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Abstract 

 
The problems of intersection and union of spheres of the same radius in Hamming 

metric are considered. The formula for number of points in intersection is derived in case 

of two spheres. It is proved that three or more spheres of radius    (covering radius of a 

code  ) centered at points belonging to some quasi-perfect code  intersect at most at one 

point. It is also proved that the increase of cardinality of union of spheres of the same 

radius, depending on radius, is a  concave function and can have at most one or two 

maximum values depending on length. 

Keywords: Nearest neighbors, best-match, Hamming spheres, concave function, quasi-

perfect code. 

 

 
 

1. Introduction 
 

Let        . Denote by    the set of vertices of the unit cube, that is each vector can be 

represented as            , where     ,        . For each pair of vectors     denote 

by        the Hamming distance between the vectors  and  . For      denote by   
     the 

sphere with centre   and radius  , that is   
        ⁄              . The carrier of the 

vector      we define as            ⁄            .  Denote by      the weight of 

vector  , that is              . Denote by    the set of the first   natural numbers, i.e. 

          . A code   will be called a subset of    [1]. Usually the codes are considered  for 

which some other additional properties take place such as linearity, cyclicity,  etc.  In some cases  

a problem to find the intersection of    spheres of the fixed radius can arise [2-4]. We will 

consider this problem for a simple case, namely when the centers of  the spheres belong to a 

quasi-perfect code with the covering radius  . Recall that a code   is called quasi perfect [1] if 

the following condition holds:        , where                        and    
⌊       ⁄ ⌋. The number    is called  a minimum distance of the code  , i.e.   
                        . We also consider the problem of increase of union of spheres of some 

radius depending on the radius. More precisely let us have a set      and let       
 ⋃   

 
       ⋃     

 
       . It is important to check [2],[5] if the function      is  concave, 

with one or two maximal values depending on   and  .  
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2. Intersection  of Two Spheres  

In the next section we will consider the problem of intersection of        spheresin some 

cases, so it is useful at first to consider the case of two spheres.Suppose we have two spheres 

with centers    and   and   radii   and    respectively. We denote the intersection of the 

mentioned spheres by       
       i.e.        

          
        

    .It is easy to show that  each 

case can be reduced to the case when    , therefore  furthermore we assume that the 

mentioned case takes place. Without losing generality we assume, that      . It is easy to see 

that when         (where         )  the considered intersection is empty, so we suppose 

that        .We denote the cardinality of intersection by      
    . Let us take any vector  

and find out conditions, under which the vector   belongs to the set       
      . Let        

         and                 (Figure1).  
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Fig. 1. 

 

In order for  belongs to the intersection,   and  should satisfy the following system of 

inequalities:                                                       

{
      

         
 

Let us denote   [
       

 
]. Consider the following three cases.  

Case a.       . It is easy to see, that when     then             and when  

  then              (Fig. 2).   

 

 
Fig.  2. 
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Therefore 

     
     ∑ ∑ (

 
 
) (

   
 

)
      
   

 
      

 ∑ ∑ (
 
 
) (

   
 

)
    
   

  
     . 

In case when         we can write (3) in a simpler form: 

     
     (

     
  

). 

Case b.       ,       . This case, in its turn, is divided into two separate cases: 

Subcase b.1.        . By straightforward verification we get that when     then      
       and when     then             (Fig. 3).   

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 

Therefore  

     
     ∑ ∑ (
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 ∑ ∑ (
 
 
) (

   
 

)
    
   

 
     . 

Subcase b.2.       . In this case we get that            when         . 

Therefore 

     
     ∑ ∑ (

 
 
) (

   
 

)
      
   

 
      

. 

Case c.          . This case is also divided into two separate cases.   

Subcase c.1.        . We get that when     then             and when     

then            (Fig. 4).    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 

Fig. 4. 
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Therefore 

     
     ∑ ∑ (

 
 
) (

   
 

)
      
   

 
    ∑ ∑ (

 
 
) (

   
 

)
    
   

 
     . 

Subcase c.2.       . In this case we get that            when         . 

Therefore 

     
     ∑ ∑ (

 
 
) (

   
 

)
      
   

 
   . 

 

 

3. Intersection of Spheres Centered at Codewords of Quasi-perfect Code  

Suppose we have spheres with radii           centered at points            respectively. Now 

we consider the intersection of       spheres with the radius   incase when the centers  of 

spheres are codewords of any quasi-perfect code. As we mentioned, we can assume that     .  

Proposition 1. Let vectors         becodewords of the quasi-perfect code with an even 

minimum distance          , then  ⋂   
         

    if and only if 

I.  (     )        , 

II.⋂        
 
     . 

Otherwise, the considered intersection is empty. 

Proof. Necessity is obvious let us prove thesufficiency. Note that in this case we have   , 

     . From thecondition      itfollows that the intersection of the spheres of radius   

centered at the points        is nonempty only  if (     )    ,    . So we get         

        and             (  )   ,          ,    . Let     
       . From the reasoning 

of the previous section it follows that       ,                 and           (  ) therefore 

there is only   belonging to the intersection.   

Now let us have vectors         which are codewords of any quasi-perfect code with an odd 

minimum distance, i.e       . This means that the covering radius of the code is     . 
Suppose we want to know the intersection of spheres with the radius   centered at         .As 

we mentioned, consider that     . Partition the set          into two nonintersecting subsets   

and    in the following way 

    {
                

                     
. 

From the condition         follows that the considered intersection is not empty only when 
      . Without loosing generality assume that       . Let Now we can formulate the 

following: 

Proposition 2. Let vectors        be codewords of the quasi-perfect code with an odd 

minimum distance            , then ⋂   
         

    if and only if 

I.  (     )      (     )       

II.⋂        
 
     . 

Otherwise the considered intersection is empty. 

Proof. The schema of proof is analogous to proposition 1. 

 

 

4. Variation Function of Area Size of Sphere System is Concave 

 

Consider an arbitrary     .Then it is easy to check that for a fixed   the function       
   

         
      is concave. For   odd there are two maximums of       at        and 
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       . When   is even, then there is one maximal value at the point    .In a generalized 

model a number of packed spheres can be considered. Given a subset      and let       
 ⋃   

 
       ⋃     

 
       . It is important to check if the function       is also concave, 

with one or two maximal values depending on  and  . A harder generalization will be the case 

of different radii but our interest will be restricted to the basic case of one fixed  . There can also 

be considered not the spheres but the spherical structures [6]. 

Consider the case of two vertices,  and  . If one of these vectors is the negation of the other, 

then: if   is odd, there is one maximum at         and         for          ; when 

 is even, then          is increasing in interval       and             when        It 

reminds to compare the following 2 values:                (
 

  ⁄   ) and             

(
 

  ⁄ ). It is easy to check that the only maximum accepts at      , just it needs to take into 

account that   is even. 
Now consider the case of  and  , not opposite in   . Choose an index   and the variable    so that 

     . Partition    in the direction  , then   and   belong to one of the parts of   , let it be the sub-

cube      
   . Denote by    and   the projections of   and  to     

   . The areas of our consideration n, 

  
       

    and   
       

         
         

    , can be partitioned in the direction  . In these 

two     dimensional sub-cubes we receive the same pair of vertices:  and   , and the radius   in      
   , 

and     and     and the radius      in      
   . In theseterms                                      . In 

fact, we have the same function and the same points for     .If suppose that   is concave, having 1 or 2 

maximal values, then this shifted sum will have the same properties. 

Now we consider the general case of arbitrary     . Denote by      
  and      

  the partition 

compounds of   in direction   . Let      
   and      

  be projections of      
  and      

  in direction   . In 

the first step, when     we receive: in      
    a union of ⋃   

 
       

   and      
  , and similarly in 

     
    a union of ⋃   

 
       

    and      
  . In reality, in dimension     we have to consider two sets 

of vertices – those are basic in that cube and these vertices draw   spheres around, and the projection 

vertices that draw     spheres around. The second set may add some new neighbours to the basic set 

produced by the first set. The difficulty to watch these sets concerns the radii difference. To use the 

induction hypotheses we have to transform the constructions so that a situation appears, that is standard in 

dimension    . For this purpose by an evident note it is sufficient to consider not the basic sets of 

vertices but the ones appeared after the first step – ⋃   
 

       
          

   in      
    and 

 ⋃   
 

       
          

  in      
   . In this case the basic   will appear as the sum of 2 functions in 

dimension     by the radius    . 

At this stage we have 2 concave functions in    , which have 1 or 2 maximums by the supposition 

of induction. It is evident that the sum of functions will increase when functions increase separately, and 

that it decreases in part in case of decrease in both of them. Consider the point   of the first decrease in  . 

At least one of the sub-functions has its decrease at  . Let this be the function at      
   . The sensitive part 

that initiates this decrease will be the set      
 . The complementary part can’t be sensitive because its 

radius is higher in      
    and its decrease must happen earlier and this will cause the summary decrease 

in . Then, the projection of      
  that appears with the radius     in      

    will have the same size in 

the next step when the radius is equalto . This will sufficiently initiate the decrease in the sub-function at 

     
   . 
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Հեմմինգի մետրիկայում սֆերաների հատման և միավորման որոշ                                       

հատկությունների մասին 

 
Հ.   Դանոյան 

 
Ամփոփում 

 
Դիտարկվում է Հեմմինգի մետրիկայում սֆերաների հատման և միավորման կետերի 

գտնելու խնդիրը: Բերված է բանաձև` երկու տարբեր շառավիղներով սֆերաների 

հատման համար: Ապացուցված է, որ երեք և ավելի r շառավղով սֆերաները, որոնց 

գագաթները պատկանում  են որևէ քվազիկատարյալ կոդի, կարող են հատվել 

ամենաշատը մեկ կետով (R-ը նշված կոդի ծածկման շառավիղն է): Ապացուցված է 

նաև, որ սֆերաների միավորման` շառավղից կախված ֆունկցիայի աճը ունի մեկ 

կամ երկու մաքսիմում` կախված տարածության չափողականությունից:    

 

 

 

О некоторых свойствах пересечения и объединения сфер в метрике 

Хемминга 

 
А. Даноян 

 

Аннотация 

 
Рассматривается проблема нахождения пересечения и объединения сфер в метрике Хемминга. 

Приведена формула для числа точек пересечения для двух сфер. Доказано, что три и более сферы 

радиуса R,центры которых принадлежат некоторому квазисовершенному коду C, могут 

пересекаться лишь в одном точке (R радиус покрытия кода C). Также доказано, что возрастание 

функции числа точек в объединении некоторых сфер от радиуса может иметь один или два 

максимума в зависимости от меры пространства.   


