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Abstract 
 

We consider some important issues related to the solution of linear system of 
equations that arise in multi-processor and graphics processing unit architecture. A more 
effective method for solving a linear system of equations is considered through the LU 
factorization. Investigations are conducted in case of general complex matrices, because 
for those matrices the random butterfly transformation is used. The paper presents 
performances of several ways of solving methods on the graphic processor NVIDIA 
K40c. 
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1. Introduction 
 
Similar to LAPACK, MAGMA [1, 2, 3] is being built as a community effort, incorporating the 
newest developments in hybrid algorithms and scheduling, and aiming at minimizing 
synchronizations and communication in these algorithms. The goal of these efforts is to redesign 
the dense linear algebra algorithms in LAPACK to fully exploit the power of current 
heterogeneous systems of multi/manycore CPUs and accelerators, and deliver the shortest 
possible time to an accurate solution within the given energy constraints. Indeed, the algorithms 
included so far in MAGMA 1.6 manage to overcome bottlenecks associated with just multicore 
or GPUs, to significantly outperform the corresponding packages for any of these components 
taken separately. 

For the linear system solvers on current multicore or GPU architectures, a bottleneck in 
terms of communication cost and parallelism comes from the pivoting, a technique used to 
prevent divisions by too-small numbers in the Gaussian Elimination (GE) process. Current 
libraries like LAPACK implement GE using a block algorithm, which factors the input matrix by 
iterating over its blocks of columns (panels). Pivoting not only requires communication (or 
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synchronization in a shared memory environment), but it also limits the exploitation of 
asynchronicity between the block operations. 

The solution of linear system of algebraic equations has the form AX = B, where A is a 
square matrix, B is either a right side vector or a matrix, consisting of columns of the right sides. 
X is the solutions of system equations and it is a vector if B is a vector and it is a matrix, if B is a 
matrix. 

Special block algorithms are used to solve the system equations. The system solution is 
divided into two parts: 

1. System matrix factorization, 
2. System solution through factorization. 
Depending on the matrix feature the case of factorization is different. The following two 

cases of LU factorization are used for the general matrix:  
1. The LU factorization with partial pivoting and row interchanges is used to factor A as 

A=PLU, where P is a permutation matrix, L is a lower triangular matrix, the main 
diagonal elements of which are 1, and U is the upper triangular matrix 

2. The LU factorization with no pivoting is used to factor A as A = LU, where L is the 
lower triangular unit, and U is the upper triangular one. 

Several ways of solutions of linear system of equations on NVIDIA K40c GPU accelerator 
are presented in the paper which are carried out through the two mentioned cases of LU 
factorization. They are presented only for general matrices, because to get high performance for 
them, Random Butterfly Transformation (RBT) was used which was repeatedly increasing the 
solution performance of the system of equations. Note that RBT has been studied in the systems 
with multicore [4] and distributed memory [5], but its performance has not been studied on GPU 
accelerator. Section 2 of the paper describes the cases of solving the linear system of equations. 
Section 3 presents the performances of solutions of the mentioned cases on GPU accelerator. 
Section 4 presents the conclusion. 
 
 
2.  Solution Methods 
 
2.1 LU Factorization with Partial Pivoting  
 
The LU factorization (or decomposition) of a matrix A has the form A = PLU, where L is a unit 
lower triangular matrix, U is an upper triangular matrix and P is a permutation matrix. The block 
LU factorization algorithm [6] proceeds in the following steps: initially, a set of NB columns 
(the panel) is factored and a pivoting pattern is produced. Then the elementary transformations, 
resulting from the panel factorization, are applied in block fashion to the remaining part of the 
matrix (the trailing submatrix). First, NB rows of the trailing submatrix are swapped, according 
to the pivoting pattern. Then a triangular solve is applied to the top NB rows of the trailing 
submatrix. Finally, matrix multiplication of the form Aij←Aij −Aik ×Akj is performed, where Aik 
is the panel without the top NB rows, Akj is the top NB rows of the trailing submatrix and Aij is 
the trailing submatrix without the top NB rows. Then the procedure is applied repeatedly, 
descending down the diagonal of the matrix.  

The solution of linear system of equations, where the LU factorization is made with Partial 
Pivoting, is performed by MAGMA 1.6.1 library through cgesv and cgesv_gpu functions. The 
difference between these two functions is as follows: in the first case the function itself carries 
the matrices from the CPU to GPU and vice versa, while in the second case it is realized by the 
user. The solution sequence is as follows: 
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 A and B matrices are transferred from the CPU to the global memory of GPU. 
 LU factorization of the matrix A is performed through cgetrf_gpu function of MAGMA 

library using a partial pivoting with row interchanges. 
 A * X = B is solved through the function cgetrs_gpu of MAGMA library. 
 X derived solutions are transferred from the GPU to CPU. 
To implement cgetrs_gpu function, claswp subprojects of lapackf77 library and ctrsm 

subprojects of MAGMA library are used. The claswp routine swaps rows of the trailing 
submatrix according to the pivoting pattern, established in the panel factorization. This operation 
only performs data motion and the GPUs are very sensitive to the matrix layout in memory. In 
raw-major layout, threads in a warp can simultaneously access consecutive memory locations. 
The ctrsm routine uses the lower triangle of the NB × NB diagonal block to apply triangular 
solve to the block of right-hand-sides formed by the top NB rows of the trailing submatrix. An 
efficient implementation of this routine on a GPU is difficult due to the data-parallel nature of 
GPUs and small size of the solve (32 ≤ NB ≤ 288) [7].  

The claswp routines are implemented in LAPACK [8], while the ctrsm routines are the part 
of the Basic Linear Algebra Subroutines (BLAS [9]) standard. LAPACK is an academic project 
and, therefore, the source code is freely distributed online. BLAS is a set of standardized 
routines, and it is available in commercial packages (e.g., MKL [10] from Intel, ACML [11] 
from AMD, ESSL [12] from IBM), in academic packages (e.g., ATLAS [13]) and also as a 
reference implementation in FORTRAN 77 from the Netlib software repository. 

 
 

2.2 LU Factorization without Pivoting 
 
The LU factorization (or decomposition) of a matrix A consists of writing of that matrix as a 
matrix product A = LU, where L is the lower triangular and U is the upper triangular. It is a 
central kernel in linear algebra because it is commonly used in many important operations such 
as solving a nonsymmetric linear system, inverting a matrix, computing a determinant or an 
approximation of a condition number. LU decomposition is an algebraic process that transforms 
a matrix A into a product of a lower triangular matrix L the elements of which are only on the 
diagonal and below, and an upper triangular matrix U the elements of which are only on the 
diagonal and above determinant and the inverse of a matrix. 

The solution of linear system of equations, where the LU factorization is made without 
Pivoting, is performed by MAGMA 1.6.1 library through cgesv_rbt and cgesv_nopiv_gpu 
functions. Here also in the first case the function itself carries the matrices from the CPU to GPU 
and vice versa, while in the second case it is realized by the user.  

In case of xgesv_nopiv_gpu.cpp functions the solution sequence is as follows: 
 A and B matrices are transferred from the CPU to the global memory of GPU. 
 LU factorization of the matrix A is performed through cgetrf_nopiv_gpu function of 

MAGMA library without any pivoting. 
 A * X = B is solved through the function cgetrs_nopiv_gpu of MAGMA library. 
 X derived solutions are transferred from the GPU to CPU. 
To implement cgetrs_nopiv_gpu function, only the ctrsm subproject of MAGMA library is 

used. 
The cgesv_rbt function is the optimized version of the solution of linear system of equations. 
The GENP algorithm can be unstable due to a potentially large growth factor. This is why 

we systematically perform iterative refinement on the computed solution of the randomized 
system. Algorithm 1 describes how the iterative refinement is performed in our implementations. 
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We improve the computed solution until we reach the required accuracy or we reach a defined 
maximum number of iterations. 
 
Algorithm 1 Iterative refinement. 
Input: A the original matrix. 
Input:b the right hand side. 
Input:x the computed solution. 
Input:L and U the factorized form of A 
Input:N size of the matrix A 
Result:An improved solution x 
1: EPS = Machine precision 
2: ITERMAX = 30 
3: ITER = 0 
4: ANRM = ||A||∞     
5: XNRM = max|x| 
6: Cte = ANRM * EPS * √N 
7: r = b – Ax 
8: RNRM = max|r| 
9: while RNRM > XNRM and ITER < ITERMAX do 
10: Solve: Ly = r 
11: Solve:Uz = y 
12: x = x+r 
13: r = b – Ax 
14: XNRM = max|x| 
15: RNRM = max|r| 
16: ITER = ITER + 1 
17: end while 
 

The iterative refinement process is stopped if ITER > ITERMAX or for all the RHS we 
have: 
RNRM < SQRT(n)*XNRM*ANRM*EPS*BWDMAX where 
 ITER is the number of the current iteration in the iterative refinement process 
 RNRM is the infinity-norm of the residual 
 XNRM is the infinity-norm of the solution 
 ANRM is the infinity-operator-norm of the matrix A 
 EPS is the machine epsilon returned by SLAMCH('Epsilon') 
 The values ITERMAX and BWDMAX are fixed to 30 and 1.0D+00, respectively. 

 
Note that EPS is determined by xlamch("Epsilon") function of the lapackf77 library, and 

ANRM is determined by the xlange() function of the magmablas library. 
The following consecutive steps are made for the solution of this case: 
 A and B matrices are transferred from the CPU to the global memory of GPU. 
 LU factorization of the matrix A is performed through cgetrf_nopiv_gpu function of 

MAGMA library without any pivoting. 
 The cgesv_rbt function of the MAGMA library is called.  
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Note that the cgesv_rbt function takes the factorized A matrix and by the cgetrs_nopiv_gpu 
function it gets the solutions of linear system of equations, afterwards for iterative refinement it 
improves the computed solution to a system of linear equations. 

Random Butterfly Transformation (RBT) is a randomization technique initially described by 
Parker and recently revisited for dense linear systems. The method for randomizing has been 
described in [14, 15]. It consists of a multiplicative preconditioning UTAV where the matrices U 
and V are chosen among a particular class of random matrices called recursive butterfly 
matrices. Then Gaussian Elimination with No Pivoting (GENP) is performed on the matrix 
UTAV and, to solve Ax = b, we instead solve (UTAV)y= UTb followed by x = Vy. 

The solution of linear system of equations, where the random butterfly transformation is 
applied on A and B matrices and the LU factorization is made without Pivoting, is implemented 
through the cgerbt_gpu function of the MAGMA 1.6.1 library. 

The implementation of this form of solution is realized in the following sequence: 
 
 We generate the random matrices U and V in packed storage on the CPU. 
 The matrix A and the packed representation of U and V are sent from the host memory to 

the device memory. 
 Randomization is performed on the GPU, updating A in the device memory. 
 Perform Partial Random Butterfly Transformation on the GPU with magmablas_cprbt() 

function. 
 We compute UTb on the GPU, Ary= UTb is solved on the GPU, followed by the solution 

x = Vy with magmablas_cprbt_mtv() function. 
 The solution is sent to the host memory. 

 
 
3.   Results of Experiments  
 
The experiments were conducted on NVIDIA K40c GPU. The architecture of NVIDIA K40c 
consists of 2880 CUDA processor cores. It is endowed with much higher bandwidth 288 GB/s of 
message transfer between CPU and GPU, having 12 GB of global memory, GDDR5 memory 
interface, and CUDA C programming environment. The operation system of K40c is Ubuntu 
14.04.2 LTS. MAGMA 1.6.1 package is installed. The code is compiled using the GNU gcc 
version 4.8, gfortran-4.8, g ++ - 4.8 and the nvcc version 7.0 with the optimization flag -O3 and 
linked with the Atlas Library.  

Figures 1 and 2(a,b) show the time and performance schedules of methods for solving of 
linear system of equations. 

The obtained results show that the performance of solutions defined by LU factorization 
without pivoting is higher than that with pivoting, especially when the solutions of Random 
Butterfly Transformation are repeatedly endowed with high performance. The results show that 
the performance of solutions defined by cgesv_rbt function is the lowest of the mentioned cases 
but it is the optimized version of solutions because for iterative refinement it improves the 
computed solution to a system of linear equations. For the solutions defined by LU factorization 
with pivoting the cgesv_gpu function performance is higher than that of cgesv function. This is 
because the data have been loaded into the global memory of GPU before the function appeal. 
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Fig. 1. 

 

 
 

Fig. 2(a) 
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Fig. 2(b) without cgerbt_gpu. 

 
 

3. Conclusion  

We presented methods for solving of linear system of equations on GPU accelerator where the 
LU factorization is performed with and without pivoting. The received performance results lead 
to the following conclusion that to achieve high performance in solutions of linear system of 
equations, Random Butterfly Transformation solution method is definitely in the first place.  
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Գծային հավասարումների համակարգի լուծման մեթոդների 
արտադրողականությունները GPU արագագործչի 

ճարտարապետությունում 
 

Հ. Ասցատրյան, Է. Գիչունց 
 

Ամփոփում 
 

Մենք դիտարկում ենք գծային հավասարումների համակարգի լուծմանը 
վերաբերող որոշ կարևորագույն հարցեր, որոնք առաջանում են 
բազմապրոցեսորային և գրաֆիկական պրոցեսորային  ճարտարապետությունում: 
Դիտարկվում է LU վերլուծության միջոցով գծային հավասարումների համակարգի 
լուծման մեթոդներից ավելի արդյունավետ եղանակը: Ուսումնասիրությունները 
կատարվում են կոմպլեքս ընդհանուր մատրիցների դեպքում, քանի որ այդ 
մատրիցների համար կիրառվում է թիթեռնիկի պատահական  ձևափոխությունը: 
Աշխատանքում ներկայացվում են մի քանի մեթոդներով լուծման եղանակների 
արտադրողականությունները NVIDIA K40c գրաֆիկական պրոցեսորի վրա: 
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Производительности методов решения систем линейных уравнений 
в архитектуре GPU ускорителя 

 
Г. Асцатрян, Э. Гичунц 

 
Аннотация 

 

 Рассмотрeны некоторые важные вопросы, связанные с решением систем линейных 
уравнений, возникающих в многопроцессорных и графических процессорных 
архитектурах. С помощью LU факторизации рассматривается более эффективный метод 
для решения линейной системы уравнений. Исследования проводятся для случая 
общих комплексных матриц, потому что для этих матриц используется случайное 
преобразование бабочки. В статье представлены производительности методов 
нескольких способов решения на графическом процессоре NVIDIA K40c. 


