A Polynomial Algorithm for the Minimum Bandwidth of Interval Graphs

David H. Muradian
Institute for Informatics and Automation Problems of NAS RA
e-mail: david.h.muradian@gmail.com

Abstract

Let G be a connected graph with vertex set X and edge set U . A layout of G is a one-to-one map φ from X onto $\{1,2, \ldots,|\mathrm{X}|\}$. The bandwidth of φ is $B_{\varphi}(G)=\max$ $|\varphi(u)-\varphi(v)|$, where (u, v) ranges over all edges of G . The bandwidth of G , denoted by $\mathrm{B}(\mathrm{G})$, is defined as $\mathrm{B}(\mathrm{G})=\min B_{\varphi}(G)$ where φ ranges over all layouts of G . Interval graphs are the intersection graphs of a family of intervals over the real line. In this paper we show that the Bandwidth Minimization problem for interval graphs can be solved in time $O\left(n \Delta^{2} \log (\Delta)\right)$, where n is the vertex number and Δ is the maximal degree of vertex of the interval graph.

Keywords: Graph layout, Bandwidth, Interval Graphs.

1. Introduction

The bandwidth minimization problem for graphs was first stated in 1966 by Harper ([1]), where the problem was solved for hypercubes.

Finding the bandwidth of an arbitrary graph is an NP-complete problem ([2]) and it remains NP-complete for many simple structures, e.g., for cyclic caterpillars with hair length 1 , graphs in which the removal of all pendant vertices results in a simple cycle ([3]).

There are only few classes of graphs for which an efficient solution (i.e., a polynomial algorithm or analytic result) to the bandwidth problem is known. Classes of graphs the bandwidth of which can be computed efficiently are butterflies ([4]), chain graphs ([5]), caterpillars with hair length at most 2 ([6]). Another nontrivial class, for which the problem was solved efficiently, is the class of interval graphs, graphs which are the intersection graphs of a family of intervals over the real line.

The first polynomial algorithm for interval graphs was given in 1986 by the author ([7]). It was published in the Reports of NAS RA, where the algorithm is described in detail, and besides a brief proof of its correctness is given. Since this result was obtained independently and published in the following years ([8], [9], [10]), we consider it reasonable to publish the full proof of our algorithm's correctness.

2. Preliminaries

Let G be a connected graph with vertex set X and edge set U. A numbering of G is a one-to-one map φ from X onto $\{1,2, \ldots,|X|\}$. The bandwidth of φ is $B_{\varphi}(G)=\max |\varphi(u)-\varphi(v)|$, where (u, v) ranges over all edges of G. The bandwidth of G, denoted by $B(G)$, is defined as $B(G)=$ $\min B_{\varphi}(G)$, where φ ranges over all numberings of G. Length of an edge (u, v) is defined as $|\varphi(u)-\varphi(v)|$.

Given a graph $G(X, U)$ and its some layout φ. Let's define a new layout $\varphi_{A, B}$ - swap of two disjoint subsets A and B of X as follows. If A and B are disjoint subsets of vertices of G, at that for any $x \in A$ and $y \in B$ we have $\varphi(x)<\varphi(y)$ and $\max _{z \in B} \varphi(z)-\min _{z \in A} \varphi(z)=|A|+|B|-1$, then

$$
\varphi_{A, B}(z)=\left\{\begin{array}{l}
\varphi(z) / z \in X \backslash(A \cup B) \\
\varphi(z)+|B| / z \in A \\
\varphi(z)-|A| / z \in B
\end{array}\right.
$$

Let's denote $X_{\varphi}[k, l]=\{x \in X / k \leq \varphi(x) \leq l\}$ for $1 \leq \mathrm{k} \leq 1 \leq \mathrm{n}$.
Let's consider an interval graph $G=(X, U)$. Let's denote by \hat{x} an interval corresponding to the vertex $x \in X$. We say that an interval $\hat{x}=(a, b)$ is entirely on the left side (right side) of an interval $\hat{y}=(c, d)$ if $b<c$ (correspondingly a. d. Let's denote by $\Gamma^{-}(\hat{x})\left(\Gamma^{+}(\hat{x})\right)$ the set of intervals which entirely are on the left side (correspondingly - on the right side) of \hat{x}.

Let's define a layout φ_{0} for the graph G. For any vertices $x, y \in X$ if $\Gamma^{-}(\hat{x})=\Gamma^{-}(\hat{y})$ and $\Gamma^{+}(\hat{x})=\Gamma^{+}(\hat{y})$, then $\varphi_{0}(x)<\varphi_{0}(y)$ or $\varphi_{0}(x)>\varphi_{0}(y)$. Otherwise, $\varphi_{0}(x)<\varphi_{0}(y) \quad$ if and only if $\Gamma^{-}(\hat{x}) \subset \Gamma^{-}(\hat{y})$ or $\Gamma^{-}(\hat{x})=\Gamma^{-}(\hat{y})$ but $\Gamma^{+}(\hat{x}) \subset \Gamma^{+}(\hat{y})$.

It is easy to check that φ_{0} is well-defined by the above conditions and has the following properties.

1. If \hat{x} is entirely on the left side of \hat{y}, then $\varphi_{0}(x)<\varphi_{0}(y)$. It is obvious by the definition.
2. If $1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{n}$ and the vertices $x=\varphi_{0}^{-1}(i), y=\varphi_{0}^{-1}(j)$ are adjacent, then x is adjacent to any vertex $z=\varphi_{0}^{-1}(k)$, where $\mathrm{i}<\mathrm{k} \leq \mathrm{j}$. Really, let's assume that x, z are not adjacent. Then \hat{x} is entirely on the left side of \hat{z}. The vertices z, y should be adjacent, otherwise as x, y are adjacent, then \hat{y} should be entirely on the left side of \hat{z} and therefore should have a smaller number in the layout φ_{0}. If z, y are adjacent, then again \hat{y} should have a smaller number than \hat{z} because $\Gamma^{-}(\hat{y}) \subset \Gamma^{-}(\hat{z})$ (at least on account of \hat{x}), which leads to a contradiction.
3. Let x and y be vertices for which we have $\Gamma^{-}(\hat{y}) \subset \Gamma^{-}(\hat{x})$ and $\Gamma^{+}(\hat{y}) \subset \Gamma^{+}(\hat{x})$. Then two disjoint intervals exist, one of which is entirely on the left side and the other entirely on the right side of \hat{x} and both are overlaps with \hat{y}. It is obvious by definition.

Let $\hat{x}, \widehat{y}, \widehat{z_{1}}$ and $\widehat{z_{2}}$ be intervals where $\widehat{z_{1}}$ is entirely on the left side of \hat{x} and $\widehat{z_{2}}$ - entirely on the right side of \hat{x} and all of them overlap with \hat{y}. Then we will say that \hat{x} is a proper interval for \hat{y} and record this fact as $x \dot{\subset} y$.
For any vertex $x \in X$, we will name $\varphi_{0}(x)$ as its index.

3. Algorithm

Step i ($\mathrm{i} \geq 1$). At step i the algorithm having as an input the layout $\varphi=\varphi_{i-1}$, creates a layout φ_{i} or stops, claiming that $B(G)>K$.

Let y be a vertex with the greatest number at φ, which is incident to an edge with a length above K, and let (x, y) have the greatest length among them (i.e., y is not adjacent to vertices, the numbers of which are less than $\varphi(x)$). Then the algorithm tries to find a vertex with the smallest number from $X_{\varphi}[\varphi(x)+1, \varphi(y)-1]$, which is not adjacent to y . If such vertex does not exist, then it claims that $B(G)>K$.

Let z be the sought-for vertex. Let's denote $M=X_{\varphi}[\varphi(x), \varphi(z)-1]$. Let a_{j} be a vertex from the set $M \backslash X_{\varphi}\left[\varphi\left(a_{j-1}\right), \varphi(z)-1\right]$ having the greatest index there (with an agreement, that $X_{\varphi}\left[\varphi\left(a_{0}\right), \varphi(z)-1\right]=\varnothing$). Denote $S_{j}=X_{\varphi}\left[\varphi\left(a_{j}\right)+1, \varphi\left(a_{j-1}\right)-1\right]$. Note that for some j-s sets S_{j} may be empty. The layout φ_{i} is defined as follows:

$$
\varphi_{i}(a)=\left\{\begin{array}{l}
\varphi_{i-1}(x) / a=z \\
\varphi_{i-1}(a) / a \in \cup_{j} S_{j} \cup(X \backslash(M \cup\{z\})) \\
\varphi_{i-1}(a)+1+\left|S_{j}\right| / a=a_{j}
\end{array}\right.
$$

In other words φ_{i} is obtained from φ_{i-1} via successive swaps: (M, $\left.\{z\}\right),\left(\left\{a_{1}\right\}, S_{1}\right),\left(\left\{a_{2}\right\}, S_{2}\right), \ldots$ Then the algorithm checks if there is an edge with the length above K at φ_{i}. If not, then it stops, claiming that φ_{i} is the sought-for layout with the bandwidth no more than K. If yes, then the algorithm turns to the step $i+1$.

4. Proof of the Algorithm's Correctness

Let's define a class of layouts Φ_{0} for the graph $G: \varphi \in \Phi_{0}$ if and only if for any vertices a and b, for which $\varphi(a)<\varphi(b)$ and $\varphi_{0}(a)>\varphi_{0}(b)$, will take place $a \dot{\subset} b$.

From the definition of Φ_{0} it follows immediately that for any $\varphi \in \Phi_{0}$ and two non- adjacent vertices x and y , if $\varphi_{0}(x)<\varphi_{0}(y)$, then $\varphi(x)<\varphi(y)$. It is easy to see that $\varphi_{0} \in \Phi_{0}$. Moreover, the algorithm, beginning with φ_{0}, never leaves the class Φ_{0}.
Lemma 1: $\varphi_{i} \in \Phi_{0}$ in each step i.
Proof: We will prove the statement by induction. For $i=0$ the statement obviously is true, let it be true for each step until $i-1$. Let's show that $\varphi_{i} \in \Phi_{0}$. Then it is sufficient to show that $z \subset q$ any $q \in M$, and $a_{t} \subset q_{t}$ for all $q_{t} \in S_{t}$.

Since $(q, y) \in U$ and $(z, y) \notin U$, then naturally q cannot be a proper interval for z , and by the fact that $\varphi_{i-1} \in \Phi_{0}$, we will have $\varphi_{0}(q)<\varphi_{0}(z)$. But as $\Gamma^{+}(\hat{q}) \subset \Gamma^{+}(\hat{z})$, it follows immediately that $\Gamma^{-}(\hat{q}) \subset \Gamma^{-}(\hat{z})$, i.e., $z \subset q$. Then the layout obtained by the swap of M and $\{\mathrm{z}\}$ certainly belongs to Φ_{0}, and therefore, $a_{t} \dot{\subset} q_{t}$ for all $q_{t} \in S_{t}$. This proves the lemma.

In the next two lemmas several new properties of the layout φ_{i} are proved.
Lemma 2: In the step i, the length of the edge (x, y) decreases by 1 and none of vertices from $X_{\varphi_{i}}\left[\varphi_{i}(y)+1, n\right]$ is incident to an edge with the length above K.
Proof: By Lemma 1 we have $z \dot{\subset} x$, and z together with x don't have adjacent vertices in $X_{\varphi_{i}}\left[\varphi_{i}(y)+1, n\right]$. Therefore, there is no vertex from $X_{\varphi_{i}}\left[\varphi_{i}(y)+1, n\right]$, incident to an edge with length above K. Now we will show that the length of the edge (x, y) decreases exactly by 1 . If
not, then denoting $=\varphi_{i-1}^{-1}\left(\varphi_{i-1}(x)+1\right)$, we will have $x \dot{\subset} u$. By definition u doesn't have adjacent vertices in $X_{\varphi_{i-1}}\left[\varphi_{i-1}(y)+1, n\right]$. Let j be the greatest number, for which $\varphi_{j}(u)<$ $\varphi_{j}(x)$ and $\varphi_{j+1}(u)>\varphi_{j+1}(x)$. It is clear that $\mathrm{j} \leq \mathrm{i}$-2. In the sub-step $\mathrm{j}+1$ some set U swaps with $\{\mathrm{x}\}$, where $\mathrm{u} \in \mathrm{U}$, at that there exists a vertex v , which is not adjacent to x , but is adjacent to all vertices from U , and therefore, $\mathrm{v} \in X_{\varphi_{i-1}}\left[\varphi_{i-1}(y)+1, n\right]$. Obtained contradiction proves the lemma.
Lemma 3: Let vertices a and b satisfy the conditions:

$$
\begin{equation*}
\varphi_{i}(a)<\varphi_{i}(b) \text { and } \varphi_{0}(a)>\varphi_{0}(b) \tag{1}
\end{equation*}
$$

Then there are vertices D and d, such that:

$$
\begin{equation*}
D \epsilon X_{\varphi_{i}}\left[\varphi_{i}(a)+1, \varphi_{i}(b)\right] \quad \text { and } \quad \varphi_{i}(d)-\varphi_{i}(D) \geq K \tag{2}
\end{equation*}
$$

Proof: We will prove the statement by induction. For $i=0$ the statement obviously is true, let it is true from 1 to $\mathrm{i}-1$ step inclusive. Consider the step i. Denote $M_{1}=X_{\varphi_{i-1}}\left[1, \varphi_{i-1}(x)-1\right]$ and $M_{2}=X_{\varphi_{i-1}}\left[\varphi_{i-1}(z)+1, n\right]$.

We will show, that if for some vertices a and b conditions (1) are fulfilled, then there should exist vertices D ' and d ' which satisfy the conditions (2).

The only possible case, when $\varphi_{i-1}(a)>\varphi_{i-1}(b)$ can hold when $\mathrm{a}=\mathrm{z}$ and $\mathrm{b} \in \mathrm{M}$. In this case vertices x and y can be taken instead of D and d. Really, any vertex from M is adjacent to $d=y$ and $\varphi_{i}(d)-\varphi_{i}(D)=\varphi_{i}(y)-\varphi_{i}(x) \geq K$. In other cases $\varphi_{i-1}(a)<\varphi_{i-1}(b)$.

Let's analyze possible cases.
Case 1. $b \in M_{1}$.
Then $a \in M_{1}$. Since at the step i only the numbers of vertices from $M \cup\{z\}$ can be changed, then at $\mathrm{d}^{\prime} \epsilon M_{1} \cup M_{2}$ taking $D=D^{\prime}$ and $d=d^{\prime}$, it is easy to see that for D and d at φ_{i} conditions (2) are fulfilled. If $d^{\prime}=z$, then from the fact that $z \dot{\subset} q$ for any $q \in \mathrm{M}$, it follows that each vertex from $X_{\varphi_{i-1}}\left[\varphi_{i-1}\left(D^{\prime}\right), \varphi_{i-1}(b)\right]$ is adjacent to each vertex from M . Note that some vertex from M receives the number $\varphi_{i-1}(z)$ at φ_{i}. Then taking $D=D^{\prime}$ and $d=\varphi_{i}^{-1}\left(\varphi_{i-1}(z)\right)$, one can observe, that for D and d conditions (2) will be fulfilled. If $d^{\prime} \epsilon \mathrm{M}$, then as $\varphi_{i}(q) \geq \varphi_{i-1}(q)$ for each $q \in \mathrm{M}$, we will have $\varphi_{i}\left(\mathrm{~d}^{\prime}\right)-\varphi_{i}\left(D^{\prime}\right) \geq \varphi_{i-1}\left(\mathrm{~d}^{\prime}\right)-\varphi_{i-1}\left(D^{\prime}\right)$ and we can take $D=D^{\prime}$ and $d=d^{\prime}$
Case 2. $b=z$.
Then $a \in M_{1}$. If $D^{\prime} \in M_{1}$, then we will put $D=D^{\prime}$ and $d=d^{\prime}$, and if $D^{\prime} \in M$, then $D=$ $b=z$ and $d=d^{\prime}$. Then from the fact that $z \subset q$ for each $q \in M$, it follows that for D and d at φ_{i} conditions (2) are fulfilled.
Case 3. $b \in M \cup M_{1}$.
At first let's assume that for any vertex from $X_{\varphi_{i-1}}\left[\varphi_{i-1}(\mathrm{x}), \varphi_{i-1}(b)-1\right]$ occurs $\varphi_{0}(q)<$ $\varphi_{0}(b)$. Then $a \epsilon M_{1}$. If $b \in M$, then in place of D one can take the vertex x and in place of $d-$ vertex y, i.e., all vertices from M are adjacent to y. If $b \in M_{2}$ and $D^{\prime} \in M_{2}$, then during the transition from φ_{i-1} to φ_{i}, nothing is changed for a and b , therefore we can take $D=D^{\prime}$ and $d=d^{\prime}$. Let $b \in M_{2}$ and $D^{\prime} \in M$. Since z is adjacent to d^{\prime}, then all vertices from M will be adjacent to d^{\prime}, and one can take $D=z$ (certainly only after receiving the number $\varphi_{i-1}(\mathrm{x})$ by z) and $D=D^{\prime}$.

Now let q be a vertex from $X_{\varphi_{i-1}}\left[\varphi_{i-1}(\mathrm{x}), \varphi_{i-1}(b)-1\right]$, the index of which is greater than the index of b , and let c be the vertex with the greatest number among them at φ_{i-1}.

Let $b \in M_{2}$. Then $\in M_{2} \cup\{z\}$. Really, if $c \in M$, then from $z \dot{\subset} c$ we will have $\varphi_{0}(z)>\varphi_{0}(c)$ and therefore $-\varphi_{0}(z)>\varphi_{0}(b)$, which will be at odds with the selection of c. But if $c \in \mathrm{M}_{2} \cup\{\mathrm{z}\}$, then at φ_{i-1} there are D^{\prime} and d^{\prime}, satisfying (2), at that $D^{\prime} \in M_{2}$, and as their
numbers are not changed during the transition from φ_{i-1} to φ_{i}, then one can take $D=D^{\prime}$ and $d=d^{\prime}$.

Let $b \in M$. If $a \in M_{1}$, then one can take $D=x$ and $d=y$. Let $a \in M$. Let's analyze the step i. The inequality $\varphi_{i}(a)<\varphi_{i}(b)$ means that at φ_{i-1} there was a vertex c', such that $\varphi_{i-1}(a)<\varphi_{i-1}\left(c^{\prime}\right)<\varphi_{i-1}(b)$, whereas at $\varphi_{i}: \varphi_{i}\left(c^{\prime}\right)>\varphi_{i}(b)$, i.e., the vertex was belonging to some nonempty set S_{r}, and $\mathrm{c}^{\prime}=\mathrm{ar}$. Therefore, considering the pair of vertices ($\mathrm{c}^{\prime}, \mathrm{b}$) at φ_{i-1}, by the inductive conjecture there are vertices D^{\prime} and d^{\prime}, satisfying (2), the numbers of which are not changed during the transition from φ_{i-1} to φ_{i}, i.e., one can take $D=D^{\prime}$ and $d=d^{\prime}$. This proves the lemma.

Before proving that the algorithm stops without creating a layout with the bandwidth K only on graphs having the bandwidth above K, we will define a graph called a generalized 1caterpillar.
Definition: Let $A_{i} V_{i}(i \in \overline{1, m})$ be disjoint sets and $A_{i} \neq \emptyset$ for all $(i \in \overline{1, m})$. A graph $H=(F, E)$ with the set of vertices $F=\bigcup_{i=1}^{m} A_{i} \cup \bigcup_{i=1}^{m} V_{i}$ is called a generalized 1-caterpillar if (x, y) ϵE if and only if $x \in V_{i}, y \in A_{i}(i \in \overline{1, m})$, or $x \in A_{i}, x \in A_{i+1}(i \in \overline{1, m-1})$, or $x, y \in A_{i}(i \in$ $\overline{1, m})$.
Lemma 4: If the number of vertices of the graph H is more than $(m+1)(K+1)-\sum_{i=1}^{m} A_{i}$, then $B(H)>K$.
Proof: Let p be the number of vertices of H and $p>(m+1)(K+1)-\sum_{i=1}^{m} A_{i}$. Let's assume that $B(H) \leq K$. Let φ be a layout with the smallest bandwidth for H, and without losing generality, let's assume that $\varphi^{-1}(1) \in A_{i} \cup V_{i}$ and $\varphi^{-1}(p) \in A_{j} \cup V_{j}$ at some $i, j(1 \leq \mathrm{i} \leq \mathrm{j} \leq$ $\mathrm{m})$.

Using the assumption $\mathrm{B}(\mathrm{H}) \leq \mathrm{K}$, it is easy to prove the following statement: if $z_{1} \in A_{t}$ for some t , and z_{2} - vertex from A_{t+1} with the smallest number, then $\varphi\left(z_{2}\right) \leq \varphi\left(z_{1}\right)+K-$ $\left|A_{t+1}\right|+1$.

Solving this recurrent inequalities we will obtain that if z is a vertex from A_{j} with the smallest number, then $\varphi(z) \leq(j-i+1)(K+1)-\sum_{t=i}^{j}\left|A_{t}\right|+1$. But z is adjacent to $\varphi^{-1}(p)$, therefore

$$
\begin{gathered}
K \geq p-\varphi(z)>(m+1)(K+1)-\sum_{t=1}^{m}\left|A_{t}\right|-(j-i+1)(K+1)+\sum_{t=i}^{j}\left|A_{t}\right|= \\
(m-j+i)(K+1)-\sum_{t=1}^{i-1}\left|A_{t}\right|-\sum_{t=j+1}^{m}\left|A_{t}\right|-1 .
\end{gathered}
$$

Besides $\left|A_{t}\right| \leq K+1$ for all $\mathrm{t} \epsilon \overline{1, m}$, therefore:

$$
K \geq p-\varphi(z)>(m-j+i)(K+1)-(m-j+i-1)(K+1)-1=K
$$

which leads to a contradiction. This proves the lemma.
Now we will state the last necessary property of layouts from Φ_{0}.
Lemma 5: Let $\varphi \in \Phi_{0}$ and let u_{1}, u_{2}, u_{3} be vertices with the following properties: $\varphi\left(u_{1}\right)<$ $\varphi\left(u_{2}\right)<\varphi\left(u_{3}\right),\left(u_{1}, u_{3}\right) \epsilon U$ and $\varphi_{0}\left(u_{2}\right)<\varphi_{0}\left(u_{3}\right)$. Then $\left(u_{1}, u_{2}\right) \epsilon U$.
Proof: Let's assume that u_{1}, u_{2} are not adjacent. Then from $\varphi\left(u_{1}\right)<\varphi\left(u_{2}\right)$ we will have $\varphi_{0}\left(u_{1}\right)<\varphi_{0}\left(u_{2}\right)$. But $\left(u_{1}, u_{3}\right) \in U$ and therefore $\Gamma^{-}\left(\widehat{u_{3}}\right) \subset \Gamma^{-}\left(\widehat{u_{3}}\right)$ and $\varphi_{0}\left(u_{3}\right)<\varphi_{0}\left(u_{2}\right)$, which contradicts the conditions of the lemma. This proves the lemma.
Theorem: If the algorithm at some step stops without creating for the graph G a layout with bandwidth K, then $B(G)>K$.

Proof: Let's assume that the situation described in the formulation of the theorem occurs at step $\mathrm{i}+1$: each vertex from $X_{\varphi_{i}}\left[\varphi_{i}(x), \varphi_{i}(y)\right]$ is adjacent to y . If there is no any vertex among them, the index of which is greater than $\varphi_{0}(y)$, then by Lemma 5 , the subgraph induced by the set $X_{\varphi_{i}}\left[\varphi_{i}(x), \varphi_{i}(y)\right]$ is a clique with the vertex number over $\mathrm{K}+1$ and therefore $\mathrm{B}(\mathrm{G})>\mathrm{K}$.

Let's assume that there is a vertex in $X_{\varphi_{i}}\left[\varphi_{i}(x), \varphi_{i}(y)-1\right]$, the index of which is greater than $\varphi_{0}(y)$ and let a_{1} have the greatest number among them. Denote $b_{1}=y$. Then for a_{1} and b_{1} conditions (1) are fulfilled and therefore there exist vertices D_{1} from $X_{\varphi_{i}}\left[\varphi_{i}\left(\mathrm{a}_{1}\right)+1, \varphi_{i}\left(b_{1}\right)\right]$ and b_{2}, such that $\varphi_{i}\left(b_{2}\right)-\varphi_{i}\left(D_{1}\right) \geq K$ and all vertices from $X_{\varphi_{i}}\left[\varphi_{i}\left(D_{1}\right), \varphi_{i}\left(b_{1}\right)\right]$ are adjacent to b_{2}. Denote $R_{0}=X_{\varphi_{i}}\left[\varphi_{i}(x), \varphi_{i}\left(D_{1}\right)-1\right]$ and $A_{1}=X_{\varphi_{i}}\left[\varphi_{i}\left(D_{1}\right), \varphi_{i}\left(b_{1}\right)\right]$.

Then let a_{2} be the vertex with the greatest number from $X_{\varphi_{i}}\left[\varphi_{i}\left(b_{1}\right)+1, \varphi_{i}\left(b_{2}\right)\right]$, the index of which is equal or greater than $\varphi_{0}\left(b_{2}\right)$ (equality of indices is understood as a simple coincidence: $a_{2}=b_{2}$). Let $a_{2} \neq b_{2}$. Then a_{2}, b_{2} satisfy the conditions (1) and therefore there exist vertices D_{2} from $X_{\varphi_{i}}\left[\varphi_{i}\left(\mathrm{a}_{2}\right)+1, \varphi_{i}\left(b_{2}\right)\right]$ and b_{3}, for which the conditions (2) are fulfilled (after taking $D=D_{1}, d=b_{3}$ in (2)). Denote $R_{1}=X_{\varphi_{i}}\left[\varphi_{i}\left(b_{1}\right)+1, \varphi_{i}\left(D_{2}\right)-1\right]$ and $A_{2}=X_{\varphi_{i}}\left[\varphi_{i}\left(D_{2}\right), \varphi_{i}\left(b_{2}\right)\right]$.

Let's continue this procedure. As the graph is finite, then the sets $A_{1}, A_{2}, \ldots, A_{m}$ and $R_{0}, R_{1}, \ldots, R_{m}$ will be obtained, such that $R_{j}=X_{\varphi_{i}}\left[\varphi_{i}\left(b_{j}\right)+1, \varphi_{i}\left(D_{j+1}\right)-1\right]$ at $m \geq 1$, $A_{j}=X_{\varphi_{i}}\left[\varphi_{i}\left(D_{j}\right), \varphi_{i}\left(b_{j}\right)\right]$ at $\mathrm{j} \epsilon \overline{1, m}$, at that $\varphi_{i}\left(b_{j}\right)-\varphi_{i}\left(D_{j-1}\right) \geq K\left(\mathrm{j} \epsilon \overline{1, m+1}, D_{0}=x\right)$, every vertex from A_{j} is adjacent to $b_{j+1}(\mathrm{j} \epsilon \overline{1, m})$, every vertex from R_{0} is adjacent to b_{1} and there are no vertices in R_{0}, the indices of which are above $\varphi_{0}\left(b_{m+1}\right)$.

From Lemma 5 we know that every vertex from R_{0} is adjacent to every vertex from A_{1}, every vertex from A_{j} is adjacent to every vertex from $A_{j+1}(\mathrm{j} \epsilon \overline{1, m-1})$ and every vertex from A_{m} is adjacent to every vertex from R_{m}.

Let u be an arbitrary vertex from $R_{j}(\mathrm{j} \epsilon \overline{1, m-1})$. We will show, that if u is not adjacent to any vertex from $A_{j}\left(A_{j+1}\right)$, then it is adjacent to all vertices from A_{j+1} (correspondingly: A_{j}), where $\mathrm{j} \epsilon \overline{1, m-1}$. Really, assume the contrary: $u_{1} \in \mathrm{~A}_{j}, u_{2} \in \mathrm{~A}_{j+1}$ and both are adjacent to u . From $\varphi_{i}(u)<\varphi_{i}\left(u_{2}\right)$ we have $\varphi_{0}(u)<\varphi_{0}\left(u_{2}\right)$. Then applying Lemma 5 to the triple u_{1}, u_{2}, u_{3}, we will get that u_{1} is adjacent to u, which leads to a contradiction. Therefore every vertex $u \in R_{j}(\mathrm{j} \epsilon \overline{1, m-1})$ is adjacent to all vertices of at least one of the sets A_{j}, A_{j+1}.

Let V_{1} be a set consisting of all vertices of R_{0} and those vertices from R_{1}, which are adjacent to all vertices of A_{1}. Let V_{j} be a set consisting of all vertices of $R_{j-1} \backslash V_{j-1}$ and those vertices from R_{j}, which are adjacent to all vertices of $A_{j}(\mathrm{j} \epsilon \overline{1, m-1})$, and $V_{m}=\left(R_{m-1} \backslash V_{m-1}\right) \cup$ R_{m}. It is easy to see that the graph G contains as a subgraph a generalized 1-caterpillar satisfying the conditions of Lemma 4. This proves the theorem.

5. Estimation of Algorithm Complexity

From the definition of φ_{0} and its second property we have $B_{\varphi_{0}}(G) \leq \Delta-1$, where Δ is the maximal degree of vertices. On the other hand we have a trivial lower bound:

$$
B_{\varphi_{0}}(G) \geq B(G) \geq\left\lfloor\frac{\Delta}{2}\right\rfloor \text {. Therefore }\left\lfloor\frac{\Delta}{2}\right\rfloor \leq B(G) \leq \Delta-1
$$

First we will estimate the running time of the step i. The vertex z can be found checking $|M|$ vertices and $|M|$ elementary operations are sufficient for the swap of sets ($M,\{z\}$) (for the assignment of numbers). The rest part of the step i, i.e., the problem of finding vertices a_{j} as well as realization of swaps $\left(\left\{a_{j}\right\}, S_{j}\right)$ is equivalent to one pass of known bubble algorithm, and
therefore will require no more than $|M|$ comparisons of indices and $|M|$ operations for the reassignments of numbers. Therefore the step i will require $\mathrm{O}(|M|)$ elementary operations.
As the vertex set M forms a clique (the corresponding intervals contain the interval \hat{z}), then $|M| \leq K+1$. Besides the length of the edge (x, y) no more than $2 K$, because $\left\lfloor\frac{\Delta}{2}\right\rfloor \leq K \leq \Delta-1$. So, in order to decrease the length of the edge (x, y) to K no more than K steps are needed. Therefore, to achieve a situation where y is not adjacent to an edge with length over $K, O\left(K^{2}\right)$ elementary operations are sufficient. Finally, due to the fact that $\left\lfloor\frac{\Delta}{2}\right\rfloor \leq K \leq \Delta-1$, the bandwidth minimization problem for an interval graph with number of vertices n and with maximal vertex degree Δ, can be solved using $O\left(\Delta^{2} n \log _{2} \Delta\right)$ elementary operations.

References

[1] L. H. Harper, "Optimal numberings and isoperimetric problems on graphs", Journal of Combinatorial Theory, vol.1, no. 3, pp. 385-393, 1966.
[2] C. Papadimitriou, "The NP-completeness of the bandwidth minimization problem", Computing, vol. 16, pp. 263-270, 1976.
[3] D. Muradian, "The bandwidth minimization problem for cyclic caterpillars with hair length 1 is NP-complete", Theoretical Computer Science, "Selected Papers in Honour of Lawrence Harper", vol. 307, no. 3, pp. 567-572, 2003.
[4] Y.-L. Lai, Bandwidth, edgesum and profile of graphs. Ph.D. thesis, Dept. of Computer Science, Western Michigan Univ, 1997.
[5] T. Kloks, D. Kratsch and H. Muller, "Bandwidth of chain graphs", Information Processing Letters, vol. 68, no. 6, pp. 313-315, 1998.
[6] S. F. Assman, Peck et al., "The bandwidth of caterpillars with hair of length 1 and 2", SIAM Journal on Algebraic and Discrete Methods, vol. 2, pp. 387-393, 1981.
[7] Д. О. Мурадян, "Полиномиальный алгоритм для нахождения минимаксных нумераций графов интервалов", Академия Наук Арм. ССР, в. 82, pp. 64-66, 1986.
[8] D. Kleitman and R. Vohra, "Computing the bandwidth of interval graphs", SIAM J. Discrete Math., vol. 3, no. 3, pp. 373-375, 1990.
[9] R. Mahesh, C. P. Rangan and A. Srinivasan, "On finding the minimum bandwidth of interval graphs", Information and Computation, vol. 95, no. 2, pp. 218-224, 1991.
[10] A. P Sprague, "An $O(n \log n)$ algoritm for bandwidth of interval graphs", SIAM Journal on Discrete Mathematics, vol. 7, no. 2, pp. 213-220, 1994.

Submitted 21.07.2016, accepted 24.10.2016.

Э. Unıpumjuia

Uưఝnఝnuu

 qnuwh huufupulquınıu: $B_{\varphi}(G)=\max |\varphi(u)-\varphi(v)|$ phln, npuntn ưpupunnún

 ňunukupp humntufutiph qnuw:

 wuunh 8 uin:

Алгоритм полиномиальной сложности для нахождения высоты графов интервалов

Д. Мурадян

Abstract

Аннотация Пусть $\mathrm{G}=(\mathrm{X}, \mathrm{U})$ - граф со множеством вершин X и ребер U . Каждое взаимнооднозначное отображение $\varphi: X \rightarrow\{1,2, \ldots,|\mathrm{X}|\}$ назовем его нумерацией. При этом число $|\varphi(x)-\varphi(y)|$ назовем длиной ребра (x, y), а числа $B_{\varphi}(G)=\max _{(x, y) \in U}|\varphi(x)-\varphi(y)|$ и $B(G)=$ $\min _{\varphi} B_{\varphi}(G)$, где минимум берется по всевозможным нумерациям графа G , соответственно высотой нумерации φ и графа G. Граф интервалов определяется как граф пересечений семейства интервалов данных на числовой прямой.

В настоящей работе приводится алгоритм полиномиальной сложности для нахождения высоты произвольного графа интервалов. Алгоритм имеет сложность $0\left(\mathrm{n} \Delta^{2} \log (\Delta)\right)$, где n - количество вершин, а Δ - максимальная степень вершин графа.

