
Mathematical Problems of Computer Science 40, 85--95, 2013.

85

Comparative Analysis of Attack Graphs

Levon H. Aslanyan, Daryoush Alipour and Minoosh Heidari

Institute for Informatics and Automation Problems of NAS RA
e-mail: lasl@sci.am

Abstract

It is well-known that nowadays computers and networks that are unique in their
computational and service provision power have also major weaknesses and
vulnerabilities that can be exploited by outsiders in compromising the valuable data
and knowledge. Network administrators and network security analysts must be aware
of different properties of current software solutions and diversity of problems
regarding the possible protection of network assets. This means that they must know
and use the latest and newest types of vulnerabilities, techniques and tools. “Attack
Graphs” present formalized network maps and help with analysis of possible
vulnerabilities that may exist in the network. Hence, in this paper we will describe
some basic concepts that can be used to understand and generate the attack graphs.

Keywords: Network security, Network vulnerability, Attack graph.

1. Introduction

Defending large scale networks is very difficult. The outside interest to information,
conflicting relations and business objectives draw to special type of activities compiled round the
term hacker. Many of the applied systems are created just to provide the necessary work with
information. Protecting the system becomes an additional burden. A defender in such a situation
must be able to locate all paths into the network and prevent attackers from using them at the
moment when an attacker needs to find only one unprotected path. A network defender has the
advantage of intimate knowledge of the network such as: the ways traffic may move through it,
the services running on it, and the vulnerabilities in those services. A defender can use that
knowledge to improve situational awareness.

Attack graphs are one way to leverage those data. There are many different papers on attack
graphs and many representations, but the core idea remains the same: an attack graph shows the
ways an attacker can compromise a network or host. Defenders can then use the attack graph to
identify critical bottlenecks and work to secure those bottleneck hosts and services first.

Attack graphs are a valuable tool to network defenders, illustrating paths an attacker can use
to gain access to a targeted network. Defenders can focus their efforts on patching the
vulnerabilities and configuration errors that allow the attackers to have the greatest amount of
access [1].

Comparative Analysis of Attack Graphs86

The remainder of this paper is organized as follows: Section 2 provides an overview of
vulnerability, Section 3 describes the attack graph, and Section 4 draws analysis and conclusions.

2. Vulnerability

In computer security, vulnerability is a flaw or weakness in a network that can be exploited
by one or more threats to violate the system's security policy. Network vulnerabilities have the
potential of being exploited in a way that may lead to the use of the computer to achieve the
intruder’s desired goal. Hence, exploits give an attacker to take advantage of a flaw, action or
vulnerability in a network.

2.1 Terms and Standards for Information Security Vulnerability Domain
There are some best practices and standards to classify vulnerabilities that have been

discussed in this section.

2.1.1 CVE Names
Common Vulnerabilities and Exposures (CVE®) is a dictionary of common names (i.e.

CVE Identifiers) for publicly known information security vulnerabilities. CVE is an international
information security community effort and it is now the industry standard for vulnerability and
exposure names [2].

2.1.2 OSVDB References
OSVDB is an independent and open sourced web-based vulnerability database created for

the security community. Common Vulnerabilities and Exposures (CVE) simply provides a
standardized name for vulnerabilities, much like a dictionary. OSVDB is a database that provides
a wealth of information about each vulnerability. Where appropriate, entries in the OSVDB refer
to their respective CVE names. In addition, over the past 8 years, OSVDB has imported over
23,000 vulnerabilities that cannot be found in CVE [3].

2.1.3 CVSS Scoring
CVSS stands for The Common Vulnerability Scoring System and is a vendor agnostic,

industry open standard designed to convey vulnerability severity and help determine urgency and
priority of response. It solves the problem of multiple, incompatible scoring systems and is
usable and understandable by anyone. CVSS is a vulnerability scoring system designed to
provide an open and standardized method for rating IT vulnerabilities. CVSS helps organizations
prioritize and coordinate a joint response to security vulnerabilities by communicating the base,
temporal and environmental properties of a vulnerability. FIRST (the Forum of Incident
Response and Security Teams) hosts a special interest group to update and promote CVSS and
provides a central repository for CVSS documentation [4].

2.1.4 NVD
NVD is the U.S. government repository of standards based on vulnerability management

data represented with the use of the Security Content Automation Protocol (SCAP). These data
enable automation of vulnerability management, security measurement, and compliance. NVD
includes databases of security checklists, security related software flaws, misconfigurations,
product names, and impact metrics [5].

2.2 Vulnerability and Exposure
A vulnerability is a state in a computing system (or set of systems) that allows an attacker to

execute commands as another user, to conduct a denial of service, and so on.

L. Aslanyan, D. Alipour, M. Heidari 87

An information security "vulnerability" is a mistake in software that can be directly used by
a hacker to gain access to a system or network. An information security "exposure" is a system
configuration issue or a mistake in software that allows access to information or capabilities that
can be used by a hacker as a stepping-stone into a system or network.

An "exposure" describes a state in a computing system (or set of systems) that is not a
vulnerability, but allows an attacker to conduct information gathering activities, to hide
activities, and so on.

2.3 Vulnerability and Exposure Examples
Examples of vulnerabilities include:

•phf (remote command execution as user "nobody")
•rpc.ttdbserverd (remote command execution as root)
•world-writeable password file (modification of system-critical data)
•default password (remote command execution or other access)
•denial of service problems that allows an attacker to cause a Blue Screen of Death
•smurf (denial of service by flooding a network)

Examples of exposures include:
•running services such as finger (useful for information gathering, though it works as
advertised)
•inappropriate settings for Windows NT auditing policies (where "inappropriate" is
enterprise-specific)
•running services that are common attack points (e.g., HTTP, FTP, or SMTP)
•use of applications or services that can be successfully attacked by brute force methods
(e.g. use of trivially broken encryption, or a small key space).

2.4 Vulnerability Scanners
A vulnerability scanner is a software designed to assess computers and networks for

weaknesses and vulnerabilities.
Vulnerability scanners are divided into two groups: network-based scanners and host-based

scanners.
A network-based scanner is installed on a computer that scans a number of other hosts on

the network, such as: Port Scanners(Nmap, Nessus), Web application security scanner, Network
vulnerability scanner (BoomScan).

A host-based scanner is installed in the host, such as: Database Security Scanner.

3. Attack Graph

Attack graph ([6--8], [11]) is an integral part of modeling the overview of network security.
System administrators use attack graphs to determine how vulnerable their systems are and to
determine what security measures to deploy to defend their systems [9].

Each attack graph shows a set of scenarios of penetrating a computer network. A penetration
scenario actually defines the order of steps that an intruder should take to achieve his goal, and
each step is characterized to show which host must be abused [10].

Major discussions in this area are generating an attack graph, and analyzing it for intrusion
detection and hardening the system-critical.

3.1 A Simple Example
Consider the example network shown in Figure 1. There are two target hosts, Machine 1 and

Machine 2, and a firewall separating them from the rest of the Internet. As shown, each host is

Comparative Analysis of Attack Graphs88

running two of three possible services (ftp, sshd, a database). There are four possible atomic
attacks, identified numerically as follows: (0) sshd buffer overflow, (1) ftp .rhosts, (2) remote
login, and (3) local buffer overflow. The ftp .rhosts attack needs to find the target host with two
vulnerabilities: a writable home directory and an executable command shell are assigned to the
ftp user name. The local buffer overflow exploits a vulnerable version of the xterm executable.

Fig. 1. Example Network.

Service Description Common Exploits

sshd sshd (Secure Shell Daemon) is the
daemon program for ssh. sshd listens for
connections from clients. 'ssh' client and
'sshd' server, provide secure encrypted
communications between two untrusted
hosts over an insecure network.

sshd buffer overflow
(sshd_bof)

It gives a remote user
a root shell on the target machine.

FTP Server File Transfer Protocol is a standard
network protocol used to transfer files
from one host to another one. An FTP
server is a software application on
networks that provides lots of software to
download.

Ftp remote host
(ftp-rhosts)

Using an ftp vulnerability, the
intruder creates an .rhosts
file in the ftp home directory and
takes a remote login trust
between his machine and the target
one.

rsh The remote shell (rsh) is a command line
computer program. 'rsh' like 'ssh' can
execute commands on remote systems.

The remote shell
(rsh)

The intruders log in from one
machine to another, using an
existing remote login trust between
two hosts, and gets a user shell
without password.

Database
Server

A database server is a software that
provides database services on a computer
or a network.

Buffer overflow
(local_bof)

L. Aslanyan, D. Alipour, M. Heidari 89

3.1.1 Different Paths for the Above Example Attack
 sshd_bof(0,1) → ftp_rhosts(1,2) → rsh(1,2) → local_bof(2)
The first assumed attack path starts with sshdbof(0,1). This indicates a buffer over exploit

executed from Machine 0 (the workstation) against Machine 1 (the file
server).sshd_bof(0,1)exploit is that the attacker can execute an arbitrary code on the file server.
The ftp_rhosts(1,2) exploit is now possible, meaning that the attacker exploits a particular ftp
vulnerability to anonymously upload a list of trusted hosts from Machine 1 (the file server) to
Machine 2 (the database server). rsh(1,2)means the attacker can leverage this new trust to
remotely execute shell commands on the database server, without providing a password. A local
buffer over exploit is then possible on the database server, which runs in the context of a
privileged process. The result is that the attacker can execute a code on the database server with
full privileges.

Other possible attack paths can be viewed as either of the following:
 ftp_rhosts(0,1) → rsh(0,1) → ftp_rhosts(1,2) → rsh(1,2) → local_bof(2)

 ftp_rhosts(0,2) → rsh(0,2) → local_bof(2)

3.1.2. Attack Graph from machine 0 to DB Server
In this section, we construct an attack graph of the example network so that each state

transition corresponds to a single atomic attack by the intruder. A state in the model represents
the state of the system between atomic attacks. The intruder launches his attack starting from a
single computer, Machine 1. His eventual goal is to disrupt the functioning of the database. For
which, the intruder needs

Fig. 2. Attack Graph of Above Example.

root access on the database Machine 2.

3.2 Types and Views
In this part, we describe various forms of attack graphs that are listed in some past papers.

Comparative Analysis of Attack Graphs90

3.2.1 Exploit-dependency Attack Graph
In the exploit dependency graph, each exploit or dependency appears only once, and no

edges appear between independent exploits. For example, in the exploit dependency graph, each
of the three exploits ftp_rhosts(0,1), sshd_bof(0,1), and ftp_rhosts(0,2) appears only once, and
since these exploits are independent, there are no edges between them.

Fig. 3. Exploit-Dependency Attack Graph.

3.2.2 State-enumeration Attack Graph
Attack graphs represented transitions of a state machine, where states are network security

attributes and state transitions are attacker exploits, resulting in graphs that enumerate transition
paths through the state space. These state-based graphs have a property that one can simply
follow a path through the graph to generate an attack path (sequence of exploits leading from the
initial state to the goal one). But such graphs have serious scalability problems, as they can grow
exponentially with the number of state variables.

Fig. 4. State-enumeration Attack Graph.

L. Aslanyan, D. Alipour, M. Heidari 91

3.2.3 Condition-oriented Attack Graph
In a condition-oriented attack graph, a node represents a subset of the network state, and an

edge represents an exploit (or group of exploits) that moves the network from one state to
another one.

Graph vertices represent conditions, which are connected by edges that represent
exploits.

Fig. 5. A condition-oriented attack graph.

A state is a network attribute or a set of network attributes. Network attributes include hosts,
host connectivity, and available software at hosts, access rights at hosts, and any other network
characteristic deemed relevant to the modeler.

There are various types of “Condition-oriented Attack Graph” that have small differences
between them: Finite State Machine (FSM) Attack Graph, Coordinated Attack Graph, Full
Attack Graph, Host-compromised Attack Graph, Predictive Attack Graph, Node Predictive
Attack Graph.

3.2.4 Exploit-oriented Attack Graph
An exploit-oriented attack graph is the reverse of a condition-oriented graph with respect to

nodes and edges. State is represented in the edges of the graph and the exploits are represented in
nodes of the graph. Exploit-oriented attack graphs may be referred to as exploit dependency
graphs. A common representation of exploit-oriented attack graphs is to have unlabeled edges.
The exploit-oriented attack graph's initial state(s) and the goal state(s) of the network are special
nodes. Initial states are exploit nodes with null preconditions and true post-conditions Goal states
are exploit nodes with true preconditions and null post-conditions

There are various types of “Exploit-oriented Attack Graph” that have small differences
between them: Condition-exploit-oriented Attack Graph, Multiple Prerequisites Attack Graph,
Logical Attack Graph, Hybrid-oriented Attack Graph.

Comparative Analysis of Attack Graphs92

Fig. 6. A simple example network (a) , and its Multiple Prerequisites attack graph (b).

3.2.5 Attack Graph with Probabilities

Numbers are estimated probabilities of occurrence for individual exploits, based on their
relative difficulty.

Fig. 7. Attack Graph with Probabilities.

Probabilities Propagated Through Attack Graph
When one exploit should follow another in a path, this means both are needed to eventually

reach the goal, so their probabilities are multiplied: p(A and B) = p(A)p(B). When a choice of
paths is possible, either is sufficient for reaching the goal: p(A or B) = p(A) + p(B) – p(A)p(B).

L. Aslanyan, D. Alipour, M. Heidari 93

Fig. 8. Probabilities Propagated Through Attack Graph.

3.2.6 Attack Graph Aggregation
Machines and the exploits among them can be aggregated to a machine-exploit set if they

form a connected sub graph, which allows machines to be aggregated across protection
domains.

Complexity for "State-transition graph" is exponential and for "Exploit-dependency graph"
is quadratic, but still too complex for easy understanding. 100 exploits could have up to 10000
edges.

Using hierarchical graph aggregation with abstraction is a solution for managing
complexity.

4. Conclusions and Future Works

In this paper, we have proposed an overview and approach to definitions and survey of
attack graphs. The main purpose of this approach is to emphasize the importance of attack graph
as a high-performance network security solution.

Many related research should be done in the future: comparison of generating algorithms,
review types of tool kits, and the methods to analyze attack graph will be further studied.

Comparative Analysis of Attack Graphs94

Fig. 9. Attack Graph Aggregation.

References

[1] K. Ingols, R. Lippmann and K. Piwowarski, Practical Attack Graph Generation for
Network Defense, MIT Lincoln Laboratory, 2006.

[2] Common Vulnerabilities and Exposures (CVE®), The standard for Information security
Vulnerability Names, [Online]. Available: http://cve.mitre.org

[3] Open Sourced Vulnerability Database, [Online]. Available: http://osvdb.org/
[4] Common Vulnerability Scoring System (CVSS-SIG), [Online]. Available:

http://www.first.org/cvss
[5] National Vulnerability Database Version 2.2, NIST, USA, [Online]. Available:

http://nvd.nist.gov/
[6] S. Jha, O. Sheyner and J.M. Wing, Minimization and Reliability Analyses of Attack

Graphs. School of Computer Science Carnegie Mellon University, 2002.
[7] S. Noel, L. Wang, A. Singhal and S. Jajodia, “Measuring security risk of networks

using attack graphs”, International Journal of Next-Generation Computing, vol. 1, no. 1,
pp. 135-147, July 2010.

[8] S. Noel and S. Jajodia, “Managing attack graph complexity through visual hierarchical
aggregation”, CCS Workshop on Visualization and Data Mining for Computer
Security’04, October 29, Fairfax, Virginia, USA, 10p., 2004.

[9] F. Chen, et al., “An atomic-domains-based approach for attack graph generation”, World
Academy of Science, Engineering and Technology, vol. 56, pp. 775-781, 2009.

[10] M. Jamali and V. Ashraf, “Attack graph analysis using parallel algorithm”, 5th
symposium on Advances in Science & Technology, 7p., 2011.

[11] N. C. Idika, Characterizing and Aggregating Attack Graph-based Security Metrics,
Purdue University, West Lafayette, Indiana, 2010.

L. Aslanyan, D. Alipour, M. Heidari 95

Submitted 30.08.2013, accepted 11.10.2013.

Հարձակման գրաֆների համեմատական վերլուծություն

Լ. Ասլանյան, Դ. Ալիփոուռ և Մ. Հեյդարի

Ամփոփում

Հայտնի է, որ ժամանակակից համակարգիչներն ու ցանցերը, որոնք առանձնակի հզոր են
իրենց հաշվողական և ծառայությունների մատուցման հնարավորություններով, ունեն նաև
խնդիրներ` կապված դրանց խոցելիության և դրա հետ կապված տվյալների արտաքին
բացահայտման հնարարավոր լինելու պարագայի հետ:

Ցանցային կառավարիչները և ցանցերի վերլուծման մասնագետները պետք է տեղյակ
լինեն ընթացիկ համակարգերի խնդիրների հետ կապված համակարգերի և ցանցերի
պաշտպանման մասին: “Հարձակման գրաֆները” ներկայացնում են ցանցերի հնարավոր
հարձակումների ֆորմալացված պատկերը: Ներկա աշխատանքում դիտարկվում և
վերլուծվում են անհրաժեշտ գաղափարները, որոնք առաջանում են հարձակումների
գրաֆների ձևավորման և կիրառման ընթացքում:

Сравнительный анализ графов атак

Л. Асланян, Д. Алипоур и М. Гейдари

Аннотация

Современные компъютеры являются мощными вычислительными системами, а также
системами предоставления вспомогательных информационных услуг. Вместе с тем, эти
системы уязвимы с точки зрения внешних атак, что может являться причиной потери
различных ценных информационных ресурсов. Системные администраторы обязаны знать
всю информацию об уязвимости прикладных систем связанных с защитой сетей.
Графы атак это удачный формализм, который предоставляет всю картину возможных атак
для данной сети. Настоящая работа посвящена анализу и изучению средств
проектирования и внедрения технологии графов атак.

