On Strongly Positive Multidimensional Arithmetical Sets ${ }^{1}$

Seda N. Manukian
Institute for Informatics and Automation Problems of NAS RA
e-mail: zaslav@ipia.sci.am

Abstract

The notion of positive arithmetical formula in the signature $(0,=, S)$, where $S(x)=x+1$, is defined and investigated in [1] and [2]. A multidimensional arithmetical set is said to be positive if it is determined by a positive formula. Some subclass of the class of positive sets, namely, the class of strongly positive sets, is considered. It is proved that for any $n \geq 3$ there exists a $2 n$-dimensional strongly positive set such that its transitive closure is non-recursive. On the other side, it is noted that the transitive closure of any 2 -dimensional strongly positive set is primitive recursive.

Keywords: Arithmetical formula, Transitive closure, Recursive set, Signature.

1. Introduction

The classes of recursive sets having in general non-recursive transitive closures have been investigated in the theory of algorithms since the first steps of this theory ([3]-[8]). The works [9]-[13] are dedicated mainly to algebraic problems, however, some examples of recursive sets having non-recursive transitive closures are actually given also in these works. In [14] it is noted that there exists a two-dimensional arithmetical set belonging to the class Σ_{4} and having a nonrecursive transitive closure (the classes Σ_{n} for $n \geq 0$ are defined in [14] as some classes of arithmetical sets determined by formulas in M. Presburger's system ([4], [15], [16])). Below the class of strongly positive arithmetical sets is considered (the definition will be given in Section 2) such that the sets belonging to this class have a more simple structure than the sets noted above, and have the following properties: (1) for any $n \geq 3$ there exists a $2 n$-dimensional strongly positive set such that its transitive closure is non-recursive; (2) any 2 -dimensional strongly positive set has a primitive recursive transitive closure (see below, Theorem 1 and Theorem 2).

[^0]
2. Main Definitions and Results

By N we denote the set of all non-negative integers, $N=\{0,1,2, \ldots\}$. By N^{n} we denote the set of n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $n \geq 1, x_{i} \in N$ for $1 \leq i \leq n$.

An \underline{n}-dimensional arithmetical set, where $n \geq 1$, is defined as any subset of N^{n}.
An \bar{n}-dimensional arithmetical predicate \underline{P} is defined as a predicate which is true on some set $A \subseteq \bar{N}{ }^{n}$ and false out of it; in this case we say that A is the set of truth for P, and P is the representing predicate for A.

The notions of primitive recursive function, general recursive function, partially recursive function, primitive recursive set, recursive set are defined in a usual way ([3]-[8]). The corresponding terms will be shortly denoted below by PmRF, GRF, PtRF, PmRS, RS.

We will consider arithmetical formulas in the signature $(0,=, S)$, where $S(x)=x+1$, for $x \in N$ (see [1]-[8]). Any term included in a formula of the mentioned kind has the form $S(S(\ldots S(x) \ldots)$) or $S(S(\ldots S(0) \ldots)$), where x is a variable. Such terms we will denote correspondingly by $S^{k}(x)$ and $S^{k}(0)$, where k is the quantity of symbols S contained in the considered term. We replace $S^{0}(x)$ and $S^{0}(0)$ with x and 0 . Any elementary subformula of a formula of this kind has the form $t_{1}=t_{2}$, where t_{1} and t_{2} are terms. Any arithmetical formula of this kind is obtained by the logical operations \&, ৩,つ,ᄀ, \forall, \exists from elementary formulas. We say that a formula is semi-elementary if it has the form $t_{1}=t_{2}$ or $\neg\left(t_{1}=t_{2}\right)$, where t_{1} and t_{2} are terms.

The deductive system of formal arithmetic in the signature $(0,=, S)$ is defined as in [4], [6]; we will denote this system by $\operatorname{Ded}_{\mathrm{S}}$ (cf. [1], [2]). As it is proved in [4], this system is complete. We say that formulas F and G in the signature $(0,=, S)$ are Deds-equivalent (or simply equivalent) if the formula $(F \supset G) \&(G \supset F)$ is deducible in Deds. Below we consider formulas of the mentioned kind up to their Ded $_{s}$-equivalence.

An arithmetical formula of the mentioned kind is said to be positive if it contains no other symbols of logical operations except $\exists, \&, \vee, \neg$, and all the symbols \neg of negation relate to elementary subformulas containing no more than one variable (see [1], [2]). An arithmetical formula of this kind is said to be strongly positive if it can be obtained by the logical operations \& and \vee from semi-elementary formulas of the following forms: $x=a$, where x is a variable, a is a constant, $a \in N ; x=y$, where x and y are variables; $x=S(y)$, where x and y are variables; $\neg(x=0)$, where x is a variable. An arithmetical predicate is said to be positive (correspondingly, strongly positive), if it can be expressed by a positive (correspondingly, strongly positive) formula. An arithmetical set is said to be positive (correspondingly, strongly positive) if its representing predicate is positive (correspondingly, strongly positive).

The notion of one-dimensional creative set is given in a usual way ([3], [5], [7], [8]). We will slightly generalize this notion. We use a $\operatorname{PmRF} c_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $n \geq 2$, establishing a one-to-one correspondence between N^{n} and N (for example, $c_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c_{2}\left(c_{2}\left(\ldots c_{2}\left(c_{2}\left(x_{1}, x_{2}\right), x_{3}\right) \ldots, x_{n-1}\right), x_{n}\right)$, where $\left.c_{2}(x, y)=2^{x} \cdot(2 y+1)-1\right)$. We say that a set $B \subseteq N^{n}$ is an \underline{n}-dimensional image of a set $A \subseteq N$ when $c_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in A$ if and only if $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in B$. The set $B \in N^{n}$ is said to be creative in the generalized sense if it is an n-dimensional image of some one-dimensional creative set. Clearly, the properties of creative sets in the generalized sense are similar to the properties of one-dimensional creative sets (for example, all sets creative in the generalized sense are non-recursive).

Transitive closure A^{*} of an arithmetical set A having an even dimension $2 k$ is defined in a usual way by the following generating rules (cf. [1], [2], [13]): (1) if $\left(x_{1}, x_{2}, \ldots, x_{2 k}\right) \in A$, then $\left(x_{1}, x_{2}, \ldots, x_{2 k}\right) \in A^{*}$, (2) if $\left(x_{1}, x_{2}, \ldots, x_{k}, y_{1}, y_{2}, \ldots y_{k}\right) \in A^{*}$, and $\left(y_{1}, y_{2}, \ldots, y_{k}, z_{1}, z_{2}, \ldots z_{k}\right) \in A^{*}$, then $\left(x_{1}, x_{2}, \ldots, x_{k}, z_{1}, z_{2}, \ldots z_{k}\right) \in A^{*}$.

Theorem 1: For any $n \geq 3$ there exists a $2 n$-dimensional strongly positive set such that its transitive closure is creative in the generalized sense.

Theorem 2: Transitive closure of any 2-dimensional strongly positive set is primitive recursive.
The proof of Theorem 1 will be given below. The proof of Theorem 2 will be published later.

3. Auxiliary Notions and Statements

We will use some class of operator algorithms ([8], [17]) having a special structure. The algorithms belonging to this class we will call Ω-algorithms. Any Ω-algorithm consists of finite number of elementary $\underline{\Omega}$-algorithms, which will be called below " $\underline{\Omega}$-operators". The set of all Ω-operators included in the considered Ω-algorithm we call "scheme" of this Ω-algorithm. We suppose that some non-negative integer is attached to any Ω-operator in the scheme of a given Ω-algorithm in such a way, that different integers are attached to different Ω-operators. The integer attached to some Ω-operator we call "an identifier" of this Ω-operator. In this case we say that this Ω-operator has the mentioned identifier. Any Ω-operator implements one step of the process of computation realized by the considered Ω-algorithm. The objects transformed in the process of computation are non-negative integers. The state of the mentioned computation process is defined as a pair (α, w), where α is the identifier attached to the Ω-operator which is working on the considered step of the process, and w is the number obtained by the previous steps of the process. Ω-operators are algorithms having one of the following forms (where α is the identifier attached to the considered Ω-operator, β and γ are identifiers attached to Ω operators which should work after the working of this Ω-operator):
(1) (α,end). This Ω-operator is called below "a final operator"; it finishes the process of computation.
(2) $(\alpha, \times 2, \beta)$. This Ω-operator transforms the state (α, w) to the state $(\beta, 2 w)$.
(3) $(\alpha, \times 3, \beta)$. This Ω-operator transforms the state (α, w) to the state $(\beta, 3 w)$.
(4) $(\alpha,: 6, \beta, \gamma)$. This Ω-operator transforms the state (α, w) to the state $\left(\beta, \frac{w}{6}\right)$ if the number w is divisible by 6 ; in the opposite case it transforms the state (α, w) to the state (γ, w).

Note that such forms of operators are considered actually in [17] (see also [8], p. 292, p. 312).
We suppose that any scheme of Ω-algorithm contains only a single final Ω-operator which has the identifier $\alpha=0$. Among the operators contained in the scheme of the considered Ω algorithm we distinguish the initial Ω-operator having the identifier $\alpha=1$; the working of this operator begins the process of computation. The whole process of working of the given Ω algorithm is described by the sequence of states $\left(\alpha_{1}, w_{1}\right),\left(\alpha_{2}, w_{2}\right), \ldots,\left(\alpha_{k}, w_{k}\right), \ldots,($ where
$\alpha_{1}=1$) obtained during the working of this Ω-algorithm. The process is described by a finite sequence $\left(1, w_{1}\right),\left(\alpha_{2}, w_{2}\right), \ldots,\left(0, w_{m}\right)$ if it is finished by the working of the final Ω-operator.

In this case we say that the considered Ω-algorithm transforms the state $\left(1, w_{1}\right)$ to the state $\left(0, w_{m}\right)$, and is applicable to the state $\left(1, w_{1}\right)$. If the final Ω-operator does not work during the process of computation, then the mentioned sequence $\left(1, w_{1}\right),\left(\alpha_{2}, w_{2}\right), \ldots$ is infinite. In this case we say that the considered Ω-algorithm is not applicable to the state $\left(1, w_{1}\right)$.

The following theorem is proved in [17] (see also [8], pp. 312-315) in some other terms.
Theorem 3 ([17]): For any PtRF $f(x)$ there exists an Ω-algorithm which transforms the state $\left(1,2^{x^{x}}\right)$ to the state $\left(0,2^{2^{f(x)}}\right)$ when the value $f(x)$ is defined, and is not applicable to the state $\left(1,2^{2^{x}}\right)$ in the opposite case.

If some Ω-algorithm has the property described in Theorem 3, then we say that this Ω algorithm realizes the $\operatorname{PtRF} f(x)$. For example, the following Ω-algorithm:

$$
(0, \text { end }),(1, \times 3,2),(2,: 6,1,3),(3, \times 2,0)
$$

realizes the GRF $f(x)=0$.
We will use also another classes of algorithms, namely, Γ_{n}-algorithms for $n \geq 1$.
These algorithms are actually special cases of graph-schemes with memory ([18]), though they will be described below in some other terms than the descriptions in [18].

Any Γ_{n}-algorithm consists of finite number of Γ_{n}-operators. The set of all Γ_{n}-operators included in the considered Γ_{n}-algorithm we call "scheme" of this Γ_{n}-algorithm. The index n in the notation Γ_{n} denotes that the objects transformed by the considered Γ_{n}-algorithm are n tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $x_{i} \in N$ for $1 \leq i \leq n$. The notion of identifier attached to the considered Γ_{n}-operator is defined similarly to the notion of "identifier attached to the considered Ω-operator" which is given above; we suppose that different Γ_{n}-operators have different identifiers attached to them. If some identifier is attached to a Γ_{n}-operator, we will say that this Γ_{n}-operator has the mentioned identifier.

The state of the computation process realized by a Γ_{n}-algorithm is defined as an $(n+1)$ tuple ($\alpha, x_{2}, x_{3}, \ldots, x_{n+1}$), where α is the identifier attached to the Γ_{n}-operator which is working on the considered step of the process, and $\left(x_{2}, x_{3}, \ldots, x_{n+1}\right)$ is the n-tuple of numbers obtained by the previous steps of the process. Γ_{n}-operators are algorithms having one of the following forms (where the notations α, β, γ have the same sense as α, β, γ in the description of Ω operators given above):
(1) $(\alpha$, end $)$. This Γ_{n}-operator we call "a final operator"; it finishes the process of computation.
(2) $\left(\alpha, x_{i}+1, \beta\right)$, where $2 \leq i \leq n+1$. This Γ_{n}-operator transforms the state $\left(\alpha, x_{2}, x_{3}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n+1}\right)$ to the state $\left(\beta, x_{2}, x_{3}, \ldots, x_{i-1}, x_{i}+1, x_{i+1}, \ldots, x_{n+1}\right)$.
(3) $\left(\alpha, x_{i}-1, \beta\right)$, where $2 \leq i \leq n+1$; we denote by the symbol - the PmRF such that $x-$ $y=x-y$ when $x \geq y$, and $x-y=0$ when $x<y$ (cf. [3]-[8]). This Γ_{n}-operator transforms the state $\left(\alpha, x_{2}, x_{3}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n+1}\right)$ to the state $\left(\beta, x_{2}, x_{3}, \ldots, x_{i-1}, x_{i}-\right.$ $\left.1, x_{i+1}, \ldots, x_{n+1}\right)$.
(4) $\left(\alpha, x_{i}=0, \beta, \gamma\right)$, where $2 \leq i \leq n+1$. This Γ_{n}-operator transforms the state $\left(\alpha, x_{2}, x_{3}, \ldots, x_{n+1}\right)$ to the state $\left(\beta, x_{2}, x_{3}, \ldots, x_{n+1}\right)$ when $x_{i}=0$, and to the state $\left(\gamma, x_{2}, x_{3}, \ldots, x_{n+1}\right)$ when $x_{i} \neq 0$.

We suppose that any scheme of Γ_{n}-algorithm contains only a single final Γ_{n}-operator which has the identifier $\alpha=0$. Among the Γ_{n}-operators contained in the scheme of the considered Γ_{n} algorithm we distinguish the $\underline{\text { initial }} \Gamma_{n}$-operator having the identifier $\alpha=1$; the working of this operator begins the process of computation. This process is described by a sequence of states $\left(\alpha_{1}, Q_{1}\right),\left(\alpha_{2}, Q_{2}\right), \ldots,\left(\alpha_{k}, Q_{k}\right), \ldots$ where $\alpha_{1}=1$, and any Q_{i} is an n-tuple $\left(x_{2}^{(i)}, x_{3}^{(i)}, \ldots, x_{n+1}^{(i)}\right)$. Such a sequence is finite if the final Γ_{n}-operator works during the mentioned process, and is infinite in the opposite case. If the sequence of states is finite, then we say that the considered Γ_{n} -algorithm is applicable to the state $\left(1, Q_{1}\right)$; in this case we say also that Γ_{n}-algorithm transforms the state $\left(1, Q_{1}\right)$ to the state $\left(0, Q_{m}\right)$, where $\left(0, Q_{m}\right)$ is the last state in the considered sequence. If the sequence of states $\left(1, Q_{1}\right),\left(2, Q_{2}\right), \ldots$ is infinite, then we say that the considered Γ_{n} algorithm is not applicable to the state $\left(1, Q_{1}\right)$.

We say that a Γ_{n}-algorithm (where $n \geq 2$) realizes a $\operatorname{PtRF} f(x)$, if for any $x \in N$ it transforms the state $\left(1,2^{x}, 0,0, \ldots, 0\right)$ to the state $\left(0,2^{f(x)}, 0,0, \ldots, 0\right)$ when the value $f(x)$ is defined, and is not applicable to the state $\left(1,2^{x}, 0,0, \ldots, 0\right)$ when the value $f(x)$ is not defined. For example, the following Γ_{n}-algorithm realizes the $\operatorname{PtRF} f(x)$ which is nowhere defined: $(0$, end $),\left(1, x_{2} \div 1,1\right)$.

Lemma 3.1: If the initial state in the process of computation realized by some Ω-algorithm has the form $\left(1,2^{u}, 3^{v}\right)$, where $u \in N, v \in N$, then any state $\left(\alpha_{m}, w_{m}\right)$ included in this process satisfies the condition $w_{m}=2^{t} \cdot 3^{s}$, where $t, s \in N$.

The proof is easily obtained from the definitions.
Lemma 3.2: For any Ω-algorithm φ realizing some PtRF $f(x)$ there exists a Γ_{2}-algorithm ψ realizing the same PtRF $f(x)$.

Proof: We will consider the process of computation realized by the Ω-algorithm φ. Any initial state in such a process has the form $\left(1,2^{2^{x}}\right)$ that is $\left(1,2^{2^{x}} \cdot 3^{0}\right)$. As it is proved in Lemma 3.1 any state included in such a process has the form $\left(\alpha_{m}, 2^{t} \cdot 3^{s}\right)$ where $t, s \in N$. For any Ω-operator included in the scheme of Ω-algorithm φ we will construct some subscheme of the supposed Γ_{2}-algorithm ψ which has the following property: if the considered Ω-operator transforms the state $\left(\alpha, 2^{u} \cdot 3^{v}\right)$ to the state $\left(\beta, 2^{t} \cdot 3^{s}\right)$ then the corresponding subscheme of the supposed Γ_{2} -
algorithm ψ transforms the state (α, u, v) of Γ_{2}-algorithm ψ to the state (β, t, s). We will consider the following cases.

Case 1. The considered Ω-operator has the form $(\alpha, \times 2, \beta)$. In this case the required subscheme of the supposed Γ_{2}-algorithm ψ consists of the single Γ_{2}-operator $\left(\alpha, x_{2}+1, \beta\right)$.

Case 2. The considered Ω-operator has the form $(\alpha, \times 3, \beta)$. In this case the required subscheme of the supposed Γ_{2}-algorithm ψ consists of the single Γ_{2}-operator $\left(\alpha, x_{3}+1, \beta\right)$.

Case 3. The considered Ω-operator has the form ($\alpha,: 6, \beta, \gamma$). In this case the required subscheme of the supposed Γ_{2}-algorithm ψ consists of the following Γ_{2}-operators: $\left(\alpha, x_{2}=0, \gamma, \delta_{1}\right), \quad\left(\delta_{1}, x_{3}=0, \gamma, \delta_{2}\right), \quad\left(\delta_{2}, x_{2}-1, \delta_{3}\right), \quad\left(\delta_{3}, x_{3}-1, \beta\right) . \quad$ Here $\delta_{1}, \delta_{2}, \delta_{3}$ are identifiers attached to additional Γ_{2}-operators which are included in the scheme of the supposed Γ_{2}-algorithm for modeling the working of the considered Ω-operator. Of course, these identifiers should be different in different subschemes of this kind.

Case 4. The considered Ω-operator has the form $(0$, end $)$. This Ω-operator does not transform the states of Ω-algorithm. So, the corresponding Γ_{2}-operator has the same form (0, end).

The scheme of the supposed Γ_{2}-algorithm is obtained as the union of subschemes of the mentioned forms constructed for all Ω-operators included in the scheme of the given Ω algorithm. It is easily seen that such Γ_{2}-algorithm satisfies the conditions of Lemma 3.2. This completes the proof.

Corollary 1: For any PtRF $f(x)$ and any $n \geq 2$ there exists a Γ_{n}-algorithm realizing the PtRF $f(x)$.

The proof is based on Theorem 3 and is similar to that of Lemma 3.2.
Note: The statements established in Lemma 3.2 and in its Corollary 1 are similar to Theorem 7.1 in [18], where it is proved that any PtRF may be realized by some graph-scheme with memory constructed on the base of the functions $x+1, x-1$ and of the predicate $x=0$. However, graph-schemes with memory corresponding to Γ_{n}-algorithms are essentially simpler than the graph-schemes considered in Theorem 7.1 in [18]. Besides, the definition of realizability of PtRf by Γ_{n}-algorithm differs from the corresponding definition in [18].

Now let us define for any Γ_{n}-algorithm, where $n \geq 1$, the predicate describing one step of computation process realized by this Γ_{n}-algorithm. Such a predicate we will call "a step describing predicate", or, shortly, "SD-predicate" for a given Γ_{n}-algorithm. Namely, if η is the SD-predicate for a given Γ_{n}-algorithm, then $\eta\left(x_{1}, x_{2}, \ldots, x_{2 n+2}\right)$ is true if and only if the given Γ_{n} algorithm transforms the state $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ to the state $\left(x_{n+2}, x_{n+3}, \ldots, x_{2 n+2}\right)$ by one step of the corresponding computation process. Let us note the following property of the predicate η : if $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ is a state of the computational process realized by the considered Γ_{n}-algorithm,
such that $x_{1} \neq 0$, then there exists a single $(n+1)$-tuple $\left(x_{n+2}, x_{n+3}, \ldots, x_{2 n+2}\right)$ such that $\eta\left(x_{1}, x_{2}, \ldots, x_{2 n+2}\right)$ is true.

The set of truth for the mentioned predicate η we will call "SD-set" for the considered Γ_{n} algorithm. Clearly, such a set π has the following property: $\left(x_{1}, x_{2}, \ldots, x_{2 n+2}\right) \in \pi$ if and only if $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ is a state of computation process realized by the considered Γ_{n}-algorithm, and this Γ_{n}-algorithm transforms the state $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ to the state $\left(x_{n+2}, x_{n+3}, \ldots, x_{2 n+2}\right)$ by one step of the computation process.

Now let us define the forms of SD-predicates and SD-sets for Γ_{n}-algorithms. We suppose that some Γ_{n}-algorithm ψ, where $n \geq 1$ is fixed. We will define the forms of SD-predicates for any Γ_{n}-operator included in the scheme of ψ.

Case 1. The considered Γ_{n}-operator has the form $\left(\alpha, x_{i}+1, \beta\right)$. Such Γ_{n}-operator transforms the state $\left(\alpha, x_{2}, x_{3}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n+1}\right)$ to the state $\left(\beta, x_{n+3}, x_{n+4}, \ldots, x_{n+i}, x_{n+i+1}, x_{n+i+2}, \ldots, x_{2 n+2}\right)$, where $x_{n+3}=x_{2}, x_{n+4}=x_{3}, \ldots, x_{n+i}=x_{i-1}, x_{n+i+1}=x_{i}+1, x_{n+i+2}=x_{i+1}, \ldots, x_{2 n+2}=x_{n+1}$.

The SD-predicate for such a Γ_{n}-operator is expressed by the following formula: $\left(x_{1}=\alpha\right) \&\left(x_{n+2}=\beta\right) \&\left(x_{n+3}=x_{2}\right) \&\left(x_{n+4}=x_{3}\right) \& \ldots \&\left(x_{n+i}=x_{i-1}\right) \&\left(x_{n+i+1}=S\left(x_{i}\right)\right) \&$ \& $\left(x_{n+i+2}=x_{i+1}\right) \& \ldots \&\left(x_{2 n+2}=x_{n+1}\right)$.
Case 2. The considered Γ_{n}-operator has the form $\left(\alpha, x_{i}-1, \beta\right)$. Such Γ_{n}-operator transforms the state $\left(\alpha, x_{2}, x_{3}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n+1}\right)$ to the state $\left(\beta, x_{n+3}, x_{n+4}, \ldots, x_{n+i}, x_{n+i+1}, x_{n+i+2}, \ldots, x_{2 n+2}\right)$, where $x_{n+3}=x_{2}, x_{n+4}=x_{3}, \ldots, x_{n+i}=x_{i-1}, x_{n+i+1}=x_{i}-1, x_{n+i+2}=x_{i+1}, \ldots, x_{2 n+2}=x_{n+1}$.

The SD-predicate for such a Γ_{n}-operator is expressed by the following formula: $\left(x_{1}=\alpha\right) \&\left(x_{n+2}=\beta\right) \&\left(x_{n+3}=x_{2}\right) \&\left(x_{n+4}=x_{3}\right) \& \ldots \&\left(x_{n+i}=x_{i-1}\right) \&\left(x_{n+i+2}=x_{i+1}\right) \& \ldots$ \& $\left(x_{2 n+2}=x_{n+1}\right) \&\left(\left(\left(x_{n+i+1}=0\right) \&\left(x_{i}=0\right)\right) \vee\left(\neg\left(x_{i}=0\right) \&\left(x_{i}=S\left(x_{n+i+1}\right)\right)\right)\right)$.

Case 3. The considered Γ_{n}-operator has the form ($\alpha, x_{i}=0, \beta, \gamma$). Such Γ_{n}-operator transforms the state $\left(\alpha, x_{2}, x_{3}, \ldots, x_{n+1}\right)$ to the states $\left(\beta, x_{n+3}, x_{n+4}, \ldots, x_{2 n+2}\right)$ or $\left(\gamma, x_{n+3}, x_{n+4}, \ldots, x_{2 n+2}\right)$ (where $\left.x_{n+3}=x_{2}, x_{n+4}=x_{3}, \ldots, x_{2 n+2}=x_{n+1}\right)$ in the cases, when, correspondingly, $x_{i}=0$ or $x_{i} \neq 0$. The SD-predicate for such a Γ_{n}-operator is expressed by the following formula: $\left(x_{1}=\alpha\right) \&\left(x_{n+3}=x_{2}\right) \&\left(x_{n+4}=x_{3}\right) \& \ldots \&\left(x_{2 n+2}=x_{n+1}\right) \&\left(\left(\left(x_{n+2}=\beta\right) \&\left(x_{i}=0\right)\right) \vee\right.$ $\left.\left(\left(x_{n+2}=\gamma\right) \& \neg\left(x_{i}=0\right)\right)\right)$.

Case 4. The considered Γ_{n}-operator has the form (0 ,end). Such Γ_{n}-operator does not transform the states of Γ_{n}-algorithm, so, an SD-predicate is not considered for such Γ_{n}-operator.

The SD-predicate for Γ_{n}-algorithm ψ is expressed by the formula obtained as the disjunction of formulas expressing SD-predicates constructed above for all Γ_{n}-operators contained in the scheme of ψ and different from the operator (0 , end). The SD-set for Γ_{n} algorithm ψ is obtained as the set of truth for the corresponding SD-predicate. Clearly, such SDset is a $(2 n+2)$-dimensional arithmetical set.

Lemma 3.3: $S D$-predicate and $S D$-set constructed for any Γ_{n}-algorithm, where $n \geq 1$, are strongly positive.

The proof is obtained evidently from the definitions.
Lemma 3.4: (cf. [13], p.72). If A is a $2 k$-dimensional set, $A \subseteq N^{2 k}$, then $2 k$-tuple $\left(x_{1}, x_{2}, \ldots, x_{k}, y_{1}, y_{2}, \ldots, y_{k}\right)$ belongs to the transitive closure A^{*} of the set A if and only if there exists a sequence $\left(Q_{1}, Q_{2}, \ldots, Q_{m}\right)$ of k-tuples, such that $m \geq 2, Q_{1}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, $Q_{m}=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ and any $2 k$-tuple $\left(Q_{i}, Q_{i+1}\right)$ for $1 \leq i \leq m-1$ belongs to A.

The proof is easily obtained using the definition of the transitive closure A^{*}.

4. Proof of Theorem 1

Let M be any one-dimensional creative set ([3], [5], [7], [8]). We consider the $\operatorname{PtRF} f(x)$ such that $f(x)=0$ when $x \in M$, and the value $f(x)$ is indefined when $x \notin M$. For any fixed $n \geq 2$ we construct (using Corollary of Lemma 3.2) a Γ_{n}-algorithm ψ realizing the $\operatorname{PtRF} f(x)$; clearly, ψ transforms the state $\left(1,2^{x}, 0,0, \ldots, 0\right)$ to the state $(0,1,0,0, \ldots, 0)$ when $x \in M$ and is not applicable to the state $\left(1,2^{x}, 0,0, \ldots, 0\right)$ when $x \notin M$. Now, let us consider the SD-predicate η and SD-set π for ψ. Clearly, η is true for (2n+2)-tuple ($x_{1}, x_{2}, \ldots, x_{n+1}, y_{1}, y_{2}, \ldots, y_{n+1}$) (and the statement $\left(x_{1}, x_{2}, \ldots, x_{n+1}, y_{1}, y_{2}, \ldots, y_{n+1}\right) \in \pi$ holds) if and only if ψ transforms the state $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ to the state $\left(y_{1}, y_{2}, \ldots, y_{n+1}\right)$ by one step of the process of computation. Let us consider the transitive closure π^{*} of the SD-set π.

Using Lemma 3.4 we conclude that $\left(x_{1}, x_{2}, \ldots, x_{n+1}, y_{1}, y_{2}, \ldots, y_{n+1}\right) \in \pi^{*}$ if and only if there exists a sequence $\left(Q_{1}, Q_{2}, \ldots, Q_{m}\right)$ of $(n+1)$-tuples such that $Q_{1}=\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$, $Q_{m}=\left(y_{1}, y_{2}, \ldots, y_{n+1}\right)$, and $\left(Q_{i}, Q_{i+1}\right) \in \pi$ for any i such that $1 \leq i<m$. But in this case the sequence $\left(Q_{1}, Q_{2}, \ldots, Q_{m}\right)$ is a sequence of states of the Γ_{n}-algorithm ψ which describes some part of a process of computation implemented by the Γ_{n}-algorithm ψ.

Hence, the $(2 n+2)$-tuple $\left(1,2^{x}, 0,0, \ldots, 0,0,1,0,0, \ldots, 0\right)$ belongs to π^{*} if $x \in M$. It is easily seen that the mentioned $(2 n+2)$-tuple does not belong to π^{*} if $x \notin M$. Let us consider the set $\pi^{* * *} \in N \quad$ such that its $(2 n+2)$-dimensional image is π^{*}. Then $c_{2 n+2}\left(1,2^{x}, 0,0, \ldots, 0,0,1,00, \ldots, 0\right) \in \pi^{* * *}$ if and only if $x \in M$. So the set M is m-reducible to the set $\pi^{* *}$. Using the corresponding theorem concerning m-reducibility (see, for example, [8], p. 161), we conclude that the set $\pi^{* * *}$ is creative, the set π^{*} is creative in the generalized sense, and the set π is strongly positive (see Lemma 3.3). This completes the proof.

Note: It is seen from Theorem 1 that the transitive closures of some strongly positive sets having the dimensions $6,8,10, \ldots$ are creative in the generalized sense. On the other side (Theorem 2) the transitive closure of any 2-dimensional strongly positive set is primitive recursive. Similar problem concerning 4-dimensional strongly positive sets remains open.

References

[1] S. N. Manukian, "On the representation of recursively enumerable sets in weak arithmetics", Transactions of the IIAP of NAS RA, Mathematical Problems of Computer Science, vol. 27, pp. 90--110, 2006.
[2] S. N. Manukian, "On an algebraic classification of multidimensional recursively enumerable sets expressible in formal arithmetical systems", Transactions of the IIAP of NAS RA, Mathematical Problems of Computer Science, vol. 41, pp. 103-113, 2014.
[3] S. C. Kleene, Introduction to Metamathematics, D, Van Nostrand Comp., Inc., New YorkToronto, 1952.
[4] H. B. Enderton, A Mathematical Introduction to Logic, $2^{\text {nd }}$ edition, San Diego, Harcourt, Academic Press, 2001.
[5] E. Mendelson, Introduction to Mathematical Logic, D, Van Nostrand Comp., Inc., Princeton-Toronto-New York-London, 1964.
[6] D. Hilbert and P. Bernays, Grundlagen der Mathematik, Band1, Zweite Auflage, Berlin-Heidelberg-New York, Springer Verlag, 1968.
[7] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw Hill Book Comp., New York-St. Louis-San Francisco-Toronto-London-Sydney, 1967.
[8] A. I. Malcev, Algorithms and Recursive Functions, $2^{\text {nd }}$ edition, (in Russian), 1986.
[9] A. A. Markov, "Impossibility of some algorithms in the theory of associative systems", Reports of the Acad. Sci. USSR, (in Russian), vol. 55, no. 7, pp. 587-590, 1947.
[10] E. L. Post, "Recursive unsolvability of a problem of Thue", Journ. of Symb. Logic, vol. 12, pp. 1-11, 1947.
[11] P. S. Novikov, "On the algorithmic unsolvability of identity problem in the group theory",Transactions of Steklov Institute of the Acad. Sci. USSR, (in Russian), vol. 44, 1955.
[12] G. S. Tseytin, "Associative calculus with the unsolvable problem of equivalence", Transactions of Steklov Institute of the Acad. Sci. USSR, (in Russian), vol. 52, pp. 172189, 1958.
[13] G. S. Tseytin, "One method of representation for the theory of algorithms and enumerable sets", Transactions of Steklov Institute of the Acad. Sci. USSR, (in Russian), vol. 72, pp. 69-98, 1964.
[14] S. N. Manukian,. "Classification of many-dimensional arithmetical sets represented in M. Presburger's system", Reports of the National Acad. Sci. of Armenia, (in Russian), vol. 111, no. 2, pp. 114--120, 2011.
[15] M. Presburger, "Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt", Comptes Rendu du I Congres des Mathematiciens des Pays Slaves, Warszawa, pp. 92-101, 1930.
[16] R. Stransifer, Presburger's Article on Integer Arithmetics: Remarks and Translation, Department of Computer Science, CornellUniversity, Ithaca, New York, 1984.
[17] M. L. Minsky, "Recursive unsolvability of Post's problem of "Tag" and topics in theory of Turing machines", Ann. Math., vol. 74, pp. 437-455, 1961.
[18] I.D. Zaslavsky, "Graph-schemes with memory", Transactions of Steklov Institute of Acad. Sci. USSR, (in Russian), vol. 72, pp. 99-192, 1964.

Uưuhe

U. Uwinılıjuiu

Uuఝれnఝnıu

О строго позитивных многомерных арифметических множествах

C. Манукян

Аннотация

Понятие позитивной арифметической формулы в сигнатуре $(0,=, S)$, где $S(x)=x+1$, определено и исследовано в [1] и [2]. Многомерное арифметическое множество называем позитивным, если оно задаётся позитивной формулой. Рассматривается подкласс класса позитивных множеств, а именно, класс строго позитивных множеств. Доказывается, что для всякого $n \geq 3$ существует строго позитивное множество размерности $2 n$, такое, что его транзитивное замыкание нерекурсивно. С другой стороны, указывается, что транзитивное замыкание всякого строго позитивного множества размерности 2 примитивно рекурсивно.

[^0]: ${ }^{1}$ This work was supported by State Committee of Science, MES RA, in frame of the research project №SCL 131B321.

