\sum_{i \in\{1,2, \ldots, s\} \backslash\{a, b, f, g\}}\left|I_{i}\right| \geq 12+2(s-4)=2 \delta+4,
$$

contradicting (1). Let $\{f, g\} \cap\{a, b\} \neq \emptyset$. If $f=a$, then clearly $g \neq b$ and by Lemma 2 , $\left|I_{a}\right|+\left|I_{g}\right| \geq 6$, implying that $\left|I_{g}\right| \geq 4$. But then $\left|I_{b}\right|+\left|I_{g}\right| \geq 8$, contradicting Claim 3(1). Now let $f \neq a$ and $g=b$. By Lemma 2, $\left|I_{b}\right|+\left|I_{f}\right| \geq 6$. Since $\left|I_{a}\right|+\left|I_{b}\right|$ is extreme, we have $\left|I_{b}\right|+\left|I_{f}\right|=6$, which yields $\left|I_{f}\right|=2$. Put $I_{f}=\xi_{f} w_{5} \xi_{f+1}$. Let $y_{1} z_{1}$ be an intermediate edge between I_{f} and I_{b}. By Claim 1, $y_{1}=w_{5}$ and $z_{1}=w_{3}$. Recalling that $\left|I_{i}\right|=2$ for each $i \in\{1, \ldots, s\} \backslash\{b\}$, we conclude that w_{3} belongs to all intermediate edges in $\Upsilon\left(I_{1}, \ldots, I_{s}\right)$. Then $G \backslash\left\{\xi_{1}, \ldots, \xi_{s}, w_{3}\right\}$ has at least $s+1$ components, contradicting the fact that $\tau>1$.

Case 1.1.2. $\left|I_{a}\right|=\left|I_{b}\right|=3$.
Put $I_{a}=\xi_{a} w_{1} w_{2} \xi_{a+1}$ and $I_{b}=\xi_{b} w_{3} w_{4} \xi_{b+1}$. Assume w.l.o.g. that $y=w_{2}$. By Claim $1, z=w_{3}$ and $\Upsilon\left(I_{a}, I_{b}\right)=\left\{w_{2} w_{3}\right\}$. If $\Upsilon\left(I_{1}, \ldots, I_{s}\right)=\left\{w_{2} w_{3}\right\}$, then $G \backslash\left\{\xi_{1}, \ldots, \xi_{s}, w_{2}\right\}$ has at least $s+1$ components, contradicting the fact that $\tau>1$. Otherwise $\Upsilon\left(I_{f}, I_{g}\right) \neq \emptyset$ for some distinct $f, g \in\{1, \ldots, s\}$ with $\{f, g\} \neq\{a, b\}$. If $\{f, g\} \cap\{a, b\}=\emptyset$, then by Lemma $2,\left|I_{f}\right|+\left|I_{g}\right| \geq 6$ and, as in Case 1.1.1, $c \geq 12+2(s-4) \geq 2 \delta+4$, contradicting (1). Let $\{f, g\} \cap\{a, b\} \neq \emptyset$. Assume w.l.o.g. that $f=a$ and $g \neq b$. By Lemma $2,\left|I_{a}\right|+\left|I_{g}\right| \geq 6$, that is $\left|I_{g}\right| \geq 3$. By Claim 3(5), $\left|I_{g}\right|=3$. Put $I_{g}=\xi_{g} w_{5} w_{6} \xi_{g+1}$. Let $y_{1} z_{1}$ be an intermediate edge with $y_{1} \in V\left(I_{a}^{*}\right)$ and $z_{1} \in V\left(I_{g}^{*}\right)$.

Case 1.1.2.1. $g \in V\left(\xi_{b+1}^{+} \vec{C} \xi_{a}^{-}\right)$.
If $y_{1}=w_{1}$, then by Claim $1, z_{1}=w_{6}$ and

$$
\xi_{a} w_{1} w_{6} \overleftarrow{C} w_{3} w_{2} \vec{C} \xi_{b} x_{1} \xi_{g+1} \vec{C} \xi_{a}
$$

is longer than C, a contradiction. Let $y_{1}=w_{2}$. By Claim $1, z_{1}=w_{5}$ and therefore, $\Upsilon\left(I_{a}, I_{g}\right)=\left\{w_{2} w_{5}\right\}$.

Case 1.1.2.1.1. $N\left(w_{1}\right) \subseteq V(C)$.
By Claim $2, w_{1} \xi_{b} \notin E(G)$ and $w_{1} \xi_{g} \notin E(G)$. Further, if

$$
N\left(w_{1}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, w_{2}\right\} \backslash\left\{\xi_{b}, \xi_{g}\right\},
$$

then $\left|N\left(w_{1}\right)\right| \leq s-1=\delta-1$, a contradiction. Otherwise, $w_{1} z_{2} \in E(G)$ for some $z_{2} \in V\left(I_{h}^{*}\right)$, where $h \notin\{a, b, g\}$. By Lemma $2,\left|I_{a}\right|+\left|I_{h}\right| \geq 6$, implying that $\left|I_{h}\right| \geq 3$, which contradicts Claim 3(4).

Case 1.1.2.1.2. $N\left(w_{1}\right) \nsubseteq V(C)$.
It follows that $w_{1} x_{2} \in E(G)$ for some $x_{2} \in V(G \backslash C)$. Since $\bar{p}=0$ and C is extreme, $x_{2} \neq x_{1}$ and $N\left(x_{2}\right) \subseteq V(C)$. For the same reason, $x_{2} \xi_{a} \notin E(G)$ and $x_{2} w_{2} \notin E(G)$. By Claim $2, x_{2} \xi_{b} \notin E(G)$. If

$$
N\left(x_{2}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, w_{1}\right\} \backslash\left\{\xi_{a}, \xi_{b}\right\}
$$

then $\left|N\left(x_{2}\right)\right| \leq s-1=\delta-1$, a contradiction. Otherwise $x_{2} z_{2} \in E(G)$ for some $z_{2} \in V\left(I_{h}^{*}\right)$, where $h \neq a$. But then I_{a}^{*} and I_{h}^{*} are connected by $w_{1} x_{2} z_{2}$, contradicting the fact that $\Upsilon\left(I_{1}, \ldots, I_{s}\right) \subseteq E(G)$.

Case 1.1.2.2. $g \in V\left(\xi_{a+1}^{+} \vec{C} \xi_{b}^{-}\right)$.
If $y_{1}=w_{2}$, then by Claim $1, z_{1}=w_{5}$ and we can argue as in Case 1.1.2.1. Let $z_{1}=w_{1}$. By Claim 1, $z_{2}=w_{6}$ and $w_{4} w_{6} \notin E(G)$. Further, by Claim 2, $w_{4} \xi_{a+1} \notin E(G)$ and $w_{4} \xi_{b} \notin E(G)$. Using Claim 3(4), we have $\left|I_{i}\right|=2$ for each $i \in\{1, \ldots, s\} \backslash\{a, b, g\}$. By Lemma $2, N\left(w_{4}\right) \cap V\left(I_{i}^{*}\right)=\emptyset$ for each $i \in\{1, \ldots, s\} \backslash\{a, b, g\}$.

Case 1.1.2.2.1. $N\left(w_{4}\right) \subseteq V(C)$.
It follows that

$$
N\left(w_{4}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, w_{3}, w_{5}\right\} \backslash\left\{\xi_{a+1}, \xi_{b}\right\}
$$

Since $\left|N\left(w_{4}\right)\right| \geq \delta=s$, we have $w_{4} w_{5} \in E(G)$.
Case 1.1.2.2.1.1. $s \geq 4$.
Since $\left|I_{i}\right|=2$ for each $i \in\{1, \ldots, s\} \backslash\{a, b, g\}$, we can assume w.l.o.g. that $\left|I_{a-1}\right|=2$. Put $I_{a-1}=\xi_{a-1} w_{7} \xi_{a}$. Assume first that $N\left(w_{7}\right) \nsubseteq V(C)$, that is $w_{7} x_{2} \in E(G)$ for some $x_{2} \in V(G \backslash C)$. Since C is extreme and $\Upsilon\left(I_{1}, \ldots, I_{s}\right) \subseteq E(G)$, we have $x_{2} \neq x_{1}$ and

$$
N\left(x_{2}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, w_{7}\right\} \backslash\left\{\xi_{a-1}, \xi_{a},\right\}
$$

contradicting the fact that $\left|N\left(x_{2}\right)\right| \geq \delta=s$. Now assume that $N\left(w_{7}\right) \subseteq V(C)$. By Claim 2, $w_{7} \xi_{a+1} \notin E(G)$. Since $\left|I_{a-1}\right|=2$ and $\left|I_{i}\right| \leq 3$ for each $i \in\{1, \ldots, s\}$, we have by Lemma 2, $N\left(w_{7}\right) \cap V\left(I_{i}^{*}\right)=\emptyset$ for each $i \in\{1, \ldots, s\} \backslash\{a-1\}$. So, $N\left(w_{7}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}\right\} \backslash\left\{\xi_{a+1}\right\}$, contradicting the fact that $\left|N\left(w_{7}\right)\right| \geq \delta=s$.

Case 1.1.2.2.1.2. $s=3$.
Put $C=\xi_{1} w_{1} w_{2} \xi_{2} w_{3} w_{4} \xi_{3} w_{5} w_{6} \xi_{1}$. Assume first that $N\left(w_{i}\right) \nsubseteq V(C)$ for some $i \in$ $\{1,2, \ldots, 6\}$, say $i=1$. This means that $w_{1} x_{2} \in E(G)$ for some $x_{2} \in V(G \backslash C)$. Since C is extreme, $x_{2} \neq x_{1}$ and $x_{2} \xi_{1}, x_{2} w_{2} \notin E(G)$. Further, since $\Upsilon\left(I_{1}, I_{2}, I_{3}\right) \subseteq E(G)$, we have $N\left(x_{2}\right) \subseteq\left\{\xi_{2}, \xi_{3}, w_{1}\right\}$. On the other hand, since $\left|N\left(x_{2}\right)\right| \geq \delta \geq 3$, we have $N\left(x_{2}\right)=\left\{\xi_{2}, \xi_{3}, w_{1}\right\}$. By Claim 2, $x_{2} \xi_{2} \notin E(G)$, a contradiction. Now assume that $N\left(w_{i}\right) \subseteq V(C)(i=1, \ldots, 6)$. If $V(G \backslash C) \neq\left\{x_{1}\right\}$, then choose $x_{2} \in V(G \backslash C)$ so that $x_{2} \neq x_{1}$. Since $N\left(w_{i}\right) \subseteq V(C)(i=1, \ldots, 6)$, we have $N\left(x_{2}\right)=N\left(x_{1}\right)$. But then $G \backslash\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ has at least three components, contradicting the fact that $\tau>1$. Finally, if $V(G \backslash C)=\left\{x_{1}\right\}$, then G is the Petersen graph.

Case 1.1.2.2.2. $N\left(w_{4}\right) \nsubseteq V(C)$.
It follows that $w_{4} \xi_{2} \in E(G)$ for some $x_{2} \in V(G \backslash C)$. Since C is extreme and $\Upsilon\left(I_{1}, \ldots, I_{s}\right) \subseteq E(G)$, we have $x_{2} \neq x_{1}, x_{2} \xi_{b+1} \notin E(G)$ and $N\left(x_{2}\right) \cap V\left(I_{i}^{*}\right)=\emptyset$ for each $i \in\{1, \ldots, s\} \backslash\{b\}$. So, $N\left(x_{2}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, w_{4}\right\} \backslash\left\{\xi_{b+1}\right\}$, implying that $x_{2} \xi_{b} \in E(G)$, which contradicts Claim 2.

Case 1.2. $\left|I_{a}\right|+\left|I_{b}\right|=7$.
By Claim $3(2),\left|I_{i}\right|=2$ for each $i \in\{1, \ldots, s\} \backslash\{a, b\}$. By the hypothesis, either $\left|I_{a}\right|=2$, $\left|I_{b}\right|=5$ or $\left|I_{a}\right|=3,\left|I_{b}\right|=4$.

Case 1.2.1. $\left|I_{a}\right|=2,\left|I_{b}\right|=5$.
Put $I_{a}=\xi_{a} w_{1} \xi_{a+1}$ and $I_{b}=\xi_{b} w_{2} w_{3} w_{4} w_{5} \xi_{b+1}$. Clearly, $y=w_{1}$. By Claim 1, $z \in\left\{w_{3}, w_{4}\right\}$. Further, if $\left\{w_{1} w_{3}, w_{1} w_{4}\right\} \subseteq E(G)$, then

$$
\xi_{a} x_{1} \xi_{a+1} \vec{C} w_{3} w_{1} w_{4} \vec{C} \xi_{a}
$$

is longer than C, a contradiction. Therefore, we can assume w.l.o.g. that $w_{1} w_{3} \in E(G)$ and $\Upsilon\left(I_{a}, I_{b}\right)=\left\{w_{1} w_{3}\right\}$. By Claim 3(3), $\left|I_{i}\right|=2$ for each $i \in\{1, \ldots, s\} \backslash\{b\}$. By Lemma 2, each intermediate edge has one end in $V\left(I_{b}^{*}\right)$. If $\Upsilon\left(I_{1}, \ldots, I_{s}\right)=\left\{w_{1} w_{3}\right\}$, then $G \backslash\left\{\xi_{1}, \ldots, \xi_{s}, w_{3}\right\}$ has at least $s+1$ components, contradicting the fact that $\tau>1$. Otherwise $\Upsilon\left(I_{b}, I_{g}\right) \neq \emptyset$ for some $g \in\{1, \ldots, s\} \backslash\{a, b\}$. Since $\left|I_{g}\right|=2$, we can set $I_{g}=\xi_{g} w_{6} \xi_{g+1}$. As above, either $w_{6} w_{3} \in E(G), w_{6} w_{4} \notin E(G)$ or $w_{6} w_{3} \notin E(G), w_{6} w_{4} \in E(G)$. Assume that $w_{6} w_{4} \in E(G)$. If $\xi_{g} \in V\left(\xi_{b+1}^{+} \vec{C} \xi_{a}^{-}\right)$, then

$$
\xi_{a} w_{1} w_{3} \overleftarrow{C} \xi_{a+1} x_{1} \xi_{g} \overleftarrow{C} w_{4} w_{6} \vec{C} \xi_{a}
$$

is longer than C, a contradiction. If $\xi_{g} \in V\left(\xi_{a+1}^{+} \vec{C} \xi_{b}^{-}\right)$, then

$$
\xi_{a} x_{1} \xi_{g+1} \vec{C} w_{3} w_{1} \vec{C} w_{6} w_{4} \vec{C} \xi_{a}
$$

is longer than C, a contradiction. Now assume that $w_{6} w_{4} \notin E(G)$, implying that $w_{6} w_{3} \in E(G)$. This means that w_{3} belongs to each intermediate edge in $\Upsilon\left(I_{1}, \ldots, I_{s}\right)$. But then $G \backslash\left\{\xi_{1}, \ldots, \xi_{s}, w_{3}\right\}$ has at least $s+1$ components, contradicting the fact that $\tau>1$.

Case 1.2.2. $\left|I_{a}\right|=3,\left|I_{b}\right|=4$.
Put $I_{a}=\xi_{a} w_{1} w_{2} \xi_{a+1}$ and $I_{b}=\xi_{b} w_{3} w_{4} w_{5} \xi_{b+1}$. Assume w.l.o.g. that $y=w_{2}$. By Claim 1, $z \in\left\{w_{3}, w_{4}\right\}$.

Case 1.2.2.1. $w_{2} w_{3} \in E(G)$.
Assume first that $N\left(w_{1}\right) \nsubseteq V(C)$, that is $w_{1} x_{2} \in E(G)$ for some $x_{2} \in V(G \backslash C)$. Since C is extreme, $x_{2} \neq x_{1}$ and $x_{2} \xi_{a} \notin E(G), x_{2} w_{2} \notin E(G)$. By Claim 2, $x_{2} \xi_{a+1} \notin E(G)$. Recalling that C is extreme and $\Upsilon\left(I_{1}, \ldots, I_{s}\right) \subseteq E(G)$, we have

$$
N\left(x_{2}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, w_{1}\right\} \backslash\left\{\xi_{a}, \xi_{a+1}\right\}
$$

contradicting the fact that $\left|N\left(x_{2}\right)\right| \geq \delta=s$. Now assume that $N\left(w_{1}\right) \subseteq V(C)$. By Claim 1, $w_{1} \xi_{a+1} \notin E(G), w_{1} \xi_{b} \notin E(G)$ and $w_{1} w_{3} \notin E(G)$. Further, if $N\left(w_{1}\right) \cap\left\{w_{4}, w_{5}\right\} \neq \emptyset$, then there are two independent intermediate edges between I_{a} and I_{b}. By Lemma $2,\left|I_{a}\right|+\left|I_{b}\right| \geq 8$,
contradicting Claim 3(1). Hence, $N\left(w_{1}\right) \cap\left\{w_{4}, w_{5}\right\}=\emptyset$. Finally, since $\left|I_{i}\right|=2$ for each $i \in\{1, \ldots, s\} \backslash\{a, b\}$, we have $N\left(w_{1}\right) \cap V\left(I_{i}^{*}\right)=\emptyset$ for each $i \in\{1, \ldots, s\} \backslash\{a\}$. So,

$$
N\left(w_{1}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, w_{2}\right\} \backslash\left\{\xi_{a+1}, \xi_{b}\right\}
$$

contradicting the fact that $\left|N\left(w_{1}\right)\right| \geq \delta=s$ when $\xi_{a+1} \neq \xi_{b}$. Let $\xi_{a+1}=\xi_{b}$. Assume w.l.o.g. that $a=1$ and $b=2$. If $s=2$, then clearly $\tau \leq 1$, contradicting the hypothesis. Let $s \geq 3$. Recalling that $\left|I_{i}\right|=2$ for each $i \in\{3, \ldots, s\}$, we can set $I_{3}=\xi_{3} w_{7} \xi_{4}$. If $N\left(w_{7}\right) \nsubseteq V(C)$, that is $w_{7} x_{2} \in E(G)$ for some $x_{2} \in V(G \backslash C)$, then $x_{2} \neq x_{1}$ and

$$
N\left(x_{2}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, w_{7}\right\} \backslash\left\{\xi_{3}, \xi_{4}\right\}
$$

contradicting the fact that $\left|N\left(x_{2}\right)\right| \geq \delta=s$. Let $N\left(w_{7}\right) \subseteq V(C)$. By Claim 2, $w_{7} \xi_{2} \notin E(G)$. Hence, $N\left(w_{7}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}\right\} \backslash\left\{\xi_{2}\right\}$, contradicting the fact that $\left|N\left(w_{7}\right)\right| \geq s$.

Case 1.2.2.2. $w_{2} w_{4} \in E(G)$.
If $w_{2} w_{3} \in E(G)$, then we can argue as in Case 1.2.2.1. Hence, we can assume that $\Upsilon\left(I_{a}, I_{b}\right)=\left\{w_{2} w_{4}\right\}$. If $\Upsilon\left(I_{1}, \ldots, I_{s}\right)=\left\{w_{2} w_{4}\right\}$, then clearly $\tau \leq 1$, contradicting the hypothesis. Let $\Upsilon\left(I_{1}, \ldots, I_{s}\right) \neq\left\{w_{2} w_{4}\right\}$. Since $\left|I_{a}\right|=3$ and $\left|I_{i}\right|=2$ for each $i \in\{1, \ldots, s\} \backslash\{a, b\}$, we can state by Lemma 2 that each intermediate edge has one end in $V\left(I_{b}^{*}\right)$. Let $y_{1} z_{1} \in E(G)$ for some $y_{1} \in V\left(I_{g}^{*}\right)$ and $z_{1} \in V\left(I_{b}^{*}\right)$, where $g \in\{1, \ldots, s\} \backslash\{a, b\}$. Since $\left|I_{g}\right|=2$, we can set $I_{g}=\xi_{g} w_{6} \xi_{g+1}$. Clearly $y_{1}=w_{6}$. By Claim 1, $z_{1}=w_{4}$. This means that w_{4} belongs to all intermediate edges. Then clearly $\tau \leq 1$, contradicting the hypothesis.

Case 2. $\bar{p}=1$.
Since $\delta \geq \kappa \geq 3$, we have $\left|N_{C}\left(x_{i}\right)\right| \geq \delta-\bar{p}=\delta-1 \geq 2 \quad(i=1,2)$.
Case 2.1. $N_{C}\left(x_{1}\right) \neq N_{C}\left(x_{2}\right)$.
It follows that $\max \left\{\sigma_{1}, \sigma_{2}\right\} \geq 1$, where

$$
\sigma_{1}=\left|N_{C}\left(x_{1}\right) \backslash N_{C}\left(x_{2}\right)\right|, \quad \sigma_{2}=\left|N_{C}\left(x_{2}\right) \backslash N_{C}\left(x_{1}\right)\right| .
$$

If $\max \left\{\sigma_{1}, \sigma_{2}\right\} \geq 2$, then by Lemma $1, c \geq 3 \delta+1 \geq 2 \delta+4$, contradicting (1). Let $\max \left\{\sigma_{1}, \sigma_{2}\right\}=1$. This implie $s \geq \delta$ and $\left|I_{i}\right| \geq 3(i=1, \ldots, s)$. If $s \geq \delta+1$, then $c \geq 3 s \geq 3 \delta+3>2 \delta+4$, again contradicting (1). Let $s=\delta$, that is $\left|I_{i}\right|=3(i=1, \ldots, s)$. By Lemma 2, $\Upsilon\left(I_{1}, \ldots, I_{s}\right)=\emptyset$, contradicting the fact that $\tau>1$.

Case 2.2. $N_{C}\left(x_{1}\right)=N_{C}\left(x_{2}\right)$.
Clearly, $s=\left|N_{C}\left(x_{1}\right)\right| \geq \delta-\bar{p}=\delta-1$. If $s \geq \delta$, then $c \geq 3 s \geq 3 \delta$ and we can argue as in Case 2.1. Let $s=\delta-1$.

The following can easily be derived from (1) and Lemma 2.
Claim 4. (1) $\left|I_{i}\right|+\left|I_{j}\right| \leq 9$ for each distinct $i, j \in\{1, \ldots, s\}$.
(2) If $\left|I_{a}\right|+\left|I_{b}\right|=9$ for some distinct $a, b \in\{1, \ldots, s\}$, then $\left|I_{i}\right|=3$ for each $i \in\{1, \ldots, s\} \backslash\{a, b\}$.
(3) If $\left|I_{a}\right|=6$ for some $a \in\{1, \ldots, s\}$, then $\left|I_{i}\right|=3$ for each $i \in\{1, \ldots, s\} \backslash\{a\}$.
(4) There are at most three segments of length at least 4.
(5) If $\left|I_{a}\right| \geq 4,\left|I_{b}\right| \geq 4,\left|I_{f}\right| \geq 4$ for some distinct $a, b, f \in\{1,2, \ldots, s\}$, then $\left|I_{a}\right|=\left|I_{b}\right|=\left|I_{f}\right|=4$.

If $\Upsilon\left(I_{1}, \ldots, I_{s}\right)=\emptyset$, then clearly, $\tau \leq 1$, contradicting the hypothesis. Otherwise $\Upsilon\left(I_{a}, I_{b}\right) \neq \emptyset$ for some distinct $a, b \in\{1, \ldots, s\}$. By definition, there is an intermediate path L between I_{a} and I_{b}. If $|L| \geq 2$, then by Lemma 2,

$$
\left|I_{a}\right|+\left|I_{b}\right| \geq 2 \bar{p}+2|L|+4 \geq 10
$$

contradicting Claim 4(1). Otherwise $|L|=1$ and therefore,

$$
\Upsilon\left(I_{1}, \ldots, I_{s}\right) \subseteq E(G)
$$

By Lemma 2, $\left|I_{a}\right|+\left|I_{b}\right| \geq 2 \bar{p}+6=8$. Combining this with Claim 4(1), we have

$$
8 \leq\left|I_{a}\right|+\left|I_{b}\right| \leq 9
$$

Let $L=y z$, where $y \in V\left(I_{a}^{*}\right)$ and $z \in V\left(I_{b}^{*}\right)$.
Case 2.2.1. $\left|I_{a}\right|+\left|I_{b}\right|=8$.
Since $\left|I_{i}\right| \geq 3(i=1, \ldots, s)$, we can assume w.l.o.g. that either $\left|I_{a}\right|=3,\left|I_{b}\right|=5$ or $\left|I_{a}\right|=\left|I_{b}\right|=4$.

Case 2.2.1.1. $\left|I_{a}\right|=3$ and $\left|I_{b}\right|=5$.
Put $I_{a}=\xi_{a} w_{1} w_{2} \xi_{a+1}$ and $I_{b}=\xi_{b} w_{3} w_{4} w_{5} w_{6} \xi_{b+1}$. Assume w.l.o.g. that $y=w_{2}$. By Claim $1, z=w_{4}$. For the same reason, $N\left(w_{1}\right) \cap V\left(I_{b}^{*}\right) \subseteq\left\{w_{5}\right\}$. If $w_{1} w_{5} \in E(G)$, then there exist two independent intermediate edges between I_{a} and I_{b}, which by Lemma 2 yield $\left|I_{a}\right|+\left|I_{b}\right| \geq$ $2 \bar{p}+8=10$, contradicting Claim 4(1). So, $N\left(w_{1}\right) \cap V\left(I_{b}^{*}\right)=\emptyset$. Further, if $\Upsilon\left(I_{a}, I_{f}\right) \neq \emptyset$ for some $f \in\{1, \ldots, s\} \backslash\{a, b\}$, then by Lemma $2,\left|I_{a}\right|+\left|I_{f}\right| \geq 2 \bar{p}+6=8$, implying that $\left|I_{f}\right| \geq 5$. But then $\left|I_{b}\right|+\left|I_{f}\right| \geq 10$, contradicting Claim 4(1). Hence $\Upsilon\left(I_{a}, I_{i}\right)=\emptyset$ for each $i \in\{1, \ldots, s\} \backslash\{a, b\}$. By Claim 2, $w_{1} \xi_{a+1} \notin E(G)$. Thus, if $N\left(w_{1}\right) \subseteq V(C)$, then

$$
N\left(w_{1}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, w_{2}\right\} \backslash\left\{\xi_{a+1}\right\}
$$

contradicting the fact that $\left|N\left(w_{1}\right)\right| \geq \delta=s+1$. Now let $N\left(w_{1}\right) \nsubseteq V(C)$ and let $Q=$ $w_{1} \vec{Q} x_{3}$ be a longest path having only w_{1} in common with C. Clearly, $1 \leq|Q| \leq 2$ and $V(Q) \cap V(P)=\emptyset$. By Claim $2, x_{3} \xi_{a+1} \notin E(G)$. Further, since $\Upsilon\left(I_{1}, \ldots, I_{s}\right) \subseteq E(G)$, we have $N\left(x_{3}\right) \cap V\left(I_{i}^{*}\right)=\emptyset$ for each $i \in\{1, \ldots, s\} \backslash\{a\}$. If $|Q|=1$, then

$$
N\left(x_{3}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, w_{1}\right\} \backslash\left\{\xi_{a}, \xi_{a+1}\right\}
$$

contradicting the fact that $\left|N\left(x_{3}\right)\right| \geq \delta=s+1$. If $|Q|=2$, then

$$
N\left(x_{3}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, x_{3}^{-}, w_{1}\right\} \backslash\left\{\xi_{a}, \xi_{a+1}\right\}
$$

contradicting the fact that $\left|N\left(x_{3}\right)\right| \geq \delta=s+1$.
Case 2.2.1.2. $\left|I_{a}\right|=\left|I_{b}\right|=4$.
Put $I_{a}=\xi_{a} w_{1} w_{2} w_{3} \xi_{a+1}$ and $I_{b}=\xi_{b} w_{4} w_{5} w_{6} \xi_{b+1}$.
Case 2.2.1.2.1. $y \in\left\{w_{1}, w_{3}\right\}$.
Assume w.l.o.g. that $y=w_{3}$. By Claim 1, $z=w_{4}$.

Claim 5. $N\left(w_{1}\right) \cup N\left(w_{2}\right) \subseteq V(C)$.
Proof. Assume the contrary and let $Q=w_{1} \vec{Q} x_{3}$ be a longest path having only w_{1} in common with C. Clearly, $1 \leq|Q| \leq 2$ and $V(Q) \cap V(P)=\emptyset$. By Claim 2, $x_{3} \xi_{a+1} \notin E(G)$ and $x_{3} \xi_{b} \notin E(G)$. Since $\Upsilon\left(I_{1}, \ldots, I_{s}\right) \subseteq E(G)$, we have $N\left(x_{3}\right) \cap V\left(I_{i}^{*}\right)=\emptyset$ for each $i \in$ $\{1, \ldots, s\} \backslash\{a\}$. If $|Q|=1$, then

$$
N\left(x_{3}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, w_{1}, w_{3}\right\} \backslash\left\{\xi_{a}, \xi_{a+1}\right\}
$$

contradicting the fact that $\left|N\left(x_{3}\right)\right| \geq \delta=s+1$. If $|Q|=2$, then

$$
N\left(x_{3}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, x_{3}^{-}, w_{1}\right\} \backslash\left\{\xi_{a}, \xi_{a+1}\right\}
$$

a contradiction. Similarly, we can reach a contradiction when $N\left(w_{2}\right) \nsubseteq V(C)$. Claim 5 is proved.

Case 2.2.1.2.1.1. $\xi_{a+1} \neq \xi_{b}$.
By Claim 2, $w_{1} \xi_{a+1} \notin E(G)$ and $w_{1} \xi_{b} \notin E(G)$. By Claim 1, $w_{1} w_{4} \notin E(G)$. Moreover, if $N\left(w_{1}\right) \cap V\left(I_{b}^{*}\right) \neq \emptyset$, then there exist two independent intermediate edges between I_{a} and I_{b}, which by Lemma 2 yield $\left|I_{a}\right|+\left|I_{b}\right| \geq 2 \bar{p}+8 \geq 10$, contradicting Claim 4(1). Furthermore, if $N\left(w_{1}\right) \cap V\left(I_{i}^{*}\right)=\emptyset$ for each $i \in\{1, \ldots, s\} \backslash\{a, b\}$, then by Claim 5 ,

$$
N\left(w_{1}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, w_{2}, w_{3}\right\} \backslash\left\{\xi_{a+1}, \xi_{b}\right\}
$$

implying that $\left|N\left(w_{1}\right)\right| \leq s=\delta-1$, a contradiction. Otherwise, $w_{1} v \in E(G)$, where $v \in V\left(I_{f}^{*}\right)$ for some $f \in\{1, \ldots, s\} \backslash\{a, b\}$. By a similar way, it can be shown that $w_{2} u \in E(G)$, where $u \in V\left(I_{g}^{*}\right)$ for some $g \in\{1, \ldots, s\} \backslash\{a, b\}$. By Lemma $2,\left|I_{a}\right|+\left|I_{f}\right| \geq 2 \bar{p}+6=8$, that is $\left|I_{f}\right| \geq 4$. By Claim 4(5), $\left|I_{f}\right|=4$. By a symmetric argument, $\left|I_{d}\right|=4$. Put $I_{f}=\xi_{f} w_{7} w_{8} w_{9} \xi_{f+1}$. By Claim 1, $v=w_{9}$, i.e., $w_{1} w_{9} \in E(G)$. If $d=f$, then $\left|\Upsilon\left(I_{a}, I_{f}\right)\right|=2$ and by Lemma 2, $\left|I_{a}\right|+\left|I_{f}\right| \geq 2 \bar{p}+7=9$, a contradiction. Otherwise, there are at least four elementary segments of length at least 4, contradicting Claim 4(4).

Case 2.2.1.2.1.2. $\xi_{a+1}=\xi_{b}$.
Assume w.l.o.g. that $a=1$ and $b=2$. If $\Upsilon\left(I_{1}, I_{2}, \ldots, I_{s}\right)=\Upsilon\left(I_{1}, I_{2}\right)=\left\{w_{3} w_{4}\right\}$, then clearly, $\tau \leq 1$, a contradiction. Otherwise, there is an intermediate edge $u v$ such that $u \in V\left(I_{1}^{*}\right) \cup V\left(I_{2}^{*}\right)$ and $v \in V\left(I_{f}^{*}\right)$ for some $f \in\{1,2, \ldots, s\} \backslash\{1,2\}$. Assume w.l.o.g. that $u \in V\left(I_{1}^{*}\right)$. If $u=w_{3}$, then as above, $\xi_{2}=\xi_{f}$, a contradiction. Let $u \neq w_{3}$. By Lemma 2, $\left|I_{1}\right|+\left|I_{f}\right| \geq 8$, i.e. $\left|I_{f}\right| \geq 4$. By Claim 4(5), $\left|I_{f}\right|=4$. Put $I_{f}=\xi_{c} w_{7} w_{8} w_{9} \xi_{f+1}$. If $u=w_{1}$, then by Claim 1, $v=w_{9}$ and

$$
\left|\xi_{1} w_{1} w_{9} \overleftarrow{C} w_{4} w_{3} \xi_{2} x_{2} x_{1} \xi_{f+1} \vec{C} \xi_{1}\right| \geq|C|+1
$$

a contradiction. If $u=w_{2}$, then by Claim $1, v=w_{8}$ and

$$
\left|\xi_{1} w_{1} w_{2} w_{8} \overleftarrow{C} w_{4} w_{3} \xi_{2} x_{2} x_{1} \xi_{f+1} \vec{C} \xi_{1}\right| \geq|C|+1
$$

again a contradiction.
Case 2.2.1.2.2. $y=w_{2}$.

By Claim 1, $z=w_{5}$ and $\Upsilon\left(I_{a}, I_{b}\right)=\left\{w_{2} w_{5}\right\}$. If $\left|I_{i}\right|=3$ for each $i \in\{1,2, \ldots, s\} \backslash\{a, b\}$, then by Lemma $2, \Upsilon\left(I_{1}, I_{2}, \ldots, I_{s}\right)=\left\{w_{2} w_{5}\right\}$ and $\tau \leq 1$, contradicting the hypothesis. Otherwise, $\left|I_{f}\right| \geq 4$ for some $f \in\{1,2, \ldots, s\} \backslash\{a, b\}$ and $\left|I_{i}\right|=3$ for each $i \in\{1,2, \ldots, s\} \backslash\{a, b, f\}$. By Claim $4(5),\left|I_{f}\right|=4$. Put $I_{f}=\xi_{f} w_{7} w_{8} w_{9} \xi_{f+1}$. Clearly, $\Upsilon\left(I_{1}, I_{2}, \ldots, I_{s}\right)=\Upsilon\left(I_{a}, I_{b}, I_{f}\right)$. If $\Upsilon\left(I_{a}, I_{f}\right)=\Upsilon\left(I_{b}, I_{f}\right)=\emptyset$, then again $\tau \leq 1$, a contradiction. Let $u v \in E(G)$, where $u \in I_{a}^{*} \cup I_{b}^{*}$ and $v \in V\left(I_{f}^{*}\right)$. Assume w.l.o.g. that $u \in V\left(I_{a}^{*}\right)$. If $u \in\left\{w_{1}, w_{3}\right\}$, then we can argue as in Case 1.2.1.2.1. Let $u=w_{2}$. By Claim $1, v=w_{8}$. If $w_{1} w_{3} \in E(G)$, then

$$
\xi_{a} x_{1} x_{2} \xi_{b} \overleftarrow{C} w_{3} w_{1} w_{2} w_{5} \vec{C} \xi_{a}
$$

is longer than C, a contradiction. Let $w_{1} w_{3} \notin E(G)$. Analogously, $w_{4} w_{6} \notin E(G)$ and $w_{7} w_{9} \notin E(G)$. But then $\left\{w_{1}, w_{3}, w_{4}, w_{6}, w_{7}, w_{9}\right\}$ is an independent set of vertices and $G \backslash\left\{\xi_{1}, \ldots, \xi_{s}, w_{2}, w_{5}, w_{8}\right\}$ has at least $s+4$ connected components. Hence $\tau<1$, contradicting the hypothesis.

Case 2.2.2. $\left|I_{a}\right|+\left|I_{b}\right|=9$.
Since $\left|I_{i}\right| \geq 3(i=1, \ldots, s)$, we can assume w.l.o.g. that either $\left|I_{a}\right|=3,\left|I_{b}\right|=6$ or $\left|I_{a}\right|=4,\left|I_{b}\right|=5$.

Case 2.2.2.1. $\left|I_{a}\right|=3$ and $\left|I_{b}\right|=6$.
By Claim $4(3),\left|I_{i}\right|=3$ for each $i \in\{1, \ldots, s\} \backslash\{b\}$. Put

$$
I_{a}=\xi_{a} w_{1} w_{2} \xi_{a+1}, \quad I_{b}=\xi_{b} w_{3} w_{4} w_{5} w_{6} w_{7} \xi_{b+1}
$$

Since $\left|I_{a}\right|=3$, we can assume w.l.o.g. that $y=w_{2}$. By Claim $1, z \in\left\{w_{4}, w_{5}\right\}$.
Case 2.2.2.1.1. $z=w_{4}$.
By Claim 1, $w_{1} w_{4} \notin E(G)$. Next, if $N\left(w_{1}\right) \cap V\left(I_{b}^{*}\right) \neq \emptyset$, then there are two independent intermediate edges between I_{a} and I_{b} and by Lemma $2,\left|I_{a}\right|+\left|I_{b}\right| \geq 2 \bar{p}+8=10$, contradicting Claim 4(1). By Claim 2, $w_{1} \xi_{a+1} \notin E(G)$. Finally, by Lemma 2 and Claim 4(3), $N\left(w_{1}\right) \cap$ $V\left(I_{i}^{*}\right)=\emptyset$ for each $i \in\{1, \ldots, s\} \backslash\{a, b\}$. So, if $N\left(w_{1}\right) \subseteq V(C)$, then

$$
N\left(w_{1}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, w_{2}\right\} \backslash\left\{\xi_{a+1}\right\}
$$

contradicting the fact that $\left|N\left(w_{1}\right)\right| \geq \delta=s+1$. Now assume that $N\left(w_{1}\right) \nsubseteq V(C)$. Choose a longest path $Q=w_{1} \vec{Q} x_{3}$ having only w_{1} in common with C. Clearly, $V(Q) \cap V(P)=\emptyset$. Since C is extreme, $x_{3} \xi_{a} \notin E(G)$ and $x_{3} x_{2} \notin E(G)$. If $x_{3} \xi_{a+1} \in E(G)$, then

$$
\xi_{a} x_{1} x_{2} \xi_{b} \overleftarrow{C} \xi_{a+1} x_{3} \overleftarrow{Q} w_{1} w_{2} w_{4} \vec{C} \xi_{a}
$$

is longer than C, a contradiction. Let $x_{3} \xi_{a+1} \notin E(G)$. If $|Q|=1$, then

$$
N\left(x_{3}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, w_{1}\right\} \backslash\left\{\xi_{a}, \xi_{a+1}\right\}
$$

contradicting the fact that $\left|N\left(x_{3}\right)\right| \geq \delta=s+1$. If $|Q|=2$, then

$$
N\left(x_{3}\right) \subseteq\left\{\xi_{1}, \ldots, \xi_{s}, x_{3}^{-}, w_{1}\right\} \backslash\left\{\xi_{a}, \xi_{a+1}\right\}
$$

contradicting the fact that $\left|N\left(x_{3}\right)\right| \geq \delta=s+1$.

Case 2.2.2.1.2. $z=w_{5}$.
If $w_{2} w_{4} \in E(G)$, then we can argue as in Case 2.2.2.1.1. Let $w_{2} w_{4} \notin E(G)$. It means that w_{5} belongs to all intermediate edges. This implies $\tau \leq 1$, contradicting the hypothesis.

Case 2.2.2.2. $\left|I_{a}\right|=4$ and $\left|I_{b}\right|=5$.
By Claim $4(2),\left|I_{i}\right|=3$ and $\Upsilon\left(I_{a}, I_{i}\right)=\emptyset$ for each $i \in\{1, \ldots, s\} \backslash\{a, b\}$. If $\Upsilon\left(I_{b}, I_{f}\right) \neq \emptyset$ for some $f \in\{1, \ldots, s\} \backslash\{a, b\}$, then we can argue as in Case 2.2.1.1. Otherwise $\Upsilon\left(I_{1}, \ldots, I_{s}\right)=$ $\Upsilon\left(I_{a}, I_{b}\right)$. If there are two independent edges in $\Upsilon\left(I_{a}, I_{b}\right)$, then by Lemma $2,\left|I_{a}\right|+\left|I_{b}\right| \geq 10$, contradicting Claim 4(1). Otherwise $\tau \leq 1$, a contradiction.

Case 3. $2 \leq \bar{p} \leq \delta-3$.
It follows that $\left|N_{C}\left(x_{i}\right)\right| \geq \delta-\bar{p} \geq 3(i=1,2)$. If $N_{C}\left(x_{1}\right) \neq N_{C}\left(x_{2}\right)$, then by Lemma 1 , $|C| \geq 4 \delta-2 \bar{p} \geq 3 \delta-\bar{p}+3 \geq 2 \delta+4$, contradicting (1). Hence $N_{C}\left(x_{1}\right)=N_{C}\left(x_{2}\right)$, implying that $\left|I_{i}\right| \geq \bar{p}+2(i=1,2, \ldots, s)$. Clearly, $s \geq\left|N_{C}\left(x_{1}\right)\right|-(|V(P)|-1) \geq \delta-\bar{p} \geq 3$. If $s \geq \delta-\bar{p}+1$, then

$$
\begin{gathered}
|C| \geq s(\bar{p}+2) \geq(\delta-\bar{p}+1)(\bar{p}+2) \\
=(\delta-\bar{p}-1)(\bar{p}-1)+3 \delta-\bar{p}+1 \geq 3 \delta-\bar{p}+3 \geq 2 \delta+4,
\end{gathered}
$$

again contradicting (1). Hence $s=\delta-\bar{p}$. It means that $x_{1} x_{2} \in E(G)$, that is $G[V(P)]$ is Hamiltonian. By symmetric arguments, $N_{C}(y)=N_{C}\left(x_{1}\right)$ for each $y \in V(P)$. If $\Upsilon\left(I_{1}, I_{2}, \ldots, I_{s}\right)=\emptyset$, then $\tau \leq 1$, contradicting the hypothesis. Otherwise $\Upsilon\left(I_{a}, I_{b}\right) \neq \emptyset$ for some elementary segments I_{a} and I_{b}. By definition, there is an intermediate path L between I_{a} and I_{b}. If $|L| \geq 2$, then by lemma 2 ,

$$
\left|I_{a}\right|+\left|I_{b}\right| \geq 2 \bar{p}+2|L|+4 \geq 2 \bar{p}+8
$$

Hence

$$
\begin{aligned}
& |C|=\left|I_{a}\right|+\left|I_{b}\right|+\sum_{i \in\{1, \ldots, s\} \backslash\{a, b\}}\left|I_{i}\right| \geq 2 \bar{p}+8+(s-2)(\bar{p}+2) \\
& =(\delta-\bar{p}-2)(\bar{p}-1)+3 \delta-\bar{p}+2 \geq 3 \delta-\bar{p}+3 \geq 2 \delta+4,
\end{aligned}
$$

contradicting (1). Thus, $|L|=1$, i.e. $\Upsilon\left(I_{1}, I_{2}, \ldots, I_{s}\right) \subseteq E(G)$. By Lemma 2,

$$
\left|I_{a}\right|+\left|I_{b}\right| \geq 2 \bar{p}+2|L|+4=2 \bar{p}+6
$$

which yields

$$
\begin{gathered}
|C|=\left|I_{a}\right|+\left|I_{b}\right|+\sum_{i \in\{1, \ldots, s\} \backslash\{a, b\}}\left|I_{i}\right| \geq 2 \bar{p}+6+(s-2)(\bar{p}+2) \\
=(s-2)(\bar{p}-2)+(\delta-\bar{p}-3)+(3 \delta-\bar{p}+1) \geq 3 \delta-\bar{p}+1 \geq 2 \delta+4,
\end{gathered}
$$

contradicting (1).
Case 4. $2 \leq \bar{p}=\delta-2$.
It follows that $\left|N_{C}\left(x_{i}\right)\right| \geq \delta-\bar{p}=2(i=1,2)$. If $N_{C}\left(x_{1}\right) \neq N_{C}\left(x_{2}\right)$, then by Lemma 1 , $|C| \geq 4 \delta-2 \bar{p}=3 \delta-\bar{p}+2=2 \delta+4$, contradicting (1). Hence, $N_{C}\left(x_{1}\right)=N_{C}\left(x_{2}\right)$. Clearly, $s=\left|N_{C}\left(x_{1}\right)\right| \geq 2$. Further, if $s \geq 3$, then

$$
|C| \geq s(\bar{p}+2) \geq 3 \delta \geq 3 \delta-\bar{p}+2=2 \delta+4,
$$

again contradicting (1). Hence, $s=2$. It follows that $x_{1} x_{2} \in E(G)$, that is $G[V(P)]$ is Hamiltonian. By symmetric arguments, $N_{C}(v)=N_{C}\left(x_{1}\right)=\left\{\xi_{1}, \xi_{2}\right\}$ for each $v \in V(P)$. If $\Upsilon\left(I_{1}, I_{2}\right)=\emptyset$, then clearly, $\tau \leq 1$, contradicting the hypothesis. Otherwise, there is an intermediate path $L=y z$ such that $y \in V\left(I_{1}^{*}\right)$ and $z \in V\left(I_{2}^{*}\right)$. If $|L| \geq 2$, then by Lemma 2 ,

$$
|C|=\left|I_{1}\right|+\left|I_{2}\right| \geq 2 \bar{p}+2|L|+4 \geq 2 \bar{p}+8=3 \delta-\bar{p}+2=2 \delta+4,
$$

contradicting (1). Hence $|L|=1$, implying that $\Upsilon\left(I_{1}, I_{2}\right) \subseteq E(G)$. If there are two independent intermediate edges between I_{1}, I_{2}, then by Lemma $2,|C|=\left|I_{1}\right|+\left|I_{2}\right| \geq 2 \bar{p}+8=$ $3 \delta-\bar{p}+2=2 \delta+4$, contradicting (1). Otherwise $\tau \leq 1$, contradicting the hypothesis.

Case 5. $2 \leq \bar{p}=\delta-1$.
It follows that $\left|N_{C}\left(x_{i}\right)\right| \geq \delta-\bar{p}=1(i=1,2)$.
Case 5.1. $\left|N_{C}\left(x_{i}\right)\right| \geq 2(i=1,2)$.
If $N_{C}\left(x_{1}\right) \neq N_{C}\left(x_{2}\right)$, then by Lemma $1,|C| \geq 2 \bar{p}+8=3 \delta-\bar{p}+5>2 \delta+4$, contradicting (1). Hence, $N_{C}\left(x_{1}\right)=N_{C}\left(x_{2}\right)$. Clearly $s \geq 2$. Further, if $s \geq 3$, then

$$
|C| \geq s(\bar{p}+2) \geq 3(\delta+1)>2 \delta+4
$$

contradicting (1). Let $s=2$. Since $\kappa \geq 3$, there is an edge $z w$ such that $z \in V(P)$ and $w \in V(C) \backslash\left\{\xi_{1}, \xi_{2}\right\}$. Assume w.l.o.g. that $w \in V\left(I_{1}^{*}\right)$. Then it is easy to see that $\left|I_{1}\right| \geq \delta+3$. Since $\left|I_{2}\right| \geq \delta+1$, we have $|C| \geq 2 \delta+4$, contradicting (1).

Case 5.2. Either $\left|N_{C}\left(x_{1}\right)\right|=1$ or $\left|N_{C}\left(x_{2}\right)\right|=1$.
Assume w.l.o.g. that $\left|N_{C}\left(x_{1}\right)\right|=1$. Put $N_{C}\left(x_{1}\right)=\left\{y_{1}\right\}$. If $N_{C}\left(x_{1}\right) \neq N_{C}\left(x_{2}\right)$, then $x_{2} y_{2} \in E(G)$ for some $y_{2} \in V(C) \backslash\left\{y_{1}\right\}$ and we can argue as in Case 4.1. Let $N_{C}\left(x_{1}\right)=N_{C}\left(x_{2}\right)=\left\{y_{1}\right\}$. Since $\kappa \geq 1$, there is an edge $z w$ such that $z \in V(P)$ and $w \in V(C) \backslash\left\{y_{1}\right\}$. Clearly, $z \notin\left\{x_{1}, x_{2}\right\}$ and $x_{2} z^{-} \in E(G)$, where z^{-}is the previous vertex of z along \vec{P}. Then replacing P with $x_{1} \vec{P} z^{-} x_{2} \overleftarrow{P} z$, we can argue as in Case 4.1.

Case 6. $\bar{p} \geq \delta$.
If $|C| \geq \kappa(\delta+1)$, then clearly $|C| \geq 2 \delta+4$, contradicting (1). Otherwise, by Lemma 3 , we can assume that $\left|N_{C}\left(x_{i}\right)\right| \geq 2(i=1,2)$. Then $|C| \geq 2(\bar{p}+2) \geq 2 \delta+4$, contradicting (1).

4. Conclusion

The present work studied the lower bound for the length of a longest cycle in a simple graph in terms of toughness and minimum degree. Received lower bound is a natural extension of the results due to Bauer and Schmeichel.

References

[1] J. A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York 1976.
[2] G. A. Dirac, "Some theorems on abstract graphs", Proc. London, Math. Soc., vol. 2, pp. 69-81, 1952.
[3] D. Bauer and E. Schmeichel, Long Cycles in Tough Graphs, Technical Report 8612, Stevens Institute of Technology, 1986.
[4] H.-J. Voss, "Bridges of longest circuits and of longest paths in graphs", Beitrage zur Graphentheorie und deren Anwendungen, Vorgetr. auf dem. int. Kolloq., Oberhof (DDR), pp. 275-286, 1977.

Submitted 23.02.2019, accepted 18.04.2019.

 e-mail: zhora@ipia.sci.am

Uựnఛ̣nıu

 цñunnıpjnia:

Длинные циклы в t-жестких графах при $t>1$

Жора Г. Никогосян
Институт проблем информатики и автоматизации НАН РА
e-mail: zhora@ipia.sci.am

Abstract

Аннотация Доказывается, что любой n-вершинный t-жесткий граф с минимальной степенью δ при $t>1$ имеет цикл длины не меньше $\min \{n, 2 \delta+4\}$.

Ключевые слова: гамильтоновый цикл, окружение, минимальный степень, прочность.

