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Search and discovery for natural bioactive products have been so important to control the emergence of antibiotic resistant

microbial pathogens. Therefore, novel microorganisms that produce such metabolites is extremely needed. The capacity of

members of the genus Streptomyces to produce commercially significant bioactive metabolites, notably antibiotics remains

unsurpassed. However, it is acknowledged that discovering commercially useful secondary metabolites from streptomycetes is

becoming more difficult due to lack of knowledge on the ecology and complexity of streptomycete systematics. In fact, those

are fundamental aspects for developing strategy and method for isolation. In order to devise an appropriate program for

successful selective isolation of sreptomycetes, it is fundamentally important to understand their occurance and activity in

nature. A multistep extraction procedure designed for representative sampling, called dispersion, and differential centrifugation

technique in combination with the incorporation of antibiotics into isolation media has become one of the most important

selective method for the isolation of streptomycetes from natural habitats. The availability of new procedures to selectively

isolate representative of streptomycetes from natural habitats opens up the possibility to determine the extent of streptomycete

diversity from various habitats. Hence, the capacity of well characterized streptomycete isolates to produce commercial novel

active metabolites could be further assessed appropriately.
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The search and discovery of new microorganisms that

produce novel secondary metabolites is extremely important

not least because of the need to find new pharmacologically

active compounds to control the emergence of antibiotic

resistant microbial pathogens (Bérdy 1995; Demain 1998;

Demain and Elander 1999). It is widely acknowledged that

some microorganisms are better sources of bioactive

compounds than others. Amongst bacteria, the ability of

members of the genus Streptomyces to produce commercially

significant, pharmacologically active metabolites, notably

antibiotics, remains unsurpassed (Bérdy 1995; Sanglier et

al. 1996; Garrity and Holt 2001). However, it is becoming

increasingly difficult to discover commercially useful

secondary metabolites from these organisms as known

streptomycetes are being isolated and screened with

increasing frequency with the  result that the same kinds of

bioactive compounds are being rediscovered at great

expense. This situation raises the question whether

streptomycetes are exhausted as a source of new bioactive

compounds and hence should lose their pre-eminance in

screening programmes designed to detect novel natural

products. To some extent, the answer to this question

depends on the extent of the untapped taxonomic and genetic

diversity that is encompassed in the genus at specific and

infraspecific levels.

The primary aim of this review is to unveil the potential

of the members of the genus Streptomyces as an unsurpassed

source of bioactive products as well as the constraint that

usually prevent the succesful discovery of novel strain that

produce commercial bioactive product. The strategy and

method developed on the basis of ecological and

taxonomical selective isolation approach in order to

overcome the problems of discovering novel bioactive

producing streptomycetes are therefore also discussed

accordingly.

Study of Streptomycete Diversity in Natural Habitats

The analysis of DNA extracted from environmental

habitats shows that the genetic diversity of microorganisms

is much greater in natural habitats than was previously

recognized  (Embley and Stackebrandt 1997; Head et al. 1998;

Bull et al. 2000). The genus Streptomyces accommodates an

unusually high degree of natural diversity with almost 600

validly described species (Goodfellow et al. 2007).

Nevertheless, a steady flow of new streptomycete species

are being described to accommodate either organisms

isolated from diverse habitats (Kim et al. 1998; Al-Tai et al.

1999; Kim et al. l999, 2000; Sembiring et al. 2000; Goodfellow

et al. 2007; Ambarwati et al. 2009) or existing strains

redescribed in the light of the application of modern

taxonomic techniques (Labeda and Lyons l991a,b; Labeda

et al. 1997). It is clear from such studies that new

streptomycete species should be circumscribed using a

combination of genotypic and phenotypic data and that

strains isolated from unexplored habitats are likely to form

new centres of taxonomic variation. There is a strong

circumstantial evidence that the discovery of previously

unknown natural products occurs when novel organisms

are examined in either established or new pharmacological
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screening programmes (Nolan and Cross 1988; Omura 1992;

Woodruff 1999).

It is highly probable that the genus Streptomyces is

underspeciated partly because of the historical difficulties

in isolating and characterising a representative sample of

the streptomycete community found in natural habitats.

However, the availability of new procedures to selectively

isolate and characterise representative of streptomycetes

from natural habitats opens up the possibility of determining

the extent of streptomycete diversity associated with

neglected habitats, such as the rhizosphere of tropical trees

(Sembiring et al. 2000; Ambarwati et al. 2009). It is becoming

increasingly apparent that streptomycetes are widely

distributed in the root systems of a broad range of plants

(Upton 1994; Katsifas et al. 1999; Atalan et al. 2000;

Sembiring et al. 2000) though little is known about the extent

of their taxonomic diversity, activities or interactions with

other organisms found in and around plant roots.

Nevertheless, there is evidence that streptomycetes or their

products can be used to suppress root-infecting fungi  in

vivo (Lui et al. 1995; You et al. 1996; Trejo-Estrada et al.

1998a).

An example of biosystematic studies on members of

three putatively novel Streptomyces species isolated

from rhizosphere soil show that a coherent strategy is

available to determine the species richness of cultivable

streptomycetes isolated  from environmental samples (Atalan

et al. 2000). Representative strains from selective isolation

plates can be grown on oatmeal and peptone-yeast extract-

iron agars and assigned to groups based on aerial spore

mass colour, substrate mycelial pigmentation, the colour of

any diffusible pigments and the ability to produce melanin

pigments. The resultant colour-groups can be evaluated by

examining representative strains by using Curie-point

pyrolysis mass spectrometry (Goodfellow et al. 1997a;

Sembiring et al. 2000)  and/or by 16S rDNA sequencing and

DNA:DNA relatedness studies (Goodfellow et al. 1997b). A

similar strategy has been used to highlight potentially novel

rhodococci that were selectively isolated from deep sea

sediments in the North-West Pacific Ocean (Colquhoun et

al. 1998a,b, 2000).

Ecology and Strategy to Selectively Isolate Streptomycetes

Little is known about the geographical distribution of

Streptomyces species (Goodfellow and Simpson 1987;

Goodfellow and O’Donnell 1989; Bull et al. 1992) or about

fluxes in streptomycete populations due to seasonal and

climatic changes or to human intervention as in agriculture

and farming practices (Atalan 1993; Upton 1994). This lack

of knowledge can be partially attributed to the complexity of

streptomycete systematics, notably to the lack of reliable

identification schemes. The identification of streptomycetes

below the genus level remains difficult and has been rarely

attempted in ecological studies (Goodfellow and Dickinson

1985; Upton 1994; Manfio 1995; Atalan et al. 2000) even with

the availability of computer-assisted identification

procedures (Williams et al. 1983; Langham et al. 1989;

Kämpfer and Kroppenstedt 1991).

The literature on the occurrence and activity of

streptomycetes in nature is as extensive as it is diffuse

(Williams 1982; Goodfellow and Williams 1983; Williams et

al. 1984a,b; Goodfellow and Simpson 1987; McCarthy and

Williams 1990; Korn-Wendisch and Kutzner 1992). However,

streptomycetes are common in both aquatic and terrestrial

environments; most are strict saprophytes though members

of a few species form parasitic associations with animals

and plants. Little is known about the role of streptomycetes

in natural habitats though composts, fodder and soil seem

to be primary reservoirs.

Innumerable “non-selective” media have been

recommended for the isolation of streptomycetes (Williams

and Davies 1965; Williams et al. 1984a). Many of these

contain glucose, glycerol, mannitol, or starch as the carbon

source and arginine or asparagine as the nitrogen source.

Chitin has  also frequently been used as a source of carbon

and nitrogen. Such “non-selective” media are now known to

favour the isolation of a narrow ranges of streptomycetes

and do not support the growth of actinomycetes with more

exacting growth requirements (Cross et al. 1976; Williams et

al. 1984a). Selective isolation procedures are necessary to

determine the numbers and types of streptomycetes

occurring in natural habitats.

Selective media favour the growth of target

microorganisms but not that of unwanted organisms. A

number of approaches based on some aspect of the biology

of individuals or groups of organisms can be used to

selectively isolate actinomycetes from environmental

samples. The organisms may be selected by plating serial

dilutions of environmental samples onto nutrient media

containing compounds which inhibit the growth of unwanted

bacteria but not that of the target streptomycetes, by

enriching the environmental substrate prior to selective

isolation or by treating it using either chemical and/or

physical methods which favour the isolation of

streptomycetes but not that of unwanted bacteria and fungi.

The incorporation of antibiotics into isolation media has

become one of the most important selective techniques for

the isolation of  streptomycetes (Porter et al. 1960; Gregory

and Lacey 1963; Williams and Davies 1965; Williams and

Mayfield 1971; Orchard and Goodfellow 1974; Labeda and

Shearer 1990). The antifungal antibiotics cycloheximide and

nystatin are routinely incorporated into media selective for

streptomycetes, at approximately 50 µg ml-1 each, to eliminate

or control the growth of fungi on isolation plates. Media

supplemented with antibacterial antibiotics are often used

to good effect though streptomycete counts as well as those

of unwanted bacteria may be reduced (Williams and Davies

1965; Davies and Williams 1970).

It is always difficult to know which antibiotic or

combination of antibiotics are likely to be the most effective

for the isolation of target organisms. One approach which

has been applied with some success is to determine the

antibiotic sensitivity patterns of representatives  of a specific

taxon and to supplement media with  antibiotic(s) that inhibit

unwanted bacteria but not that of the target streptomycetes.

Williams and Davies (1965) screened members of 45

Streptomyces spp. against four antibiotics at five different



concentrations and found that the least inhibitory antibiotics

were polymixin B sulphate (5.0 µg ml-1) and sodium penicillin

(1.0 µg ml-1). They supplemented starch-casein agar with

these antibiotics and found a decrease in the total number of

streptomycetes from soil though the plates were cleaner  and

streptomycete colonies easier to recognise and isolate than

on control plates lacking antibacterial antibiotics.

The high streptomycetes counts associated with habitats

such as soil need to be interpreted with care as most colonies

growing on isolation plates originate from spores. The growth

of streptomycetes in soil is similar to that of many other

microorganisms in this habitat where supplies of nutrients

are discontinuous. It seems that streptomycetes live in soil

for long periods as arthrospores that germinate in the

presence of exogenous nutrients, the lack of which prevents

germination of most or all spores added to sterile soil

(Mayfield et al. 1972). These investigators estimated the

mean doubling time of streptomycetes in soil to be 1.7 days.

This protracted doubling time probably reflects the stop-go

nature of the streptomycete life-cycle. The specific growth

rates and genetration times of streptomycetes grown in batch

culture are roughly intermediate between those of bacteria

and fungi ( Flowers and Williams 1977).

The survival capacity of streptomycete spores appear to

be greater than that of hyphae (Williams et al. 1972). The

walls of spores are usually thicker than those of hyphae

(Sharples and Williams 1976) and are also more hydrophobic

(Ruddick and Williams 1972) due to the presence of an outer

sheath that envelopes the spore wall (Williams et al. 1973).

Streptomycete  spores have a net negative surface charge at

low pH levels (Douglas et al. 1971), a relatively low

endogenous metabolism (Ensign 1978) and generally show

more resistance to heat than corresponding hyphae

(Goodfellow and Simpson 1987). They are dispersed above

soil by wind or rain (Lloyd 1969) and within soil by arthropods

and water movements (Ruddick and Williams 1972).

The major factors governing the distribution and activity

of streptomycetes in soil are nutrient availability, moisture

content, temperature and pH though soil type and seasonal

change also have an influence (Williams et al. 1972; Williams

1978; Atalan 1993; Upton 1994). Streptomycetes can grow in

soil at low oxygen levels, but not when carbon dioxide

concentrations exceed 10%. In arid soils, streptomycete

counts decrease sharply at moisture tensions above pF 4.0,

but their relative proportion to other bacteria may be greater

as their spores are more resistant to desiccation than

vegetative cells of bacteria. Optimal counts from neutral soils

and optimal radial growth of streptomycetes inoculated into

sterile soil occur at moisture tensions between pF 1.5 and

2.5. At these tensions, soil pores are partially filled with

available water but still contain sufficient air for the growth

of the aerobic microbiota. Halophilic (Hunter et al. 1981) and

osmophilic streptomycetes (Wong and Griffen 1974) have

been reported.

Soil reaction is an important factor determining the

distribution and activity of streptomycetes. Acidophilic and

neutrotolerant streptomycetes, which grow between pH 3.5

and 7.5 but optimally around pH 5.5, are common in acidic

soils (Williams et al. 1971; Khan and Williams 1975;

Goodfellow and Dawson 1978; Goodfellow and Simpson

1987). These organisms produce chitinases (Williams and

Robinson 1981) and diastases (Williams and Flower 1978)

with pH optima lower than those of en-zymes from

neutrophilic streptomycetes which grow between pH 5.5 and

8.0, but optimally around 7.2. The presence of low numbers

of neutrophilic streptomycetes in acidic soils has been

attributed to their ability to grow in less acidic microsites

(Williams and Mayfield 1971). It has been shown that when

nitrogen containing substrates, such as chitin or dead fungal

mycelium, are added to poorly buffered acidic soil, a

succession of acidophilic to neutrophilic streptomycetes

occurs that parallels ammonification and the resultant rise in

pH (Williams and Robinson 1981).

Little is known about the growth of most streptomycetes

in situ. It seems unlikely that they  grow optimally in temperate

soils as most strains are mesophilic under laboratory

conditions. However, temperature can indirectly be implicated

in examples of the influence of seasonal and climatic factors

in the size and composition of streptomycete populations.

It has been  reported that streptomycete counts in grassland

were highest in summer and that the distribution of

“Streptomyces malachiticus” is restricted to subtropical and

tropical soils (Küster 1976).

Clay and humic colloids can influence the activity of

streptomycetes at the micro-environmental level.

Streptomycete spores are readily adsorbed to kaolin but not

to montmorillonite except at low pH (Ruddick and Williams

1972). Addition of calcium montmorillonite or calcium humate

to cultures of streptomycetes can accelerate their growth

and respiration (Mara and Oragui 1981). It has also been

shown that sites of adsorption with humic material can lead

to microsites of increased pH in acidic soils (Williams and

Mayfield 1971).

Streptomycete as a Potential Source of

Natural Bioactive  Products

Wide range of marketed microbial agents with therapeutic

which are produced by the streptocetes including

antibacteria (cephamycins, carbapenems, clindamycin,

quinupristin, and streptomycin), antifungal (nystatin,

cycloheximide), antineoplastics (daunorubicin, doxorubicin),

immunomodulator (tacrolismus, rapamycin), and antiparasitic

(ivermectin, abamectin, doramectin, moxidectin (Kuo and

Garrity 2002). However, in general, streptomycetes are not

considered to have a significant role in plant root systems

(Williams et al. 1984b). However, it is now apparent that

streptomycetes are widely distributed in the root systems of

diverse plants (Rangaswami and Vasantharajan 1962;

Bernhard 1967; Watson and Williams 1974; Vruggink 1976;

Buti 1978; Miller et al. 1990; Sardi et al. 1992; Upton 1994;

Katsifas et al. 1999; Atalan et al. 2000) though  little is known

about the extent of their diversity, activities, or interactions

with other organisms in the root environment. Positive

rhizosphere effects have been reported for streptomycetes

in several root systems, such as those of maize, perennial

ryegrass, soya, tomato, and wheat (Abraham and Herr 1964;

Upton 1994).
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There is a growing interest in using members of the

streptomycete rhizosphere community to enhance plant

growth and production, and to inhibit root infecting fungi

(Hettiarachi and Penninckx 1990; Trejo-Estrada et al.

1998a,b). Two mechanisms have been proposed to explain

the inhibition of fungal pathogens in the rhizosphere by

biocontrol agents. Antibiosis occurs when one or more

diffusible compounds inhibit growth or development changes

in the pathogen thereby impairing its ability to colonise the

rhizosphere and establish disease. Mycoparasitism is a

different process which is initiated by physical destruction

of the fungal cell wall mediated by the action of hydrolytic

enzymes produced by the biocontrol agent (Adams

1990).

Most actinomycetes considered to suppress the growth

of root infecting fungi are streptomycetes (Table 1).

Antibiotics produced by actinomycetes have been used

directly or assumed to be responsible for the biocontrol

potential of the producing strains. Examples of such

metabolites include aminoglycosides (Qin et al. 1994),

macrolide benzoquinones (Rothrock and Gottlieb 1984),

nucleosides (Hwang et al. 1994) and polyenes (Smith et al.

1990; Raatikainen et al. 1994). Streptomyces violaceusniger

strain YCED-9 is an antifungal biocontrol agent which

produces three different antibiotics, namely geldanamycin,

nigericin, and a complex of macrocyclic lactone antibiotics

(Trejo-Estrada et al. 1998a,b). This organism, which was

isolated from soil by Crawford et al. (1993), was selected for

its potential to suppress dumping-off disease of lettuce

caused by Pythium ultimum, and for its ability to antagonize

the growth of many fungal pathogens in vitro and in vivo

(Crawford et al. 1993; Crawford 1996). Streptomyces strain

Table 1  Actinomycetes reported to be antagonistic towards fungal root pathogens

Actinomycete genus/species                                        Fungal pathogen                                                  Reference

Actinoplanes missouriensis

Actinoplanes

Micromonospora

Rhodococcus

S. diastatochromogenes

S. griseoalbus

S. griseus

S. hygroscopicus subsp. geldanus

S. violaceusniger strain A50

S. violaceusniger YCED-9

Streptomyces

Streptomyces strain 385

Not stated

Aphanomyces sp.

Phytophthora sp.

Pythium sp.

Phytophthora sp.

Phytophthora sp.

Phytophthora capsici

Pythium spp.

Phytophthora sp.

Gaeumannomyces graminis

Pythium debaryanum

Phellinus weirii

Fomes annosus

Phytophthora cinnamoni

Rhizoctonia solani

Phomopis sclerotioides

Rhizoctonia sp.

Botryosphaeria dothidea

Phytophthora capsici

Rhizoctonia solani

Rhizoctonia solani

Fusarium oxysporum

Phymatotrichum omnivorum

Rhizoctonia solani

Verticillium alboatrum

Gaeumannomyces graminis

Rhizoctonia bataticola

Aspergillus spp.

‘Wood infecting fungi’

Phytophthora cinnamoni

Fusarium oxysporum

Fusarium oxysporum

Fusarium moniliforme

Sclerotium rolfsii

Fusarium oxysporum

Aspergillus parasiticus

Fusarium tricictum

Fusarium oxysporum

Phytophthora spp.

Rhizoctonia solani

Fusarium culmorum

Fusarium udum

Corticum salmonicolor

Phytophthora capsici

Phytophthora cinnamoni

Fusarium oxysporum

Pythium ultimum

Sutherland et al. (1984)

Sneh et al. (1977)

Sutherland and Lockwood (1984)

Sutherland and Papavizas (1991)

Khan et al. (1993)

Sutherland and Lockwood (1984)

Renwick et al. (1991)

Kaspari (1973)

Rose et al. (1980)

Merriman et al. (1974a, 1974b)

Ebben and Spencer (1978)

Rothrock and Gottlieb (1984)

Hwang et al. (1994)

Trejo-Estrada et al. (1998a)

Whaley and Boyle (1967)

Smiley (1978a, 1978b)

Sing and Mehrota (1980)

Stabi et al. (1980)

Blanchette et al. (1981)

Murray (1987)

Sabaou and Bounagu (1987)

Huber et al. (1989)

Kalappanavar and Hiremath (1990)

Plakshappa et al. (1990)

Chung and Hong (1991)

Borghi et al. (1992)

Singh et al. (1999)

Keast and Tonkin (1983)

Kundu and Nandi (1985)

Kempf and Wolf (1989)

Guar and Sharma (1991)

Joseph et al. (1991)

Ahn and Hwang (1992)

Stirling et al. (1992)

Abdel-Moneim et al. (1993)

Crawford et al. (1993)
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385 suppresses fusarium wilt of cucumber (Cucumis sativus)

caused by Fusarium oxysporum when used in combination

with Paenibacillus strain 300 (Singh et al. 1999).

Natural bioactive substances, notably which are

produced by microorganisms have been the subject for many

studies due to their importance in the fields of both medicine

and agriculture. Such natural microbial bioactive products

are including antibiotics, anticancer, antiviral,

immunomodulator as well as antiparasitic. In the field of

medicine, antibiotics have been used as the main agents to

control the emergence of antibiotic resistant microbial

pathogens, while in the field of agriculture antibiotics and

antihelminth have also been utilized to control plant pathogen

microbes as well as  plant pest nematodes, respectively. Since

amongst bacteria, the ability of members of the genus

Streptomyces to produce commercially significant,

pharmacologically active metabolites, notably antibiotics,

remains unsurpassed, it is reasonable that streptomycete

diversity has been among the most important target for search

and discovery for this bioactive natural products. Therefore,

the comprehensive study of the streptomycete biodiversity

in natural habitats could provide a very useful information

to design screening program in order to obtain the best

producer strains among the member of the genus

Streptomyces.
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